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Abstract: This study introduces an efficient methodology for addressing fault detection, classification,
and severity estimation in rolling element bearings. The methodology is structured into three
sequential phases, each dedicated to generating distinct machine-learning-based models for the
tasks of fault detection, classification, and severity estimation. To enhance the effectiveness of fault
diagnosis, information acquired in one phase is leveraged in the subsequent phase. Additionally, in
the pursuit of attaining models that are both compact and efficient, an explainable artificial intelligence
(XAI) technique is incorporated to meticulously select optimal features for the machine learning
(ML) models. The chosen ML technique for the tasks of fault detection, classification, and severity
estimation is the support vector machine (SVM). To validate the approach, the widely recognized
Case Western Reserve University benchmark is utilized. The results obtained emphasize the efficiency
and efficacy of the proposal. Remarkably, even with a highly limited number of features, evaluation
metrics consistently indicate an accuracy of over 90% in the majority of cases when employing
this approach.

Keywords: Explainable Artificial Intelligence;rolling element bearing; ML; fault detection and diagnosis

1. Introduction

Contemporary industries grapple with a myriad of challenges, particularly those arising
from complex operating environments and extensive equipment fleets [1]. Rolling element
bearings (REBs) constitute a fundamental component within rotating machinery, making them
susceptible to frequent failures that can lead to machine breakdown [2,3]. Consequently, moni-
toring the health of these machines has become paramount to ensure operational reliability
and efficiency. This imperative extends to tasks such as fault detection and diagnosis (FDD),
where timely identification of issues is crucial.

Various methods, including vibration, acoustics, temperature, and lubricant analysis,
are employed to analyze bearing faults [4–7]. The prevalent approach to monitoring the
health of rotating machines relies on analyzing vibration signals [8]. Machine learning
(ML) techniques have proven instrumental in building FDD models, where the input data
comprise features extracted from these monitored signals [9]. These features encompass a
range of time, frequency, and time-frequency domain measurements, including statistical
parameters like mean, standard deviation, maximum, and minimum values in the time
domain, as well as components and coefficients of fast Fourier transform (FFT) and discrete
wavelet transform (DWT) in the frequency and time-frequency domains, respectively [10].

While machine learning models such as artificial neural networks (ANNs), support
vector machines (SVMs), and k-nearest neighbor classifiers have leveraged these features to
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identify bearing faults [11], this approach has drawbacks. Feature selection, often decided
through trial and error, greatly influences the classification algorithm’s success [12]. Thus,
efficient and accurate FDD models necessitate meticulous feature selection [13].

In the pursuit of concise and accurate solutions, a three-phase methodology is pre-
sented to address the challenges of fault detection, classification, and severity level esti-
mation in rolling bearings.This sequence of phases operates in a cascading manner, where
insights gleaned from the previous phase play a pivotal role in shaping the subsequent one.
In the classification phase, only data from the preceding phase, specifically those related
to detected faults, are employed. Subsequently, the estimation of severity for each unique
fault class.

In recent decades, artificial intelligence (AI) models have emerged as a pivotal technol-
ogy, driving groundbreaking innovations across various application domains [14]. How-
ever, the pursuit of these innovations has sometimes come at the expense of poor model
interpretability. Traditional machine learning (ML) algorithms are known for their rela-
tively high explainability, albeit with potentially lower predictive performance. In contrast,
more advanced algorithms like deep learning models exhibit greater predictive power
but remain challenging to interpret, especially within complex systems. To address this
challenge, researchers have introduced explainable artificial intelligence (XAI) [15]. XAI
encompasses a range of techniques designed to render the decision-making processes of AI
systems understandable and transparent for human comprehension [16].

The objective of XAI is to elucidate the raison d’être of AI systems, discern their capa-
bilities and constraints, and forecast their future evolution [16]. Among the diverse array
of XAI methods are notable approaches like LIME, LORE, anchors, occlusion, permutation
feature importance, Shapley feature importance, SHAP (Shapley additive explanations),
guided backpropagation, DeepLift, and deconvolution [17].

In the context of this paper, from an assortment of methodologies within the realm of
XAI, the technique chosen for exploration was SHAP. This technique derives its inspiration
from the tenets of cooperative game theory, with particular emphasis on the concept
of Shapley’s value—an evaluative mechanism that apportions value to each participant
within a coalition, mirroring their contributions to the overall coalition’s end result. When
transplanted into the domain of ML, SHAP undertakes the responsibility of quantifying the
individual significance of features (inputs) in relation to specific model predictions. This
methodology gauges the extent to which the presence or absence of each feature shapes
the intended outcome, contrasting it against its absence [18]. This approach is classified
as a category of explanatory importance, underscoring the pivotal role played by these
features [17].

In this context, the fault detection and diagnosis (FDD) models exclusively employed
time domain features in conjunction with the support vector machine (SVM) technique.
Nevertheless, the framework proposed possesses a level of generality that accommodates
the utilization of alternative feature sets and diverse ML techniques. The proposal is
validated using the well-known Case Western Reserve University benchmark for rolling
bearing faults [19].

The subsequent sections of this paper are structured as follows: In Section 2, fun-
damental concepts are elucidated, encompassing FDD, feature selection for ML models,
explainable artificial intelligence (XAI), and the application of SHAP (Shapley additive
explanations). In Section 3, an in-depth exposition of the three-phased FDD methodology
is presented. Section 4 delves into a comprehensive case study utilizing the renowned Case
Western Reserve University benchmark for detecting faults in rolling element bearings.
This involves an explication of the experimental setup, followed by a meticulous analysis
of the resultant outcomes. Lastly, the conclusive remarks and discourse on the findings are
presented in Section 5.
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2. Theoretical Background

This section aims to provide the essential concepts that underpin a comprehensive
understanding of this study. It encompasses critical themes such as FDD and feature
selection within machine learning (ML) models.

2.1. Fault Detection and Diagnosis

The escalating complexity of industrial processes over recent decades, driven by market
demands, heightened production rates, and stringent environmental and safety regulations, has
posed challenges to human operators in overseeing these complex systems [20]. In this context,
operator-induced errors account for a substantial proportion—around 70% to 90%—of
accidents within industrial environments [21,22]. This reality underscores the pressing
need for automated monitoring of operational quality and health, a pivotal endeavor within
the Industry 4.0 framework [23].

The health monitoring of industrial system operations fundamentally revolves around
the identification and diagnosis of anomalous scenarios that may arise during their func-
tioning [24]. Many of these anomalies stem from equipment faults or disruptions within
the system, posing potential threats to the overall performance, integrity, and safety of
the entire system. Consequently, fault detection and diagnosis (FDD) activities assume a
pivotal role in ensuring the operational efficiency of industrial systems and equipment [25].
Specifically, fault detection involves the task of identifying the occurrence of a fault, whereas
fault diagnosis encompasses determining the nature and severity of the fault (encompassing
fault classification and severity estimation). Additionally, fault diagnosis endeavors to pin-
point the origin of the fault through techniques such as root cause analysis (RCA) [26]. In the
context of this study, FDD encompasses activities related to fault detection, classification,
and severity estimation.

FDD methods can be effectively grouped into three main categories: quantitative
model-based methods, qualitative model-based methods, and data-based methods. Model-
based techniques emanate from a profound understanding of the fundamental physics
governing the monitored process. In the case of quantitative methods, this understanding
is translated into mathematical relationships that establish connections between the inputs
and outputs of the analyzed system. In contrast, data-based methods capitalize on process
variable data to fuel their analytical processes. Notably, recent research has prominently
favored data-based approaches, primarily due to their autonomy from intricate process
dynamic models and their adeptness at harnessing the abundant data resources available
today [21].

These data-based FDD models commonly employ ML techniques. During the nascent
stages of integrating ML techniques into FDD, traditional feed-forward neural networks
were employed as seen in works such as [27,28]. Subsequently, a myriad of ML approaches
emerged to engineer FDD models tailored specifically for industrial systems, as highlighted
in [29]. A comprehensive investigation conducted by [30] delves deeply into this realm,
presenting an extensive exploration that focuses on FDD achieved through ML techniques
and their application to rotating machinery.

2.2. Feature Selection of ML Models

In the context of machine learning (ML) models, features serve as the inputs that drive
the predictive power of the model. The process of feature selection entails the identification
and curation of an optimal set of features that contribute to the construction of effective
models, as highlighted by [31]. Given the inherent sensitivity of these models to the quality
of information fed into their inputs, the task of feature selection assumes a paramount role
in ensuring the efficiency and accuracy of ML models [32].

Diagnosing faults in rotating machines conventionally involves monitoring vibra-
tion signals within the machine shaft, as noted by [11]. These ML-based fault detection
and diagnosis (FDD) models rely on the distinct characteristics of these signals, which can be
extracted from the time domain, frequency domain, or time-frequency domain. In the time
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domain, typical attributes include mean, root mean square, standard deviation, peak to peak,
minimum and maximum values, crest factor, kurtosis, and skewness values [10,33–39]. Fea-
tures in the frequency domain often encompass coefficients obtained from the fast Fourier
transform (FFT) of the vibration signals, as indicated by references such as [40,41]. In the
realm of time-frequency techniques, notable methods include the short-time Fourier trans-
form (STFT) [42–44], discrete wavelet transform (DWT) [45–50], envelope analysis [2,51–53],
and empirical mode decomposition (EMD) [54–57].

The process of feature reduction comprises two primary procedures: feature extraction
(transformation) and feature selection. Feature extraction methods, including principal
component analysis (PCA), linear discriminant analysis (LDA), and multidimensional
scaling, function by transforming the initial features into a new set derived from their
combinations, as highlighted by [58]. The objective is to unveil more insightful information
within this newly generated set. However, techniques centered around dimensionality
reduction introduce new inputs to models, which can escalate processing demands and
potentially compromise their explainability by discarding original features during the
reduction process.

Conversely, feature selection involves the extraction of a concise subset of features
from the original set, all without undergoing transformation. This preserves their inherent
interpretability. Subsequently, this selected subset is assessed in light of the analytical
objective. The process of selection can be carried out through a range of approaches, con-
tingent on factors such as the precise objective, resource availability, and the desired level
of optimization, as outlined by [59]. Feature selection plays a pivotal role in achieving
machine-learning-based FDD models that are effective and precise, often demanding an in-
tricate understanding of the system. The literature offers a wide spectrum of techniques for
feature selection, including approaches like information gain, chi-square, feature weight-
ing, k-means, localized feature selection based on scatter separability (LFSBSS), Fisher
score, and inconsistency criterion, as outlined by [59]. This work will now delve into the
realm of feature selection, focusing on an approach that augments explainability while
circumventing the introduction of additional processing overhead to the FDD model.

2.3. Explainable Artificial Intelligence (XAI)

The pervasive adoption of ML techniques in various systems facilitates data-driven
decision-making, the harnessing of big data solutions, the formulation of effective com-
mercial strategies, the augmentation of process automation, and the mitigation of errors,
risks, and operational expenses, among other benefits. However, a significant contempo-
rary challenge revolves around comprehending the decision-making mechanisms of these
ML models. This becomes particularly crucial in domains where the outcomes of these
decisions bear sensitivity, as in applications involving human subjects [60].

To gain deeper insights into the decision-making processes of ML models, the field of
explainable artificial intelligence (XAI) has emerged [17]. The primary objective of XAI is
to introduce and employ techniques that yield more interpretable models or enhance their
explainability, all while preserving their commendable performance levels [61].

The landscape of XAI has witnessed remarkable expansion, transforming from a niche
research topic within AI into a dynamic and multidisciplinary field. This evolution is
a direct response to the growing success of ML, especially deep learning (DL), in real-
world applications. XAI emerges as a pivotal force in addressing the escalating need for
transparency in AI systems. As AI, and particularly DL models, become increasingly
prevalent in diverse domains, the challenge of understanding these complex and opaque
systems has become more pronounced. XAI methods play a critical role in enhancing the
interpretability of AI models by tailoring explanations specifically to the cognitive needs
of human stakeholders. These methods, including the provision of social, contrastive,
and selective explanations, contribute to making the decision-making process of AI models
more comprehensible to a wider audience. The focus on transparency and interpretabil-
ity empowers stakeholders to grasp the contributing factors and features that underpin
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AI model predictions or decisions, fostering a clearer understanding of the technology’s
impact. As XAI continues to advance, collaborative efforts and interdisciplinary research
aim to align research agendas and explore promising directions, harnessing the collec-
tive intelligence of diverse stakeholders to further enhance the understandability of AI
models [62].

XAI techniques can be categorized based on three key criteria: (I) the degree of
interpretability complexity, (II) the extent of interpretability coverage, and (III) the level
of reliance on the chosen ML model [63]. Typically, simpler models are more readily
interpretable, while highly complex models present challenges in terms of interpretation
and explanation. Concerning the scope of interpretability, these methods are commonly
classified into two subcategories: global interpretability and local interpretability. Global
interpretability aims to unveil the entirety of a model’s logic and delineate the reasoning
processes that lead to its various possible outcomes. On the other hand, local interpretability
focuses on elucidating specific decisions or significant predictions within the model [63].

Agnosticism constitutes a crucial attribute in characterizing XAI techniques. Agnostic
approaches possess the capability to be employed across diverse types of ML algorithms
or models [63]. Consequently, such XAI techniques are highly advantageous as they can
seamlessly integrate with a wide range of ML methodologies.

The Shapley value, originally conceptualized to assess the significance of individual
participants in cooperative team settings, has found application in the realm of machine
learning through the SHAP (Shapley additive explanations) library. Rooted in game
theory, the Shapley value mechanism seeks to equitably distribute the cumulative benefit
of collaborative efforts among participants based on their relative contributions to the final
outcome [64].

One of the key strengths of SHAP is its versatility, making it applicable to a wide range
of ML models, from simple linear models to complex deep neural networks. This flexibility
is essential in the diverse landscape of modern ML, where models of varying complexity
are employed for different tasks [18]. SHAP’s agnostic nature allows it to be seamlessly
integrated into different frameworks, providing a consistent methodology for interpreting
model outputs.

The core idea behind SHAP is to assign a Shapley value to each feature, quantifying
its marginal contribution to the model’s prediction for a given instance. The Shapley value,
originally devised to fairly distribute the benefits among participants in a cooperative
game, is adapted in SHAP to allocate the model’s output to individual features in a way
that reflects their relative importance. This approach is particularly valuable for complex
models where the contribution of each feature is not immediately apparent [65].

In practical terms, SHAP achieves this by considering all possible combinations of
features and their contributions, evaluating the model’s output for each combination.
The Shapley values are then computed by averaging over all possible orders in which
features are added to the combination. This process provides a fair and consistent attri-
bution of the model’s output to each feature, unveiling their individual impacts on the
final prediction.

Among the variety of plots available in the SHAP library, this study will exclusively
analyze the summary plot. This plot adopts a beeswarm plot format, comprising multiple
dots. Each dot encapsulates three essential features. For instance, an illustrative example of
a summary plot can be observed in Figure 1. The attributes of each dot are as follows:

• The vertical position identifies the corresponding feature.
• The horizontal position indicates whether the value’s influence resulted in a higher or

lower prediction.
• The color represents whether the data’s value is categorized as high or low.

This analytical approach using the SHAP summary plot provides a visually intuitive
and insightful means of understanding the individual feature contributions to the overall
decision-making process of machine learning models.
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Researchers and practitioners often leverage SHAP for tasks such as model debugging,
feature importance analysis, and model comparison. Its application extends to various
domains, including finance, healthcare, and natural language processing. As the field of XAI
continues to evolve, SHAP remains a cornerstone in providing transparent and interpretable
insights into the complex decision-making processes of machine learning models.

Figure 1. Example of summary plot.

3. Proposed FDD Approach

To achieve precise and efficient FDD models for the rolling bearing components in
rotary machines, the approach is structured into three sequential phases: (1) fault detection,
(2) fault classification, and (3) fault severity estimation.

In the fault detection phase, potential faults within the system are initially identified
in the data. The fault classification phase exclusively employs the data identified as faulty
from the initial phase, ensuring that the analysis is based solely on relevant fault-related
information to enhance accuracy. Subsequently, in the fault severity estimation phase,
data are systematically categorized based on the fault classes determined during the
classification step. This targeted categorization allows for a meticulous examination of
each fault class. This structured progression enables more precise and specialized severity
estimations, building upon insights derived from prior classifications. The block diagram
of the FDD proposal is shown in Figure 2.

Fault
Detection 

Fault
Classification

Fault
Severity N

Fault
Severity 1

Faulty Samples Fault 
Severity 2

FaultSamples
Class 1

FaultSamples
Class 2

FaultSamples
Class N

.

.

.

Third PhaseSecond PhaseFirst Phase

Figure 2. Descriptive block diagram of the proposed FDD approach.
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Figure 3 illustrates the sequential progression of activities within each of the three
phases of the proposal: fault detection, classification, and severity estimation. These
activities encompass the extraction and selection of features, the choice of the ML tech-
nique, the complete training of the model, the comprehensive evaluation of the model’s
performance, the subsequent training of a reduced model with the selected features, the as-
sessment of the outcomes of the reduced model, and the potential inclusion of additional
features if needed to enhance the model’s performance.

Selection of the set
of N features

Satisfactory
result?

Satisfactory
result?

Model Training

Model performance
evaluation

considering the
importance of each

feature

Model training with
k best features
(initially k = 2)

Add to k +1 ith most
important feature 

(k = k+1)

Selection of
machine learning

technique

Yes

Yes

No No

End

Figure 3. Descriptive block diagram of the proposed FDD approach.

The literature offers numerous approaches for extracting features from vibration sig-
nals in rotary machines [10,66]. These features can be acquired through various techniques,
including time domain methods involving statistical measures, frequency domain tech-
niques encompassing coefficients of the fast Fourier transform (FFT), and time-frequency
domain techniques involving coefficients of the discrete wavelet transform (DWT). In the
validation of the proposal, statistical measures in the time domain of the vibration signals
were exclusively employed. Specifically, peak to peak, root mean square, maximum, mini-
mum, standard deviation, crest factor, and kurtosis values were selected as the features
for the FDD model. These seven features were integrated into the full model training pro-
cess. It is worth noting that prior to model development, exploratory data analysis (EDA)
was conducted to assess the data, eliminating features exhibiting high auto-correlation.
This process not only aids in refining the feature selection but also plays a crucial role in
detecting any anomalies or inconsistencies within the dataset.

The subsequent activity involves the selection of an appropriate ML technique along
with its pertinent hyper-parameters, all aimed at constructing a robust full model. For the
purpose of validating the proposal, the exclusive adoption of the support vector machine
(SVM) is made as the model for all three phases of the approach: fault detection, clas-
sification, and severity estimation. The next step involves the creation of meticulously
trained ML-based models designed to achieve optimal performance. In this validation
process, accuracy is selected as the performance metric, contributing to the evaluation of
the proposal’s efficacy and accuracy.

Subsequently, once a satisfactory full model has been established, a pivotal activity
involves assessing the significance of each individual feature in contributing to the model’s
performance. To achieve this, the approach proposes the application of an explainable
artificial intelligence (XAI) technique. In particular, this endeavor seeks to unveil the inner
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workings of the ML model, shedding light on how it discerns and processes data to detect,
classify, and estimate the severity of faults. In this context, the Python package SHAP
(Shapley additive explanations) has been utilized to systematically quantify and elucidate
the role of each feature in shaping the performance of each full model.

Lastly, with the objective of attaining precise and efficient models, contingent on the
significance of the chosen subset of features for model performance, a series of reduced
models are evaluated iteratively until a satisfactory outcome is achieved.

To initiate this procedure, it begins by selecting the two most critical features that play
a pivotal role in the decision-making mechanism of the fault detection and diagnosis (FDD)
model. Subsequently, the FDD model undergoes exclusive training using these two chosen
features as its input. If the obtained results are deemed unsatisfactory, the introduction
of the third most relevant feature into the input of the fault detection model initiates
the process anew. This iterative feature selection process continues until a predefined
performance threshold is achieved. In this context, the accuracy metric is used as the
designated criterion for determining the performance threshold.

It is crucial to emphasize that this approach is incredibly versatile, allowing for appli-
cation across a wide range of datasets. Furthermore, it enables the extraction of various
features and the utilization of diverse machine learning techniques, along with different
feature selection approaches. In the context of this specific study, conducted with the
purpose of validating the proposal, we chose to adopt the Case Western Reserve University
(CWRU) benchmark [67].

The features calculated in the time domain were extensively explored, encompassing
characteristics such as peak to peak, root mean square, maximum, minimum, standard
deviation, crest factor, and kurtosis. These measurements were conducted for each sensor
dataset available in this dataset, including a drive end (DE) accelerometer and a fan end
(FE) accelerometer.

The chosen machine learning technique for this research was the support vector ma-
chine (SVM) with a linear kernel, providing robustness to the obtained results. Additionally,
for feature selection based on importance, we employed the Python package SHAP (Shap-
ley additive explanations), a reliable tool to elucidate the role and contribution of each
feature to the model’s performance. This choice was based on the need to understand and
highlight the factors that most influence model predictions, thereby contributing to the
transparency and interpretability of the process.

4. Case Study

In order to validate the FDD approach proposed in this study, a comprehensive case
study was conducted using data sourced from the widely recognized benchmark, Case
Western Reserve University (CWRU) [67]. This benchmark involves a 1491.4 Watts electrical
motor operating under normal conditions as well as bearing rolling fault scenarios. Bearing
systems comprise essential components such as a torque sensor, decoder, dynamometer,
eletric motor and two vibration sensors: a drive end (DE) accelerometer and a fan end
(FE) accelerometer. Figure 4 shows the diagram of the infrastructure of the Case Western
Reserve University benchmark.

For the experiments performed here, information from the two vibration sensors (FE
and DE) sampled at 12,000 Hz for the electrical motor operating in 1797 revolutions per
minute (RPM) was used. For these two sensors, the following time domain features were
calculated: peak to peak, crest factor, root mean square, maximum, minimum, standard
deviation, and kurtosis [10,33–39]. A non-overlapping one-second time window was
employed to calculate the features used in all experiments.

The values presented in Table 1 provide a comprehensive overview of different fault
types, along with their corresponding severity estimates, as part of a case study conducted
using the CWRU. This dataset involves a two-horsepower electrical motor operating across
various fault scenarios, including normal operation. Each fault type is assigned a unique
identifier, denoted as “F0” to “F6”, and is associated with specific fault conditions. The
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“Fault Type” column ranges from “No Fault” to “Inner Race Fault”. The severity of each
fault is quantified using diameter measurements in inches, providing essential insights into
the extent of the fault’s impact. The “Fault Description” column offers succinct explanations
of the fault types and their corresponding conditions.

Electric motor Dynamometer
(Load)

Accelerometers

 Fan End
(FE)

Drive End
(DE)

Torque
transducer/

decoder

Figure 4. Infrastructure of the Case Western Reserve University benchmark.

Table 1 serves as a valuable reference to comprehend the fault types, their severity
levels, and their associated explanations within the context of the presented case study.
It aids in understanding the underlying fault scenarios and their varying effects on the
system’s performance.

Table 1. Bearing data description of various conditions.

# Fault Fault Type
Fault Severity

Estimation
(Diameter in Millimeters mm)

F0 No Fault 0.000

F1 Ball Fault—Fb 0.1778

F2 Ball Fault—Fb 0.3556

F3 Ball Fault—Fb 0.5334

F4 Inner Race—Fir 0.1778

F5 Inner Race—Fir 0.3556

F6 Inner Race—Fir 0.5334

Figure 5 depicts a tree diagram illustrating the process of the proposed approach,
utilizing the dataset provided earlier for the three-phase analysis:

1. First phase (fault detection): In this initial phase, a support vector machine (SVM1) is
employed to perform fault detection. The SVM1 model is trained to distinguish
between normal operation (F0) and any form of fault (F1, F2, . . . , F6). The SVM1
effectively separates the instances of normal operation from those associated with
various fault conditions.

2. Second phase (fault classification): Building upon the results of the first phase, a sec-
ond support vector machine (SVM2) is utilized for fault classification. This SVM2
model focuses on the specific fault types, particularly differentiating between Ball
Faults (F1, F2, F3) and Inner Race Faults (F4, F5, F6). SVM2 discriminates instances
belonging to Ball Faults and Inner Race Faults based on their unique characteristics.

3. Third phase (fault severity estimation): The final phase encompasses two sub-phases,
each dedicated to severity estimation for distinct fault types. For Ball Faults, a dedi-
cated support vector machine (SVM3) is employed. SVM3 classifies the severity of
Ball Faults into three levels: low, medium, and high. Similarly, for Inner Race Faults,
a separate support vector machine (SVM4) is used for severity estimation. SVM4
divides the Inner Race Faults into three severity categories: low, medium, and high.
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In summary, this tree diagram visually represents the cascading sequence of activities
across the three phases, demonstrating how the SVM models are strategically utilized to
achieve fault detection, classification, and severity estimation in a systematic manner.

SVM1 - Fault Detection

SVM2 - Fault Classification

Normal operation

F0

SVM3 -  Ball Fault 
Severity Estimation

SVM4 -  Inner Race Fault 
Severity Estimation

Fault = {F1,F2,...,F6}

Low LowMedium High Medium High

First Phase

Second Phase

Third Phase

Fb={F1,F2,F3} Fir= {F1,F2,F3}

F1
F2

F3 F4 F5
F6

Figure 5. Illustration of the three-phase approach for fault detection, classification, and severity
estimation using SVM models. The tree diagram outlines the sequential progression of activities
in each phase, showcasing the strategic application of support vector machine (SVM) models for
efficient fault detection, classification, and severity estimation.

In the following subsections, the outcomes acquired for the fault detection, fault
classification, and fault severity estimation phases are presented.

4.1. Fault Detection Phase

Figure 6 introduces a subset of the dataset utilized for training the fault detection
model. This dataset encompasses distinct operational regions, each associated with a
specific fault type: Normal Operation—F0, Inner Race Fault—F4, Ball Fault—F1, Inner Race
Fault—F6, and Ball Fault—F3. Notably, this segment is marked by vertical dashed lines.
In Figure 6a, the highlighted features stem from computations using drive end (DE) ac-
celerometer sensor data: peak to peak (DE), crest factor (DE), and kurtosis (DE). Meanwhile,
in Figure 6b, the features depicted arise from computations utilizing drive end (DE) sensor
data: root mean square (DE), standard deviation (DE), maximum (DE), and minimum
(DE). In Figure 6c, the highlighted features originate from computations using fan end
(FE) accelerometer sensor data: peak to peak (FE), crest factor (FE), and kurtosis (FE).
Conversely, in Figure 6d, the illustrated features emerge from computations utilizing fan
end (FE) sensor data: root mean square (FE), standard deviation (FE), maximum (FE),
and minimum (FE). The sequence employed in the training experiment is as follows: F0, F4,
F0, F1, F0, F6, F0, F3, F0, as shown in Figure 6.
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Figure 6. Overview of the training dataset for the fault detection model: (a) Features computed
from drive end (DE) accelerometer sensor data: peak to peak (DE), crest factor (DE), and kurtosis
(DE). (b) Features computed using drive end (DE) sensor data: root mean square (DE), standard
deviation (DE), maximum (DE), and minimum (DE). (c) Features originating from fan end (FE)
accelerometer sensor data: peak to peak (FE), crest factor (FE), and kurtosis (FE). (d) Features
computed using fan end (FE) sensor data: root mean square (FE), standard deviation (FE), maximum
(FE), and minimum (FE).

Figure 7 introduces a subset of the dataset utilized for testing the fault detection
model. This dataset encompasses distinct operational regions, each associated with a
specific fault type: Normal Operation—F0, Inner Race Fault—F5, Ball Fault—F2. These
regions seamlessly integrate with the foundational Normal Operation—F0. Notably, this
segment is marked by vertical dashed lines. In Figure 7a, the highlighted features stem
from computations using drive end (DE) accelerometer sensor data: peak to peak (DE),
crest factor (DE), and kurtosis (DE). Meanwhile, in Figure 7b, the features depicted arise
from computations utilizing drive end (DE) sensor data: root mean square (DE), standard
deviation (DE), maximum (DE), and minimum (DE). In Figure 7c, the highlighted features
originate from computations using fan end (FE) accelerometer sensor data: peak to peak
(FE), crest factor (FE), and kurtosis (FE). Conversely, in Figure 7d, the illustrated features
emerge from computations utilizing fan end (FE) sensor data: root mean square (FE),
standard deviation (FE), maximum (FE), and minimum (FE). The sequence employed in
the training experiment is as follows: F0, F5, F0, F2, F0 as shown in Figure 7.
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Figure 7. Overview of testing dataset for fault detection model: (a) Features computed from drive end
(DE) accelerometer sensor data: peak to peak (DE), crest factor (DE), and kurtosis (DE). (b) Features
computed using drive end (DE) sensor data: root mean square (DE), standard deviation (DE),
maximum (DE), and minimum (DE). (c) Features originating from fan end (FE) accelerometer sensor
data: peak to peak (FE), crest factor (FE), and kurtosis (FE). (d) Features computed using fan end (FE)
sensor data: root mean square (FE), standard deviation (FE), maximum (FE), and minimum (FE).

To ensure the model’s impartiality, a two-step procedure was implemented. Initially,
normalization of all features to a scale between 0 and 1 was carried out. Following this,
a correlation matrix encompassing all the features was constructed, and a selection process
for highly correlated features was applied. Specifically, when a group of features exhibited
correlations of 95% or higher, only one feature from this group was retained. The fea-
tures that surpassed this correlation threshold and were subsequently removed included:
standard deviation (DE), standard deviation (FE), maximum (DE), and maximum (FE).

In this study, a support vector machine (SVM) with a linear kernel was employed as
the machine learning model for fault detection. This SVM was trained using ten distinct
features: peak to peak (DE), peak to peak (FE), root mean square (DE), root mean square
(FE), crest factor (DE), crest factor (FE), minimum (DE), minimum (FE), kurtosis (DE),
and kurtosis (FE). The model demonstrated a commendable performance, achieving an
accuracy rate of 96%. This level of accuracy is considered highly satisfactory, considering
that the predefined minimum acceptable threshold was set at 95%. This threshold was
established based on a review of relevant literature employing similar techniques on the
same dataset [19].
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To gain deeper insights into the model’s decision-making process, the proposed
approach outlined in Figure 3 was followed. Specifically, the SHAP (Shapley additive
explanations) library was used to identify the most influential features in the fault detec-
tion model. The resulting graphical representation in Figure 8 displays these features in
descending order of importance. Remarkably, it reveals that root mean square (FE) emerges
as the most influential feature, while kurtosis (FE) has the least impact on the model’s
decision-making process.

Figure 8. SHAP value indicating the impact on model output for fault detection phase.

In the subsequent stage of the proposed approach, reduced fault detection models
were evaluated. Features were incorporated into the model according to their importance
ranking. This process commenced with a fault detection model using only the two most
critical features (k = 2), specifically root mean square (FE) and root mean square (DE).
Impressively, this reduced model achieved an accuracy of 97%. Given that this accuracy
surpasses the predefined threshold of 95%, there was no need to introduce additional
features to the fault detection model. Notably, it is essential to highlight that this reduced
model outperformed the full model, which incorporated all ten features.

To gain a deeper understanding of how the number of features influences the fault
detection model, models were evaluated using a range of two to ten features. The perfor-
mance results are summarized in Table 2. Notably, the most favorable trade-off between
performance and feature count was achieved with k = 2. In this configuration, the model
utilized the fewest number of features while achieving the highest accuracy.

Table 2. Performance of the fault detection model according to feature importance.

Number of Features (k) Accuracy (%)

2 97%

3 97%

4 95%

5 95%

6 97%

7 97%

8 95%

9 95%

10 96%
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Figure 9 depicts a scatterplot showcasing two pivotal features, root mean square (FE)
and root mean square (DE), crucial for fault detection. These features were identified as
highly significant in the SHAP library graph presented in Figure 8. Upon close examination
of the graph, it becomes evident that utilizing only these two features allows for a clear
demarcation between fault data and normal operation.
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Figure 9. Scatterplot of key features for fault detection. This figure illustrates a scatterplot featuring
the two critical features, root mean square (FE) and root mean square (DE), identified as highly
relevant for fault detection.

4.2. Fault Classification Phase

Figure 10 introduces a subset of the dataset utilized for training the fault classification
model. This dataset encompasses distinct operational regions, each associated with a
specific fault type: Inner Race Fault—F4, Ball Fault—F1, Inner Race Fault—F6, and Ball
Fault—F3. In Figure 10a, the highlighted features stem from computations using drive end
(DE) accelerometer sensor data: peak to peak (DE), crest factor (DE), and kurtosis (DE).
Meanwhile, in Figure 10b, the features depicted arise from computations utilizing drive
end (DE) sensor data: root mean square (DE), standard deviation (DE), maximum (DE),
and minimum (DE). In Figure 10c, the highlighted features originate from computations us-
ing fan end (FE) accelerometer sensor data: peak to peak (FE), crest factor (FE), and kurtosis
(FE). Conversely, in Figure 10d, the illustrated features emerge from computations utilizing
fan end (FE) sensor data: root mean square (FE), standard deviation (FE), maximum (FE),
and minimum (FE). The sequence employed in the training experiment is as follows: F4, F1,
F6, F3 as shown in Figure 10.

Figure 11 introduces a subset of the dataset that has been specifically chosen for
evaluating the fault classification model. This dataset covers various operational scenarios,
each linked to a particular type of fault, namely Inner Race Fault (F5) and Ball Fault (F2). It
is important to note that this portion of the dataset is demarcated by vertical dashed lines
within the figure.

In Figure 11a, the highlighted features are the result of computations performed using
data from the drive end (DE) accelerometer sensor. These features include peak to peak
(DE), crest factor (DE), and kurtosis (DE). In contrast, Figure 11b displays features that
are derived from calculations using drive end (DE) sensor data, encompassing root mean
square (DE), standard deviation (DE), maximum (DE), and minimum (DE).
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Figure 10. Overview of the training dataset for the fault classification model. The dataset includes
distinct operational regions, each associated with a specific fault type: Inner Race Fault (F4), Ball
Fault (F1), Inner Race Fault (F6), and Ball Fault (F3). Panels (a) and (b) showcase highlighted features
computed from drive end (DE) accelerometer sensor data, including peak to peak, crest factor,
kurtosis, root mean square, standard deviation, maximum, and minimum. Similarly, panels (c) and
(d) exhibit highlighted features computed from fan end (FE) accelerometer sensor data. The training
sequence follows the order F4, F1, F6, F3, as depicted in the legend.

Moving on to Figure 11c, the highlighted features are generated through computations
involving data from the fan end (FE) accelerometer sensor, specifically peak to peak (FE),
crest factor (FE), and kurtosis (FE). Conversely, Figure 11d showcases features obtained
from calculations utilizing fan end (FE) sensor data, which include root mean square (FE),
standard deviation (FE), maximum (FE), and minimum (FE).

The experimental training sequence followed the order of faults F5 and F2, as visually
represented in Figure 11.

A support vector machine (SVM) employing a linear kernel was employed for the
fault classification model. This comprehensive model, incorporating ten features (k = 10),
achieved an accuracy of 84%. It is worth noting that an accuracy threshold of 80% was
established as the performance benchmark.

Subsequently, in accordance with the proposed methodology, the significance of
these ten features was assessed utilizing SHAP (Shapley additive explanations) graphs.
In Figure 12, the SHAP summary plot is presented, offering insight into the relevance of
each feature with regard to fault classification. This analysis reveals that the two most
pivotal features in this context are the root mean square (FE) and peak to peak (FE).
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In an effort to gain a deeper insight into the influence of feature quantity on the fault
classification model, models were assessed using different numbers of features, ranging
from two to ten. The corresponding performance results are detailed in Table 3. Notably,
the most favorable cost–benefit ratio was achieved when employing only two features,
denoted as k = 2. This minimal feature set not only reduced complexity but also yielded
the highest level of accuracy in the classification process.

Figure 13 depicts a scatterplot showcasing two pivotal features, root mean square (FE)
and peak to peak (FE), crucial for fault classification. These features were identified as
highly significant in the SHAP library graph presented in Figure 12. Upon close examination
of the graph, it becomes evident that utilizing only these two features allows for a clear
demarcation between fault data and normal operation.

0 25 50 75 100 125 150 175 200
time(s)

0

10

20

30

40

am
pl

itu
de

F5 F2

(a)
Peak to peak (DE)
Crest factor (DE)
Kurtosis (DE)

0 25 50 75 100 125 150 175 200
time(s)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

am
pl

itu
de

F5 F2

(b)
Root mean square (DE)
Standard deviation (DE)
Maximum (DE)
Minimum (DE)

0 25 50 75 100 125 150 175 200
time(s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

am
pl

itu
de

F5 F2

(c)
Peak to peak (FE)
Crest factor (FE)
Kurtosis (FE)

0 25 50 75 100 125 150 175 200
time(s)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

am
pl

itu
de

F5 F2

(d)
Root mean square (FE)
Standard deviation (FE)
Maximum (FE)
Minimum (FE)

Figure 11. Illustrates the highlighted features obtained from computations using accelerometer sensor
data. In panel (a), features are derived from the drive end (DE) accelerometer sensor, encompassing
peak to peak, crest factor, and kurtosis. Panel (b) displays features calculated from drive end (DE)
sensor data, including root mean square, standard deviation, maximum, and minimum. Moving
to panel (c), highlighted features result from computations involving data from the fan end (FE)
accelerometer sensor, specifically peak to peak, crest factor, and kurtosis. In contrast, panel (d) show-
cases features obtained from calculations utilizing fan end (FE) sensor data, comprising root mean
square, standard deviation, maximum, and minimum.
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Figure 12. SHAP value (impact on model output for the fault classification phase).

Table 3. Performance of the fault classification model according to feature importance.

Number of Features (k) Accuracy (%)

2 100%

3 100%

4 100%

5 100%

6 100%

7 100%

8 100%

9 100%

10 100%
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Figure 13. Scatterplot of key features for fault classification. This figure illustrates a scatterplot
featuring the two critical features, root mean square (FE) and peak to peak (FE), identified as highly
relevant for fault classification.
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4.3. Fault Severity Estimation Phase

In this phase, the focus narrows down to two specific types of faults: Inner Race Faults
and Ball Faults. For each of these fault types, three distinct levels of fault severity are
meticulously examined: 0.1778 mm, 0.3556 mm, and 0.5334 mm.

Figure 14 presents a carefully curated subset of the dataset, specifically chosen for the
purpose of fault severity estimation. This dataset comprises three distinct severities (fault
diameters of 0.1778 mm, 0.3556 mm, and 0.5334 mm) for Inner Race Faults, designated as
F4, F5, and F6, respectively. It is essential to emphasize that this portion of the dataset is
visually delineated by vertical dashed lines within the figure.

In Figure 14a, the featured data derives from computations performed using data
from the drive end (DE) accelerometer sensor. These featured parameters include peak to
peak (DE), crest factor (DE), and kurtosis (DE). In contrast, Figure 14b showcases features
calculated using drive end (DE) sensor data, encompassing root mean square (DE), standard
deviation (DE), maximum (DE), and minimum (DE).

Moving on to Figure 14c, the highlighted features are the result of computations
involving data from the fan end (FE) accelerometer sensor, specifically peak to peak (FE),
crest factor (FE), and kurtosis (FE). Conversely, Figure 14d displays features obtained
from calculations utilizing fan end (FE) sensor data, which include root mean square (FE),
standard deviation (FE), maximum (FE), and minimum (FE).
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Figure 14. A meticulously selected dataset designed for fault severity estimation in Inner Race Faults.
This dataset encompasses three distinct severity levels, corresponding to fault diameters of 0.1778 mm,
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0.3556 mm, and 0.5334 mm, denoted as F4, F5, and F6, respectively. Vertical dashed lines within the
figure visually distinguish this dataset. (a) Featured data results from computations using drive
end (DE) accelerometer sensor data, specifically peak to peak (DE), crest factor (DE), and kurtosis
(DE). (b) Features computed from drive end (DE) sensor data, including root mean square (DE),
standard deviation (DE), maximum (DE), and minimum (DE). (c) The highlighted features stem
from computations using fan end (FE) accelerometer sensor data, specifically peak to peak (FE), crest
factor (FE), and kurtosis (FE). (d) Features derived from calculations using fan end (FE) sensor data,
encompassing root mean square (FE), standard deviation (FE), maximum (FE), and minimum (FE).

Figure 15 showcases a carefully curated subset of the dataset, customized for precise
fault severity estimation in Ball Faults. This dataset encompasses three different severity
levels with fault diameters of 0.1778 mm, 0.3556 mm, and 0.5334 mm, denoted as F1, F2,
and F3, respectively. It is crucial to highlight that this section of the dataset is visually
delineated by vertical dashed lines within the figure.

In Figure 15a, the data featured here are the outcome of calculations performed using
information from the drive end (DE) accelerometer sensor. These featured parameters
encompass peak to peak (DE), crest factor (DE), and kurtosis (DE). Conversely, Figure 15b
showcases features computed from drive end (DE) sensor data, including root mean square
(DE), standard deviation (DE), maximum (DE), and minimum (DE).

Transitioning to Figure 15c, the highlighted features result from computations utilizing
data from the fan end (FE) accelerometer sensor, specifically peak to peak (FE), crest factor
(FE), and kurtosis (FE). In contrast, Figure 15d displays features derived from calculations
using fan end (FE) sensor data, encompassing root mean square (FE), standard deviation
(FE), maximum (FE), and minimum (FE).
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Figure 15. A curated dataset for assessing Ball Fault severity, featuring three levels of fault severity (F1,
F2, F3) with diameters of 0.1778 mm, 0.3556 mm, and 0.5334 mm. The dataset is visually distinguished
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by vertical dashed lines. (a,b) Drive end (DE) accelerometer sensor data are analyzed for peak to
peak, crest factor, kurtosis, root mean square, standard deviation, maximum, and minimum. (c,d) Fan
end (FE) accelerometer sensor data are similarly assessed.

The fault severity datasets were partitioned into a training set comprising 80% of the
data and a testing set comprising the remaining 20%. The default training/test split ratio
of 80%/20% was utilized, which is standard practice, particularly for larger datasets [68].
In this context, the dataset is deemed to be approximately balanced, as it encompasses fault
data with comparable sample numbers. It is worth noting that the stratification strategy for
the target classes defaulted to the settings provided by the Scikit-learn library, ensuring a
systematic and reliable approach to maintain class distribution integrity during the split
process [69]. The fault severity estimation model for both the “Inner Race” and “Ball”
validation scenarios employed support vector machines (SVM) with a linear kernel.

The comprehensive Inner Race Fault severity model, featuring ten essential features
(k = 10), achieved an impressive accuracy rate of 88%. Notably, a performance threshold
of 85% was set as the benchmark for accuracy. Subsequently, following the proposed
approach, the significance of these ten features was assessed using SHAP graphs.

Figure 16 showcases the SHAP summary plot, providing insights into the relevance of
each feature concerning Inner Race Fault severity estimation. This analysis reveals that the
two most influential features are the root mean square (DE) and peak to peak (DE).

Figure 16. SHAP value (impact on model output for Inner Race Fault severity estimation).

In the pursuit of a deeper understanding of how the quantity of features affects the
Inner Race Fault severity estimation model, evaluations were conducted using models
comprising two to ten features. The model performances are summarized in Table 4.
Notably, a significant improvement was observed with k = 2, where the model utilized the
fewest features yet achieved commendable accuracy.

Figure 17 displays a scatterplot that highlights two critical features, peak to peak (DE)
and root mean square (DE), which were identified as highly influential in the SHAP library
graph presented in Figure 16. Upon close examination of the graph, it becomes evident
that utilizing only these two features allows for a clear distinction between the three levels
of severity.

The complete Ball Fault severity model, utilizing ten features (k = 10), achieved an
accuracy rate of 75%. It is worth noting that a performance threshold of 75% was established
for assessment. Subsequently, adhering to the proposed approach, the significance of these
ten features was assessed through SHAP graphs.

Figure 18 presents the SHAP summary plot, which visually illustrates the relevance of
each feature in estimating Ball Fault severity.
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Table 4. Performance of the Inner Race Fault severity estimation model according to feature importance.

Number of Features (k) Accuracy (%)

2 93%

3 93%

4 95%

5 96%

6 96%

7 96%

8 88%

9 95%

10 88%
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Figure 17. Scatterplot featuring two crucial features, peak to peak (DE) and root mean square (DE),
identified as highly influential in the SHAP library graph shown in Figure 16.

Following the proposed approach, the initial step involved selecting the two most
relevant features for the Ball Fault severity model (k = 2), which turned out to be the crest
factor (DE) and kurtosis (DE). However, upon analyzing the metrics, it became evident that
the obtained result did not meet the set satisfaction criteria, as the accuracy fell below the
acceptable threshold.

The process was then continued until a result surpassing the 75% accuracy threshold
was achieved, which happened with a set of four features (k = 4). Table 5 presents the
results obtained for Ball Fault severity estimation models using two to ten features. Notably,
the best cost–benefit trade-off was observed with k = 4, where the highest accuracy was
attained with a relatively small number of features.
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Figure 18. SHAP value (impact on model output for Ball Fault severity).

Table 5. Performance of the Ball Fault severity estimation model according to feature importance.

Number of Features (k) Accuracy (%)

2 50 %

3 70 %

4 83 %

5 73%

6 75%

7 77%

8 77%

9 75%

10 75%

Figure 19 exhibits a pairplot that effectively highlights four critical features: crest
factor (DE), kurtosis (DE), minimum (FE), and root mean square (FE). This pairplot not
only showcases the individual distributions of these features but also provides a compre-
hensive visualization of the relationships between them, offering valuable insights into
their bivariate interactions. These features, identified as highly influential in the SHAP
library graph presented in Figure 18, play a crucial role in understanding the underlying
patterns in the data.

Upon a meticulous examination of the pairplot, it becomes evident that relying solely
on these four features does not yield a clear distinction between the three levels of severity.
This observation underscores the complexity of the relationships and the importance of
considering additional features or refining the feature selection process for a more nuanced
understanding of the severity levels.
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Figure 19. Pairplot emphasizing four pivotal features—crest factor (DE), kurtosis (DE), minimum
(FE), and root mean square (FE).

5. Conclusions

The scientific justification for the research presented in this paper lies in the develop-
ment of a groundbreaking methodology aimed at enhancing fault detection, classification,
and severity estimation in rolling element bearings. The unique approach comprises three
sequential phases, each dedicated to constructing distinct machine-learning-based models
to address essential tasks. The methodology stands out for its ability to leverage informa-
tion obtained in one phase to optimize subsequent phases, thereby improving overall Fault
diagnosis effectiveness.

At the core of the approach is the integration of explainable artificial intelligence
(XAI) techniques, which facilitate the meticulous selection of optimal features for machine
learning models. The chosen machine learning technique for these tasks is the support
vector machine (SVM), recognized for its robustness and versatility.

To rigorously validate the approach, the widely recognized Case Western Reserve
University benchmark, a gold standard in bearing fault analysis, was employed. Even
when working with a highly limited number of features, the models consistently attained
evaluation metrics with an accuracy exceeding 90% in the majority of cases.

In summary, this study represents a significant advancement in the field of fault
detection and classification in rolling element bearings. The novel approach not only
produces efficient and accurate fault models but also offers interpretability through XAI
techniques. By providing insights into the rationale behind feature selection, the approach
empowers decision-makers in the design of fault models, making it a valuable asset in
various industrial scenarios. These findings emphasize the effectiveness and interpretability
of the approach and open up new possibilities for enhancing the reliability and maintenance
of critical machinery.
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