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Abstract: Large Language Models (LLMs) are reshaping the landscape of Machine Learning (ML)
application development. The emergence of versatile LLMs capable of undertaking a wide array
of tasks has reduced the necessity for intensive human involvement in training and maintaining
ML models. Despite these advancements, a pivotal question emerges: can these generalized models
negate the need for task-specific models? This study addresses this question by comparing the
effectiveness of LLMs in detecting phishing URLs when utilized with prompt-engineering techniques
versus when fine-tuned. Notably, we explore multiple prompt-engineering strategies for phishing
URL detection and apply them to two chat models, GPT-3.5-turbo and Claude 2. In this context, the
maximum result achieved was an F1-score of 92.74% by using a test set of 1000 samples. Following
this, we fine-tune a range of base LLMs, including GPT-2, Bloom, Baby LLaMA, and DistilGPT-2—all
primarily developed for text generation—exclusively for phishing URL detection. The fine-tuning
approach culminated in a peak performance, achieving an F1-score of 97.29% and an AUC of 99.56%
on the same test set, thereby outperforming existing state-of-the-art methods. These results highlight
that while LLMs harnessed through prompt engineering can expedite application development
processes, achieving a decent performance, they are not as effective as dedicated, task-specific LLMs.
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1. Introduction

In recent years, ML application development has witnessed a transformative impact
due to the emergence of LLMs. These models, notable for their vast training across diverse
datasets, have demonstrated an impressive adaptability and performance across a wide
array of tasks [1–4]. This development signifies a shift toward utilizing LLMs through
prompting for various applications, challenging the conventional need for intensive, task-
specific training and the maintenance of ML models. This paradigm shift has propelled
ML toward a new era where the development of specialized models for each task is being
questioned since LLMs already perform a multitude of tasks in a decent way [5,6].

The primary motivation behind this research lies in understanding the extent to which
LLMs can replace dedicated models for specific tasks. Our investigation delves into the
critical domain of cybersecurity, with a specific focus on the detection of phishing URLs—an
enduring and sophisticated online threat [7]. In this realm, the conventional approach
has primarily revolved around the use of rule-based systems [8,9], ML algorithms like
decision trees, support vector machines [10,11], or neural networks trained on specific
phishing characteristics [12–14]. These traditional methods often require extensive feature
engineering and are limited by the need for constant updates to keep pace with the evolving
nature of phishing attacks. We aim to assess whether LLMs, with their broad training and
adaptability, can provide a more efficient yet effective alternative in this critical domain.

Specifically, two novel approaches are adopted, the prompt engineering and fine-
tuning of LLMs, to assess their efficacy in the context of detecting phishing URLs. Prompt
engineering involves crafting specific input prompts to guide the LLM toward desired
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outputs without modifying the model itself [15], a new technique that emerged with the
rise of LLMs and not previously applied in the phishing context. Fine-tuning, on the other
hand, involves relying on a pretrained model and adjusting its parameters on a dataset
specific to the task at hand [16], a method also novel in the phishing domain. This dual-
strategy approach offers a new perspective in cybersecurity research, moving away from
the traditional focus on predefined algorithms or feature-dependent models. It enables a
comprehensive comparison between the prompt engineering and fine-tuning of LLMs for a
specific application.

In this work, we examine various prompt-engineering strategies, such as zero-shot,
role-playing, and chain-of-thought prompting, while applying them to two widely used
chat models, GPT-3.5-turbo and Claude 2. Our findings reveal that Claude 2 performs
better than GPT-3.5-turbo for all prompts and achieves an F1-score of 92.74% with a prompt
that combines role-playing and chain-of-thought prompting on a 1000-sample test set
sourced from the phishing dataset provided by Hannousse and Yahiouche [17]. While this
performance is acceptable given that no training has been conducted on the model, it is
much less than what task-specific models with much fewer parameters have achieved in
the literature [18].

As such, we delve into investigating how fine-tuning LLMs compares to prompt
engineering and previous work. Notably, we fine-tuned foundational LLMs such as GPT-2,
Bloom, Baby LLaMA, and DistilGPT-2, which have much less parameters than chat LLMs.
These base LLMs were originally designed for text generation, and in this study, we fine-
tune them to perform sequence classification to detect phishing URLs. When evaluated on
the same 1000-sample test set used for the chat models, the minimal performance achieved
for these models is an F1-score of 92.43% for Bloom, which is very similar to the highest
performance attained in prompt engineering, and the peak performance achieved is an
F1-score of 97.29% for GPT-2 (medium), which surpasses existing state-of-the-art techniques
on this task.

To further assess the real-world applicability of these methods, we tested the best
fine-tuned and prompt-engineered models on datasets with varying ratios of phishing
URLs. Recognizing the importance of realistic testing conditions, we adjusted the phishing
URL ratios in our test sets to reflect the varied prevalence of phishing URLs in actual
internet traffic. These ratios ranged from as low as 5% to as high as 45%, thereby covering a
broad spectrum of potential real-world scenarios. The results show that fine-tuned LLMs
have more potential than those used with prompt engineering in real-world scenarios
where the proportion of phishing URLs is lower than that of legitimate ones.

These findings underscore that models tailored for particular tasks often outperform
general-purpose ones on these tasks, and the rise of LLMs does not negate the necessity for
specialized models. Moreover, we show that fine-tuning LLMs to perform specific tasks
presents a higher potential than prompt engineering and existing solutions in the literature.

In summary, the main contributions of this work are the following:

• This research is the first to offer a unique comparative analysis between the perfor-
mance of prompt engineering and fine-tuning techniques for LLMs.

• Exploring prompt-engineering strategies for phishing URL detection and providing
valuable insights into their effectiveness.

• The investigation of the fine-tuning of text-generation LLMs for phishing URL detec-
tion, showcasing its potential in this domain.

• This study achieves a remarkable performance of 97.29% as the F1-score for phishing
URL detection, surpassing existing state-of-the-art techniques.

The rest of this paper is organized as follows: In Section 2, we provide essential
background information on LLMs, prompt engineering, fine-tuning, and the challenges
associated with phishing URL detection. Understanding these foundational concepts is
crucial to grasp the context of our research. Section 3 presents some related work. In
Section 4, we detail the methodology employed in our study, including the design and
implementation of prompt-engineering strategies and the fine-tuning process. Section 5
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offers a comprehensive overview of the experimental setup, experiments, and results. We
provide insights into the effectiveness of each approach in Section 6 and compare their
outcomes. Section 7 summarizes our key findings and contributions and discusses potential
avenues for future research and improvements.

2. Background and Preliminaries

This section provides essential background information on key topics that form the
foundation of our study.

2.1. Large Language Models (LLMs)

LLMs are a type of neural-network-based model designed to generate, understand,
and interpret human language. They are characterized by their large number of parameters,
deep architectures, and the extensive amount of data they are trained on. These models are
adept at capturing the complexities and nuances of language, making them valuable for
a wide range of applications from text generation to question-answering systems [19,20].
The introduction of the transformer architecture by Vaswani et al. marked a significant
milestone in the evolution of LLMs [21]. Their work demonstrated the effectiveness of self-
attention mechanisms, leading to substantial improvements in various natural language-
processing tasks including language translation, sentiment analysis, and text generation.
One of the key aspects of LLMs is their ability to learn contextual representations of words
and phrases. Unlike earlier language models that relied on fixed word embeddings [22,23],
LLMs use dynamic embeddings, allowing for a more nuanced understanding of language
in different contexts.

The landscape of LLMs has witnessed the emergence of several landmark models.
The GPT (Generative Pretrained Transformer) by OpenAI is one such example, which
showcased the power of unsupervised learning for language understanding and gener-
ation [24]. Next, GPT-2 and GPT-3 further pushed the boundaries in terms of size and
capabilities, highlighting the scalability of transformer architectures [25,26]. Building on the
advancements of GPT-3, models like ChatGPT represent a significant evolution [27]. Chat-
GPT (https://chat.openai.com/ (accessed on 2 January 2024)) developed by OpenAI, is a
variant of the GPT-3 model specifically fine-tuned for conversational responses. This model
exemplifies the transition from broad language understanding to specialized, context-aware
conversational applications, marking a pivotal step in the practical deployment of LLMs.
Nowadays, the trend is shifting to rely on such black box models to build systems and
applications without the need to train or maintain ML models.

2.2. Prompt Engineering

Prompt engineering is a strategy employed to harness the capabilities of LLMs for
specific tasks. By providing carefully constructed prompts or instructions, LLMs are guided
to produce desired responses or perform targeted tasks. Prompt-engineering techniques
come in various forms. Some examples include zero-shot prompts, few-shot prompts,
role-playing prompts, and chain-of-thought prompts. Zero-shot prompting, for instance,
is the standard way of prompting, and it involves framing a task in a way that the LLM
can comprehend and generate an appropriate response without explicit training [28].
Few-shot prompting involves giving some examples to the model in order to guide it
on how to respond. Typically, it is used to control the output format by providing some
examples to follow the structure of their responses and does not provide much help for
reasoning [29]. Role-playing prompts encourage the LLM to simulate a particular persona
or role when generating responses, enhancing its ability to provide contextually relevant
information [30]. Chain-of-thought prompts ask the model to provide the reasoning step by
step before reaching the end response. This helps the model make more informed decisions
and allows it to understand the reason behind specific decisions [31]. These strategies play
a crucial role in our study, where we explore their effectiveness in the context of phishing
URL detection.

https://chat.openai.com/
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2.3. Fine-Tuning LLMs

Fine-tuning is a critical process in adapting pretrained LLMs for specialized tasks.
It involves training the LLMs on task-specific datasets to improve their performance on
particular domains [32]. Fine-tuning allows one to tailor the general language capabilities
of LLMs to excel in specific applications, such as phishing URL detection. The process
typically begins with a pretrained LLM, such as GPT, which has already learned a broad
range of language patterns and semantics from large corpora of text data. Then, models
are fine-tuned on a smaller dataset relevant to the specific task, effectively transferring
the general language knowledge to the specialized domain [33]. This approach helps
LLMs become highly proficient in specific tasks while retaining their overall language
understanding. In this study, since the goal is phishing URL detection, we fine-tune LLMs
to perform URL classification where they receive a URL as input and predict a class as an
output. The process is detailed in the methodology section.

2.4. Phishing Detection

Phishing attacks continue to be a prominent threat in the cybersecurity landscape [34].
According to Cloudflare’s 2023 phishing threats report [35], approximately 13 billion
emails were processed between May 2022 and May 2023, out of which about 250 million
malicious messages were blocked. The report highlights that deceptive links are the most
common phishing tactic. Detecting phishing URLs poses a significant challenge due to
the sophisticated and constantly evolving tactics of malicious actors. These URLs often
closely mimic legitimate websites, making it difficult to distinguish them from genuine
ones [36]. Attackers frequently use misleading domain names, embed trusted brand names
within URLs, or employ homoglyphs—characters that visually resemble each other—to
create seemingly authentic URLs [37,38]. The use of legitimate elements, such as valid TLS
certificates [39] and brand logos [40], further complicates their detection. Additionally,
the adoption of URL shortening services and redirection tactics helps attackers to conceal
the true nature of malicious URLs [41,42]. Attackers’ frequent changes in tactics and URL
obfuscation underscore the need for a robust understanding of URL structures and content
analysis to discern the subtle differences between legitimate and phishing URLs. This study
aims to leverage the power of LLMs to effectively identify phishing URLs.

3. Related Work

In the realm of machine-learning-based phishing detection, significant emphasis has
been placed on URL-based methods. These methods primarily analyze various features
and patterns inherent in URLs, such as the length, the inclusion of special characters,
and the utilization of subdomains [10,43,44]. Techniques like lexical and token analysis
are instrumental in deciphering URL structures, aiding in the identification of phishing
attempts. The application of ML algorithms, including SVM, decision tree, and Ran-
dom Forest, has been a cornerstone in classifying URLs based on these extracted fea-
tures [45,46]. Advancements have led to the integration of deep learning techniques,
including convolutional neural networks (CNNs) and natural language processing (NLP),
further enhancing the automation of cybersecurity tasks [47,48]. Pioneering work by
researchers such as Le et al. [49] who proposed the URLNet framework and others like
Tajaddodianfar et al. [50] and Jiang et al. [51] showcases the application of character-level
deep neural networks in this field. Besides URL-based approaches to detect phishing, other
approaches rely on additional information such as the content, appearance, or behavior of
the page [52,53]. While these techniques are promising, they might require more compu-
tation in order to classify a website as phishing or legitimate, yet they do not offer much
more advantage in terms of performance compared to URL-based methods. The focus of
this study is to predict phishing websites based solely on URL analysis. Specifically, we
rely on the capabilities of LLMs to perform this classification, using prompt engineering
and fine-tuning. In both cases, the advantage is that a raw URL can be inputted directly
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into the LLM without the need for any kind of feature extraction. Then, both techniques
are compared with the performance achieved in state-of-the-art methods.

4. Methodology

In this section, we provide an overview of the methodology employed in our study,
detailing the steps taken to investigate the effectiveness of LLMs in detecting phishing
URLs by using prompt engineering and fine-tuning techniques.

4.1. Prompt Engineering

Prompt engineering refers to the process of carefully crafting prompts to elicit desired
responses from an LLM such as ChatGPT, Google Bard, LLaMA2, etc. In this technique,
the architecture of the LLM remains the same; only the input prompt is altered to observe its
impact on the output. To investigate how prompt-engineering strategies affect the abilities
of chat-completion LLMs in detecting phishing URLs, we use a subset of 1000 URLs for
testing. Feeding all URLs simultaneously to the model is impractical as it would exceed the
allowed context length. Therefore, we adopt the following process:

1. We divide the list of 1000 URLs into 20 groups, each containing 50 URLs.
2. For each subset, we craft a prompt asking the LLM to classify each URL within it,

specifying the response format.
3. We feed the prompt to the LLM.
4. We collect the responses, which adhere to the requested format.
5. We aggregate the responses from all groups and convert them into a data frame for

analysis. This allows us to compute classification metrics by comparing them with
ground-truth data.

These steps are illustrated in Figure 1 by using a basic zero-shot prompt. The experi-
ments section provides more details about the various prompt types and chat-completion
LLMs, but these steps remain consistent throughout.

Figure 1. Prompt-engineering process.

4.2. Fine-Tuning

The goal of fine-tuning an LLM is to tailor it more specifically for a particular task.
In this study, we investigate the fine-tuning of pretrained text-generation LLMs for phish-
ing URL detection. For all LLMs used, we follow a consistent fine-tuning process. This
involves loading the LLM with pretrained weights for the embedding and transformer
layers and adding a classification head on top, which categorizes a given URL as phishing
or legitimate. This makes the LLM dedicated to performing URL classification. For the
data to be processed by the LLM, it must be tokenized. For each LLM, we use its corre-
sponding tokenizer, setting a maximum length of 100 tokens with right padding. Then, we
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train the complete architecture for several epochs on the training data while tuning some
hyperparameters on the validation data. Finally, we evaluate the model by using the same
1000 testing samples as in the prompt-engineering method. The full architecture through
which a URL is processed for classification is depicted in Figure 2. The specific models
utilized for fine-tuning are detailed in the experiments section.

Figure 2. Fine-tuning process.

5. Experiments
5.1. Experimental Setup
5.1.1. Dataset

In this study, we utilize the phishing dataset provided by Hannousse and Yahiouche [17],
available for download at Mendeley Data (https://data.mendeley.com/datasets/c2gw7fy2
j4/3 (accessed on 2 January 2024)), comprising a total of 11,430 URL samples. The dataset is
balanced, containing an equal number of phishing and legitimate URLs, with each category
represented by 5215 samples. Each URL in the dataset is accompanied by 87 extracted
features and a classification label denoting whether it is legitimate or phishing. Details
about the data collection and feature-extraction processes can be found in [54].

For the purpose of this study, we focus exclusively on analyzing the raw URLs by
using LLMs while disregarding the extracted features. This approach enables us to evaluate
the LLMs’ capability to discern phishing URLs based solely on their textual characteristics.

To assess the performance of the prompt engineering and fine-tuning methods, we ex-
tract a subset of 1000 samples from the dataset. This subset maintains the dataset’s balanced
nature, comprising 500 phishing and 500 legitimate URLs. The remaining 10,430 samples
are divided into training and validation sets, with 90% (9387 samples) used for training
and 10% (1043 samples) for validation. This division is employed to fine-tune the LLMs
effectively for the phishing URL detection task. For all divisions of the dataset, we ensure
consistency and reproducibility by setting the random_state to 42 by using the scikit-learn
Python library [55].

5.1.2. Models

For prompt engineering, we utilized two chat models, GPT-3.5-turbo and Claude 2.
These models are accessible via API, making them suitable for developing AI applications,

https://data.mendeley.com/datasets/c2gw7fy2j4/3
https://data.mendeley.com/datasets/c2gw7fy2j4/3
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which is why we selected them. For fine-tuning, we chose LLMs that specialize in text gen-
eration, focusing on those with a minimal number of parameters. This approach allows us
to compare their performance with that of chat models, which possess a significantly higher
number of parameters. Specifically, we selected the following Hugging Face models [56]:
openai-gpt, gpt2, gpt2-medium, distilgpt2, baby-llama-58m, and bloom-560m. For all
models, we used the Adam optimizer, a batch size of 16, and a learning rate of 5 × 10−5.
The number of training epochs was determined by early stopping, based on the validation
data, to avoid overfitting. The fine-tuning parameters are presented in Table 1.

Table 1. Number of training epochs for each LLM.

LLM openai-gpt gpt2 gpt2-medium distilgpt2 baby-llama-58m bloom-560m

Epochs 5 5 3 5 5 7

5.1.3. Evaluation Metrics

In both prompt engineering and fine-tuning, evaluating the performance of LLMs is
crucial. Since the goal is to classify URLs as phishing or legitimate, we use the following
classification metrics:

• Accuracy: This is the most intuitive performance measure and is simply the ratio
of correctly predicted observations to the total observations. It is particularly useful
when the target classes are well-balanced. However, its utility is limited in scenarios
with significant class imbalance, as it can yield misleading results.

• Precision: Also known as the positive predictive value, precision is the ratio of correctly
predicted positive observations to the total predicted positive observations. High
precision, which indicates a low rate of false positives, is critical in phishing detection,
where mistakenly labeling legitimate URLs as phishing can have serious consequences.

• Recall: Also referred to as sensitivity, recall is the ratio of correctly predicted positive
observations to all actual positives. This metric is essential in phishing detection as it
is vital to identify as many phishing instances as possible to prevent data breaches.

• F1-score: The F1-score is the harmonic mean of precision and recall. It is a more
reliable measure than accuracy, particularly when dealing with unevenly distributed
datasets. It considers both false positives and false negatives, making it suitable for
scenarios where both precision and recall are important.

When comparing our results with state-of-the-art models, we employ additional
metrics such as:

• Area Under the Curve (AUC): this metric measures the ability of a classifier to distin-
guish between classes and is used as a summary of the Receiver Operating Character-
istic (ROC) curve.

• True Positive Rate at a Given False Positive Rate (TPR@FPR): This metric evaluates
the model’s ability to correctly identify positives at a specific false positive rate. It
is particularly useful in scenarios where maintaining a low rate of false positives is
crucial, which is the case in phishing detection.

5.2. Prompt Engineering

We use the flow outlined in the methodology section and we apply it to two chat-
completion models: GPT-3.5-turbo and Claude 2. We vary the input prompts to observe
how this affects the results. Notably, we investigate three prompt templates for phishing
URL detection, as shown in Figure 3:

• Prompt 1 (zero-shot): We start with a baseline prompt that simply asks the LLM to
classify the given URLs while generating the response according to a specific output
format. The accuracy, precision, recall, and F1-score of both LLMs for this prompt on
the test set are reported in Figure 4.
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• Prompt 2 (role-playing): We modify the baseline prompt to ask the LLM to assume
the role of a cybersecurity specialist analyzing URLs for a company. This approach
is intended to help the model adopt a specific mindset while responding, which is
expected to enhance its responses. We apply this prompt to both LLMs, and the results
are shown in Figure 5.

• Prompt 3 (chain-of-thought): We further modify the second prompt (role-playing)
by asking the model to provide succinct reasoning for classifying a given URL as
phishing or legitimate. This approach encourages the LLM to classify based on specific
criteria that it articulates, which is expected to improve performance. The results of
this prompt for both LLMs are illustrated in Figure 6.

During this process, a notable observation was made with GPT-3.5-turbo. The model
occasionally refrained from classifying certain URLs due to internal content filters being
triggered by specific words. This observation was very minor, affecting only one URL for
prompts 1 and 2 and no URLs for prompt 3. Consequently, it did not impact the overall
results of the study.

Figure 3. The three investigated prompts.
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Figure 4. Performance metrics of GPT-3.5-turbo and Claude 2 using the zero-shot prompt.
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Figure 5. Performance metrics of GPT-3.5-turbo and Claude 2 using the role-playing prompt.
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Figure 6. Performance metrics of GPT-3.5-turbo and Claude 2 using the chain-of-thought prompt.

5.3. Fine-Tuning

For fine-tuning, we consider several base models that are pretrained for text generation.
We fine-tune each of these models following the steps detailed in the methodology section.
The LLMs we fine-tuned, available on Hugging Face, are as follows:

• openai-gpt: The first iteration of the Generative Pretrained Transformer models devel-
oped by OpenAI. It provides a solid baseline for natural language understanding and
generation tasks and has 110 million parameters.

• gpt2: An improved version of the original GPT, GPT-2 offers a larger model size for
enhanced performance across a broader range of tasks and the ability to generate more
coherent and contextually relevant text. The version we used is the smallest and has
117 million parameters.

• gpt2-medium: A midsized variant of GPT-2, this model balances computational effi-
ciency and performance, suitable for tasks requiring in-depth language understanding
without the largest model size. It has 345 million parameters.

• distilgpt2: A distilled version of GPT-2 that retains most of the original model’s
performance but with fewer parameters, enhancing efficiency without a significant
loss in quality. It has 82 million parameters.

• baby-llama-58m: A smaller model with 58 million parameters, Baby LLaMA is a
distilled version of small LLaMA models and GPT-2 [57]. It is designed for efficiency
and can perform various language tasks, optimized for environments with limited
computational resources.
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• bloom-560m: Part of the Bloom series [58], this large-scale multilingual language
model is designed to understand and generate text in multiple languages. With 560 mil-
lion parameters, it offers substantial capability in language-processing tasks.

We assess the fine-tuned LLMs by using the same test set that was utilized for assessing
prompt-engineering techniques. The results are presented in Table 2, organized in ascending
order based on their F1-scores.

Table 2. Performance metrics of the fine-tuned LLMs.

Model Accuracy Precision Recall F1-Score

bloom-560m 92.40% 92.06% 92.80% 92.43%
distilgpt2 95.90% 94.22% 97.80% 95.98%

openai-gpt 96.10% 96.01% 96.20% 96.10%
baby-llama-58m 96.60% 96.05% 97.20% 96.62%

gpt2 96.60% 95.87% 97.40% 96.63%
gpt2-medium 97.30% 97.78% 96.80% 97.29%

6. Discussion

Our investigation into the effectiveness of prompt engineering and fine-tuning strate-
gies for LLMs in phishing URL detection has provided new insights. In this section, we
discuss the results achieved with each approach. Subsequently, we compare these ap-
proaches both against each other and with state-of-the-art methodologies. Finally, we delve
into the performance of these models under imbalanced test conditions, which simulate
real-world scenarios where phishing URLs are less prevalent than legitimate ones.

6.1. Prompt Engineering

In our assessment of prompt-engineering capabilities using both LLMs, we observed
an increase in performance as the prompts were refined. Notably, Claude 2 outperformed
GPT-3.5-turbo. To compare the effectiveness of the various prompt types, we report the
F1-scores achieved for each when applied to both LLMs, and we present these results
in Figure 7 for easier comparison. Specifically, the zero-shot prompt yielded F1-scores of
77.87% for GPT-3.5-turbo and 90.75% for Claude 2. The role-playing prompt, which asks
the LLM to act as a cybersecurity consultant, significantly improved the performance of
both models, resulting in F1-scores of 82.95% for GPT-3.5-turbo and 92.26% for Claude 2.
Lastly, the chain-of-thought prompt, which requires the LLM to provide reasoning behind
its classification, further enhanced the performance, achieving F1-scores of 88.54% for
GPT-3.5-turbo and 92.74% for Claude 2.

We noticed that Claude 2 consistently outperformed GPT-3.5-turbo across all prompt
types. However, the reason for this is not entirely clear, as both models offer limited
information about their training processes and are generally treated as ‘black boxes’ by
users. Interestingly, when the prompts were improved, GPT-3.5-turbo showed more
significant gains than Claude 2, likely because Claude’s baseline performance was already
high (an F1-score of 90.75% for the zero-shot prompt). Therefore, its room for improvement
was more limited compared to GPT-3.5-turbo, which started with a baseline F1-score
of 77.87%.

On the other hand, the results achieved with prompt engineering are remarkable,
considering that no specific training was conducted to enable the LLMs to distinguish
between phishing and legitimate URLs. The effectiveness of a simple zero-shot prompt
in detecting phishing demonstrates the inherent capabilities of such models. Moreover,
throughout all prompt-engineering techniques, we observed a trend where precision was
consistently higher than recall. This likely indicates that the LLMs, when prompted, were
more inclined to accurately identify true positive cases (legitimate URLs correctly identi-
fied as legitimate) but were somewhat less effective in correctly identifying all phishing
instances, leading to a higher rate of false negatives. This pattern suggests that while LLMs
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were efficient in minimizing false positives, this was at the expense of potentially missing
some phishing cases.
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GPT-3.5-turbo Claude 2

Figure 7. Comparing the performance of the three used prompts on GPT-3.5-turbo and Claude 2.

6.2. Fine-Tuning

When fine-tuning, we observe that LLMs achieve a very high performance with
minimal training, such as after only a few epochs. It is noteworthy that the GPT models
outperform Bloom, despite the latter having more parameters. This discrepancy could
be attributed to the different training settings used for each model. The Baby LLaMA
model achieved a performance comparable to the GPT family, which can be explained by
its design, as it is distilled from both LLaMA models and GPT. The lowest performance
was achieved by bloom-560m with an F1-score of 92.43%. The highest performance was
recorded by gpt2-medium, with an F1-score of 97.29%, surpassing the state-of-the-art
model, a point we discuss further later in this section.

6.3. Comparing Prompt Engineering and Fine-Tuning

In this part, we compare prompt engineering and fine-tuning LLMs from multiple aspects.

• Performance differences: In our analysis, we found significant performance differences
between prompt-engineered and fine-tuned LLMs. Fine-tuning generally results in
better performance. For example, the least performing fine-tuned model, bloom-560m,
achieved an F1-score of 92.43%, which is comparable to the highest performance in
prompt engineering with the chain-of-thought prompt on Claude 2 (92.74%). Notably,
GPT-2-medium, with fewer parameters, significantly outperforms prompt-engineered
models, achieving an F1-score of 97.29%. This is particularly striking when considering
that chat-completion models like GPT-3.5-turbo and Claude 2 have substantially more
parameters. This disparity highlights the potential of fine-tuning in enhancing the
specialization and effectiveness of smaller models for specific tasks like phishing
URL detection.

• Data privacy and security: When using prompt engineering, interacting with LLMs
via their APIs, as commonly performed in AI development, involves data transmission
to third-party servers. This raises data privacy and security concerns. In contrast,
fine-tuning as outlined in this study generally involves downloading the model for
local adjustments, which enhances data security and minimizes risks of data leakage.
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• Resource requirements: The resource demands of the two approaches differ signif-
icantly. Prompt engineering is generally less resource intensive, requiring minimal
adjustments to apply various prompts. This makes it more accessible and practical,
particularly in resource-limited settings. On the other hand, fine-tuning demands
more substantial resources, including a significant amount of domain-specific train-
ing data and computational power, which can be a limiting factor in its scalability
and practicality.

• Model maintenance: The maintenance approaches for prompt-engineered and fine-
tuned models differ considerably. For prompt-engineered models like GPT-3.5-turbo
and Claude 2, updates and maintenance are typically handled by the companies that
developed them, such as OpenAI for GPT-3.5-turbo and Anthropic AI for Claude 2.
This means that improvements and adaptations to evolving data or tasks are managed
centrally, relieving users from the burden of continual model updates. However, this
also means that users are dependent on the companies for timely updates. In contrast,
fine-tuned models require the users to actively manage and update the models. This
might involve retraining the models as new data become available or as the nature of
tasks, such as phishing URL detection, evolves. While this allows for more control and
customization, it also adds to the resource intensity and demands ongoing attention
from the users.

To conclude, our analysis of prompt engineering and fine-tuning in LLMs has illu-
minated distinct strengths and limitations for each method. Prompt engineering, while
offering flexibility and lower resource requirements, tends to fall short in performance
compared to fine-tuning. This is particularly evident when considering the superior out-
comes achieved by fine-tuning, even with models having fewer parameters than large
chat-completion models like GPT-3.5-turbo and Claude 2. Fine-tuning, despite its higher
demands for resources and active maintenance, provides a notable increase in specialization
and effectiveness, especially in specific tasks such as phishing URL detection. Additionally,
fine-tuning affords enhanced data security through local processing as opposed to the
potential privacy concerns associated with using third-party servers in prompt engineering.
The choice between these approaches should be made based on the specific requirements of
the task at hand, weighing factors such as performance, data security, resource availability,
and the need for ongoing model maintenance and adaptability.

6.4. Comparison with State-of-the-Art Approaches

In this section, we compare the best results achieved by both methods with state-of-
the-art approaches. Initially, we contrast these results with studies that used the same
dataset to ensure a fair comparison, as shown in Table 3. Although prompt engineering
theoretically performs well, it did not achieve the performance level of state-of-the-art
methods, indicating that prompt-engineering techniques prioritize convenience over per-
formance. However, it is evident that the fine-tuned GPT-2 model surpasses state-of-the-art
techniques in all metrics, demonstrating the significant potential of fine-tuning LLMs for
specific tasks.

Table 3. Comparing our results with previous studies using our same dataset.

Study Year Accuracy Precision Recall F1-Score AUC Model

Nepal et al. [59] 2022 94.30% 94.51% 94.59% 94.55% - CNN-LSTM
McConnell et al. [60] 2023 95.36% 96.29% 94.24% 95.26% 98.76% Gradient Boosting

Rashid and Abdullah [61] 2023 96.41% 97.09% 95.80% 96.44% - Amazon Sagemaker—XGBoost
Uppalapati et al. [62] 2023 97.05% 97.27% 96.75% 97.01% - XGBoost

Our study 2024 92.90% 94.78% 90.80% 92.74% - Claude 2—prompt engineering
Our study 2024 97.30% 97.78% 96.80% 97.29% 99.56% Fine-tuned GPT-2
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Additionally, in Table 4, we compare the results achieved by the fine-tuned GPT-2
with two state-of-the-art models that were not trained on the same dataset. The purpose
of this comparison is to provide an approximate indication of how the fine-tuned GPT-2
performs relative to these models. Specifically, we compare it with PhishBERT, the only
model that uses LLMs for phishing detection, and URLNet, a state-of-the-art model that
processes raw URLs in a manner similar to LLMs. This contrasts with other techniques that
necessitate feature extraction.

Table 4. Comparing our results with previous studies using different datasets.

Study Year AUC TPR@FPR 0.1 TPR@FPR 0.01 Model

Wang et al. [63] 2023 - - 89.31% PhishBERT
Le et al. [49] 2018 99.29% 98.58% 90.84% URLNet
Our study 2024 99.56% 98.80% 91.20% Fine-tuned GPT-2

6.5. Testing on Imbalanced Datasets

Evaluating models on imbalanced test sets is essential in phishing detection to mirror
real-world conditions, where phishing URLs are typically less frequent than legitimate
ones. Balanced datasets may not accurately represent these real-life scenarios, often leading
to an overestimation of the model performance [64]. To address this, we selected the best-
performing models from our initial experiments: Claude 2, used with a chain-of-thought
prompt, and the fine-tuned gpt2-medium. These models were then assessed on imbalanced
datasets to reflect the varying prevalence of phishing URLs in real-world settings. Given
the uncertainty in the actual distribution of phishing versus legitimate URLs in real-world
settings, we altered the phishing ratios in our test sets to include 5%, 10%, 15%, 20%,
25%, 30%, 35%, 40% and 45%, all derived from our original balanced test set. This method
allowed for an evaluation of the models’ effectiveness across different scenarios, particularly
in environments where phishing is less prevalent than legitimate content.

Across the varying phishing ratios, we observed significant differences in the effec-
tiveness of the models. Claude 2 showed increased performance at higher phishing ratios,
indicating better detection in datasets with a larger presence of phishing URLs. However,
in scenarios more representative of real-world conditions, where phishing URLs are less
common, the fine-tuned GPT-2 consistently outperformed Claude 2 across all metrics.
This was particularly noticeable at lower phishing ratios. For example, at 5% and 10%
phishing ratios, GPT-2 achieved F1-scores of 76.19% and 86.73%, respectively, significantly
surpassing Claude 2’s F1-scores of 59.15% and 74.58%, respectively. This trend of supe-
rior performance by GPT-2-medium persisted across all evaluated ratios, culminating in
an F1-score of 96.02% at a 45% phishing ratio, demonstrating its enhanced effectiveness
in realistic settings with a lower incidence of phishing. The results, including precision,
recall, and F1-scores for both models at the varying phishing URL ratios, are presented in
Figures 8–10. Notably, these findings suggest that fine-tuned LLMs are more adept than
their prompt-engineered counterparts in handling real-world scenarios.
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Figure 8. Precision of GPT-2-medium and Claude 2 with varying phishing URL ratios.
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Figure 9. Recall of GPT-2-medium and Claude 2 with varying phishing URL ratios.
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Figure 10. F1-score of GPT-2-medium and Claude 2 with varying phishing URL ratios.

7. Conclusions

In this study, we explored the effectiveness of LLMs in detecting phishing URLs,
focusing on prompt engineering and fine-tuning strategies. Our investigation encompassed
a variety of prompt-engineering mechanisms, as well as multiple LLMs for fine-tuning. We
found that although prompt engineering facilitates the construction of AI systems without
the need for training or monitoring ML models, it does not match the superior performance
of the fine-tuned LLMs. Notably, the fine-tuned LLMs achieved an F1-score of 97.29%,
surpassing current state-of-the-art benchmarks. Moreover, in realistic scenarios where the
ratio of phishing to legitimate URLs is low, the fine-tuned LLMs significantly outperformed
those used with prompt engineering. This work presents a detailed comparison between
prompt engineering and the fine-tuning of LLMs, offering comprehensive insights into the
appropriate scenarios for employing each technique.

For future research, we suggest exploring hybrid approaches that combine the con-
venience of prompt engineering with the high performance of fine-tuning in phishing
URL detection. It is also crucial to address the resilience of LLM-based detection methods
against adversarial attacks, necessitating the development of robust defense mechanisms.
Additionally, optimizing real-time detection systems, mitigating biases in LLMs, and in-
corporating multimodal cues for enhanced detection accuracy are key areas that warrant
further investigation and research. These efforts will contribute to more effective and
reliable phishing-detection tools in the rapidly evolving landscape of cybersecurity.
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