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Abstract: Integrating eye gaze data with chest X-ray images in deep learning (DL) has led to contra-
dictory conclusions in the literature. Some authors assert that eye gaze data can enhance prediction
accuracy, while others consider eye tracking irrelevant for predictive tasks. We argue that this dis-
agreement lies in how researchers process eye-tracking data as most remain agnostic to the human
component and apply the data directly to DL models without proper preprocessing. We present
EyeXNet, a multimodal DL architecture that combines images and radiologists’ fixation masks to
predict abnormality locations in chest X-rays. We focus on fixation maps during reporting moments
as radiologists are more likely to focus on regions with abnormalities and provide more targeted
regions to the predictive models. Our analysis compares radiologist fixations in both silent and
reporting moments, revealing that more targeted and focused fixations occur during reporting. Our
results show that integrating the fixation masks in a multimodal DL architecture outperformed the
baseline model in five out of eight experiments regarding average Recall and six out of eight regarding
average Precision. Incorporating fixation masks representing radiologists’ classification patterns in
a multimodal DL architecture benefits lesion detection in chest X-ray (CXR) images, particularly
when there is a strong correlation between fixation masks and generated proposal regions. This
highlights the potential of leveraging fixation masks to enhance multimodal DL architectures for
CXR image analysis. This work represents a first step towards human-centered DL, moving away
from traditional data-driven and human-agnostic approaches.

Keywords: multimodal deep learning; eye tracking; object detection; X-rays; fixation maps

1. Introduction

Chest X-ray (CXR) imaging is paramount in diagnosing and monitoring various tho-
racic diseases [1]. Using deep learning models to automatically detect abnormalities in
CXRs has demonstrated promising results, augmenting the efficiency of medical diagnosis
and alleviating the workload of radiologists [2]. Recently, the release of two major datasets,
REFLACX [3] and EyeGaze [4], containing radiologists’ eye-tracking data has triggered
interest in the development of innovative deep learning (DL) architectures that integrate
both radiologists’ fixation masks and CXR images. The objective is to harness radiolo-
gists’ visual patterns to not only enhance the performance of these predictive systems but
also to shift towards more human-centric architectures, which learn from human visual
patterns [5–7] rather than relying solely on image-level information that is susceptible to
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bias [8]. Nonetheless, the efficacy of this approach and its impact on various model archi-
tectures remain ambiguous [9]. The literature presents conflicting perspectives on these
datasets, with some studies asserting that incorporating eye-tracking data in DL can result
in performance enhancements [10–12]. In contrast, others either argue the contrary [13–15]
or are inconclusive [16].

In a recent study by Moreira et al. [17], an analysis of the EyeGaze dataset revealed that
radiologists tended to focus more on regions of interest (which could potentially contain
abnormalities) when verbally reporting their findings as opposed to silently examining
the image. To provide further context, during the data collection process, the radiologists
initially spent a certain amount of time quietly assessing the image, and only afterwards did
they begin to report their observations. This finding suggests that the radiologists’ attention
was drawn more to the salient areas of the image during the reporting phase, providing
valuable insights into the regions that potentially contain abnormalities. However, the
authors did not validate their analysis using any deep learning approach to determine
whether exclusively considering fixation masks corresponding to reporting moments could
lead to a performance advantage.

In this paper, we extend the ideas in Moreira et al. [17] by investigating the impact
of incorporating fixation masks, specifically those corresponding to reporting moments,
into deep learning models to automatically detect abnormalities in chest X-ray images.
Building upon these findings, we explore the potential performance advantages of using
these refined fixation masks in conjunction with various DL architectures. By comparing
the outcomes of models that incorporate these fixation masks with those that rely solely
on image-level information, we seek to provide a clearer understanding of the value of
integrating radiologists’ visual patterns in the development of more accurate and human-
centric systems [18,19]. Recently, the European fundamental rights mandated the use of
explainable and interpretable AI in medicine [20], ensuring that patients are informed about
the essential functions of AI in an intelligible form before its use. This requirement aligns
with the broader European legal framework, which prioritizes human oversight, privacy by
design, and non-discrimination in AI applications, including those in the medical domain.

To validate this hypothesis, we propose EyeXNet, a deep learning framework that
combines chest X-ray images with fixation masks corresponding to the reporting moments
of radiologists. EyeXNet is designed to leverage the valuable insights gained from radiolo-
gists’ visual patterns during the reporting phase, aiming to improve the performance of
automatic abnormality detection in chest X-ray images.

The main contributions of this paper are the following:

• EyeXNet, a DL framework that combines chest X-ray images with fixation maps corre-
sponding to the reporting moments of radiologists, aiming to improve the performance
of automatic abnormality detection in chest X-ray images.

• To the extent of our knowledge, our approach is the first in the literature to use the
filtering of gaze related to non-reporting moments to obtain more meaningful eye-
tracking data as a proxy of the radiologists’ attention in the abnormality detection
network’s training process.

• A comprehensive evaluation of EyeXNet using various DL architectures, including
ConvNext, DenseNet, VGG, MobileNet, RegNet, and EfficientNet, and a comparison of
their performance with baseline models that relies solely on image-level information.

• An analysis involving a think-aloud experiment with two experienced radiologists
sheds light on the challenges faced by radiologists during their assessments and
how these challenges may influence the performance of DL models for chest X-ray
abnormality detection.

2. Key Eye-Tracking Concepts in Radiology

Eye-tracking data, specifically fixations and saccades, provides a valuable understand-
ing of cognitive activities. Such data are visually manifested through fixation masks, a
critical component of EyeXNet.
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Fixations denote the instances where the gaze remains stationary over a specific area
about the size of the fovea, signifying intensive information processing [21]. These instances
suggest that the eye momentarily suspends to examine regions of potential significance
closely. This is particularly relevant in radiology as empirical evidence suggests that the
initial fixations made by radiologists frequently align with regions containing lesions [3,22].
Thus, fixation data are essential in highlighting areas of diagnostic interest within the image.

Saccades represent swift ocular movements between fixation points. These movements
essentially link different fixations, forming a pathway that connects separate regions of
in-depth examination within an image [23].

Fixation Masks serve as graphical interpretations of collected fixation data, commonly
formed by establishing Gaussians at the centre of each fixation, where the intensity is
directly proportional to the duration of the fixation [3]. These masks provide a consolidated
visual representation of an image’s areas where the observer’s gaze has concentrated,
thereby spotlighting areas considered informative for particular tasks, such as disease
classification [24]. In the context of this study, it is important to note that we use the terms
“fixation masks”, “fixation maps”, and “fixation heatmaps” interchangeably and that they
refer to the same concept.

The key challenge is to find the most effective strategy for integrating eye gaze data
into DL architectures to enhance lesion detection.

3. Related Work

Several studies have integrated eye-tracking data into multimodal DL architectures.
These studies aim to enhance lesion detection in CXR images by incorporating radiologists’
eye gaze patterns. Determining the most effective approach with which to incorporate this
information into the learning process remains an ongoing research challenge.

There are two main approaches for incorporating eye-tracking (ET) data into predicting
image-level labels for CXR images from the EyeGaze dataset [4]. The first approach
combines CXR images processed through a CNN with temporal fixation heatmaps using
a 1-layer bidirectional long short-term memory network with self-attention [25]. This
method yielded a 4% AUC improvement by incorporating temporal fixation heatmaps
compared to the baseline model, which used only CXR image data as input. The second
approach employed static fixation heatmaps, aggregating all temporal fixations into one
image. During training, the model jointly learns from the static fixation heatmap and
the image-level label. In the testing phase, the model receives a CXR image as input and
outputs both the label and a heatmap distribution of the most crucial locations for the
condition. This approach demonstrated similar results to the baseline model, with the
added benefit of enhanced interpretability provided by the heatmaps.

Wang et al. [10] explored the utility of gaze data collected from radiologists by develop-
ing a gaze-guided attention network that focuses on disease regions similar to radiologists
and outputs the disease label along with an attention map based on annotated bounding
boxes and radiologists’ gaze information. The results revealed that the radiologist’s gaze-
guided GA-net architecture outperformed state-of-the-art methods using only images, such
as ResNet [26] and the Vision Transformer [27]. Moreover, collecting gaze data was faster
than acquiring manually annotated bounding boxes from radiologists while achieving com-
parable classification accuracy. Other studies have suggested that eye-tracking data can be
valuable as the initial fixations made by radiologists often coincide with lesion-containing
regions [22].

Nevertheless, some research argues against using saliency maps from human fixations
in deep learning models as these systems may rely on background context for object
classification, introducing biases [13,15]. Early studies on ET data in CXR analysis [28]
identified three types of diagnostic errors associated with eye-tracking data: (1) search
errors, where the target is missed; (2) recognition errors, occurring when the eyes fixate
on the target but the target remains undetected; and (3) decision errors, which stem from
the radiologist’s inability to report the findings. These errors could contaminate ET data
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collection and adversely impact the performance of deep learning models. In similar
studies, the proportion of these errors was found to be approximately 30% search errors,
25% recognition errors, and 45% decision errors [29,30].

4. EyeXNet Architecture

In this section, we introduce EyeXNet, a novel DL framework incorporating CXR im-
ages and radiologist fixation masks for improved abnormality detection in CXRs. Figure 1
presents the architecture of EyeXNet, which is a two-stage detector based on Faster R-CNN.
We also introduce details on how to reproduce our results (including information about
the parameters used and the models trained can be found in our public Github repos-
itory: https://github.com/ChihchengHsieh/MIMIC-Eye-applications, (accessed on 8
May 2024)).

The Faster R-CNN framework is a powerful model for object segmentation. The key
components are the following.
Backbone Network: This is a deep convolutional network that serves as the feature extractor.
In Mask R-CNN, the backbone could be any feature-rich network like ResNet or VGG,
designed to process input images and produce a high-dimensional feature map.
Region Proposal Network (RPN): This network proposes candidate object bounding boxes.
It slides over the feature map output by the backbone and outputs a set of rectangles
(proposals) that are likely to contain objects.
ROI Pooling: This extracts a small feature map for each proposal, aligning the extracted
features with the input, which is crucial for accurate mask prediction.
Bounding Box Regression and Classification Head: This part of the network predicts the
class of each object and refines the bounding box coordinates proposed by the RPN.

Figure 1. EyeXNet proposed architecture. The model fuses X-ray images with eye gaze fixation
masks to yield regions of interest and abnormality labels.

EyeXNet leverages the valuable insights gained from radiologists’ visual patterns
during the reporting phase to enhance the performance of automatic abnormality detection.
The architecture comprises the following key components:

a. Input Layer: The proposed network receives two modalities as inputs: a front (AP or
anterior-posterior view) view of CXR images and the respective clinical data. They are
defined as:

• A set of CXR images: XCXR ∈ RW×H×C;
• A set of eye-tracking heatmap: XEye ∈ RW×H×C.

https://github.com/ChihchengHsieh/MIMIC-Eye-applications
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In the proposed architecture, we set the dimensions of our image input space to
W = H = 512, C = 1.

b. Feature Engineering: XEye → E ∈ RW ′×H′×D′

XCXR → I ∈ RW ′×H′×D′

The goal of this step is to extract the feature maps for both input sources:

b.1. Chest X-ray Transform: we extracted feature maps (I) from the input chest X-ray image
(XCXR) using a CNN backbone ( fCXR):

I = fCXR(XCXR),

where the resulting dimensional space is I ∈ RW ′×H′×D′
. The values of W ′, H′, and D are

decided by the architecture of the backbone. In this work, a variety of the backbone is used
to form a robust evaluation.

b.2. Eye-Tracking Heatmap Transform: To fuse eye-tracking heatmaps (XEye) with chest
X-ray images, the same CNN backbone architecture ( fEye) is used to generate the feature
maps (E ):

E = fEye(XEye),

where E ∈ RW ′×H′×D′
, which is the same shape as chest X-ray feature maps (I). Although

the architecture is the same, the weights are not shared since eye-tracking heatmaps and
chest X-ray images are very different image data types. Once we have feature maps of the
same size for both modalities, we can proceed to the fusion phase.

c. Feature Maps Fusion: {I , E} → Z ∈ RW ′×H′×D′

The final feature map (Z) representing the element-wise sum fusion of both modalities
is obtained by

Z = C ⊕ E , Z ∈ RH′×W ′×D′
, (1)

where ⊕ corresponds to the element-wise sum operation used for fusion. The final Z corre-
sponds to the 3D feature map representation of the fused information. Next, we use this
data representation as input to the Faster-RCNN architecture to perform lesion detection.

d. Region Proposal Network: {Z} → Z̃RoI ∈ RWr×Hr

To perform localized abnormality detection, we use the Region Proposed Network
(RPN), frpn, of the Faster-RCNN architecture to generate candidate object bounding boxes,
also known as proposals P , given by

P = frpn(Z), ∀pi ∈ P : pi = (xi, yi, wi, hi, cobj
i ). (2)

RPN learns the coordinates of the generated bounding boxes (xi, yi, wi, hi), and the
corresponding confidence score, cobj, of having an abnormality (object) in the localization
of the bounding boxes. This confidence score is used to sort the generated proposals by
their predictive relevance.

Using the coordinates of the computed bounding boxes, a RoIPool operation is per-
formed to extract the corresponding Regions of Interest (RoIs), Z̃RoI = RoIPool(P ,Z).
The RoIs result in a data structure with dimensions Z̃RoI ∈ RWr×Hr , where Wr and Hr are
hyperparameters. We set Wr and Hr to 7 in our experiments.

e. Output: {ZC, Z̃RoI} → ŷ:
After learning the candidate RoIs, we flatten these data to serve as input to a normal

dense neural network, which will perform the final classification. To emphasize the role of
the clinical data in this classification process, we concatenate the clinical data representation,
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ZC, with the flattened candidate RoIs, Z̃RoI, before classification takes place. The role of the
1-Difusion in the MDF-Net is to provide residual information to further pass the clinical
data to deeper layers in our architecture. The final prediction ŷ is then obtained by:

ŷ = fcls(Flatten(Z̃RoI) ∪ ZC), (3)

where ∪ represents the vector concatenation operation, Z̃RoI = RoIPool(P ,Z), and ŷ con-
tains predicted classes ŷcls, bounding boxes ŷbb, and binary masks ŷmask, and where fcls is
the final classification layer.

f. Training: In the training phase, five loss terms are considered: four original from the
Mask R-CNN framework plus one related to the inclusion of eye tracking data into the
model’s learning process.
Lcls: Cross-entropy between groundtruth abnormality ycls and predicted abnormalities
ŷcls. This loss term requires the model to predict the class of abnormalities correctly in the
output layer:

Lcls = −∑
i

ycls
i log(ŷcls

i ) (4)

Lbb: Bounding box regression loss between ground-truth bounding boxes ybb and predicted
bounding boxes ŷcls is calculated using the smooth-L1 norm using hyperparameter β. To
minimize this loss, the model has to locate abnormalities in the correct areas in the output
layer. In our implementation, we set β = 1

9 .

Lbb =
n

∑
i=1

li, where

li =

{
0.5(ŷbb

i − ybb
i )2/β , if ŷbb

i − ybb
i < β

|ŷbb
i − ybb

i | − 0.5 ∗ β , otherwise

(5)

Lobjrpn
: Binary cross-entropy loss between ground-truth objects yobj and predicted objects

cobj (confidence score), which requires RPN to correctly classify whether the proposals
(candidate bounding boxes) contain any abnormality.

Lobjrpn
= − 1

N

N

∑
i=1

(
y(i)obj · log(c(i)obj) + (1 − y(i)obj) · log(1 − c(i)obj)

)
(6)

Lbbrpn : Proposal regression loss between proposals (candidate bounding boxes) p : p ∈ P
and ground-truth bounding boxes ybb, which is also calculated using the same smooth-L1
norm function for Lbb. This loss term aims to improve RPN on localising abnormalities.

We used homoscedastic (task) uncertainty [31] to train the proposed model using
these five loss terms by dynamically weighting them for better convergence. Let L =
{Lcls, Lbb, Lmask, Lobjrpn

, Lbbrpn}; we used the SGD (stochastic gradient descent) to optimize
the overall loss function

arg min
θ,αl

∑
l∈L

1
2α2

l
l(θ) + log α2

l , (7)

where θ is the weights of the model, and αl is a trainable parameter to weight each task/loss.

5. EyeXNet Complexity Analysis

The overall complexity of EyeXNet largely mirrors that of the original Mask R-CNN
model, considering the sum of the complexities of its individual components, primarily
structured as follows: O(NCHW), where N is the number of region proposals, C is the
number of classes (in our case, five), H is the height of the feature map, and W is the width
of the feature map.
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The EyeXNet architecture includes five primary components: (1) a deep fully convo-
lutional network, (2) a region proposal network, (3) the ROI pooling, (4) a bounding box
regressor, and (5) a classifier, described below.

Deep Fully Convolutional Network: This component uses a structure based on Zeiler and
Fergus’s [32] smaller, faster model. It extracts 256 × N × N feature maps from the input
image I, which is input for the RPN and ROI pooling layers.

Region Proposal Network: For each pixel in the feature map, the RPN generates K anchor
boxes (or candidate windows), typically totalling 2000, considering different scales and
ratios. After applying non-maximum suppression, we retain approximately 2000 candidate
windows, resulting in a complexity of O(N2) given the quadratic relationship with the
number of proposals per feature map location.

ROI Pooling: This component takes the variable-sized candidate windows and divides
each into an HxW grid of sub-windows. It then performs max pooling across these sub-
windows to produce a fixed-size output feature map for each region, which is efficient with
a complexity of O(1) per region.

We estimate that the computational cost of EyeXNet approximates that of the foun-
dational Mask R-CNN, albeit adapted for including eye-tracking masks. This adaptation
introduces additional steps in data preprocessing and integration but does not significantly
alter the primary computational complexity, which remains dominated by the convolutional
operations and region proposal computations.

6. Experimental Setup

This study aims to evaluate the effectiveness of incorporating radiologist fixation
masks obtained from eye-tracking data into EyeXNet to predict the location of various
abnormalities in chest X-ray images. We hypothesise that radiologists should focus more
on the regions containing abnormalities when they report what they see in the image [17],
leading to improved classifier performance. All the experiments were on a single PC with
an i9-13900K CPU and an NVIDIA GeForce RTX 4090 GPU with 24 GB RAM both located
in Santa Clara, California, USA.

6.1. Models

We evaluated EyeXNet with eight backbones: MobileNet, ResNet18, DenseNet161,
EfficientNetB0, EfficientNetB5, ConvNextNet, VGG16, and RegNet. As a baseline, we used
EyeXNet, using only the images. To train the models, we used the top five occurring lesions
in the MIMIC-EYE dataset: Pulmonary Edema, Enlarged Cardiac Silhouette, Consolidation,
Atelectasis, and Pleural Abnormality, as described below:

MobileNet [33] is characterized by its use of depth-wise separable convolutions, a design
that reduces the model size and computational cost. This architecture is particularly ad-
vantageous for deployment on mobile and edge devices due to its efficiency. However, the
simplicity that affords MobileNet its speed can also lead to lower accuracy compared to
more complex models, a crucial trade-off in resource-constrained environments.

ResNet18 [34] introduces the concept of residual blocks with skip connections. This sig-
nificant innovation supports the training of deeper network architectures by mitigating
the vanishing gradient problem. These properties make ResNet18 robust for various tasks,
although it may still be cumbersome for real-time applications due to its relative size
compared to more streamlined models.
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DenseNet161 [35] stands out due to its dense connectivity pattern, where each layer is
connected to every other layer in a feed-forward fashion. This dense connectivity ensures
maximal information flow between layers, enhancing feature propagation and reducing
overfitting. The downside is the increased computational demand, leading to higher mem-
ory consumption and slower inference times.

EfficientNet [36] represents a balanced approach, scaling convolutional neural networks
through a compound coefficient that uniformly scales depth, width, and resolution. This
methodical scaling has been optimized through neural architecture search, offering a
commendable balance between accuracy and efficiency. Nevertheless, the complexity of
EfficientNet might pose challenges in implementation, especially in environments where
computational resources are limited.

ConvNextNet [37] reflects the latest advancements in integrating transformer-like ele-
ments within a conventional CNN framework, pushing the boundaries of what can be
achieved with convolutional architectures. Although it offers state-of-the-art performance,
ConvNextNet’s relatively recent development means it might lack extensive community
support and a wealth of deployment experiences, which are invaluable for real-world
applications.

VGG16 [38], with its straightforward design of deep convolutional layers, has been a reli-
able workhorse in the deep learning community. Its simplicity and depth have made it a
standard for many benchmark tasks. However, its large size and computational demands
make it less ideal for deployment where efficiency is a priority.

RegNet [39] employs a systematic approach to network design, which yields models that
scale predictably in performance while being computationally efficient. This predictability
is beneficial, yet the rigidity of its design rules may not capture the specific nuances required
for all types of diagnostic tasks, potentially limiting its effectiveness in more specialized
applications.

6.2. Dataset

In our experiments, we used the MIMIC-EYE dataset [40] to validate a multimodal
deep learning architecture for improved chest X-ray abnormality detection. MIMIC-EYE
combines multiple MIMIC data sources, including medical images and reports (MIMIC-
CXR [41,42] and MIMIC-JPG [43]); clinical data (MIMIC-IV ED [44]); exhaustive patient
hospitalization records (MIMIC-IV [45,46]); and eye-tracking data including gaze patterns,
pupil dilations, and image annotations (REFLACX [3] and EyeGaze [4]). The dataset
comprises 3192 patients, 1644 stays, and 3689 CXR images, offering a robust foundation
for evaluating the proposed architecture. Our study used 2122 pairs of CXR images and
fixation masks for training, 455 for validation, and 455 for testing. For this study, we
focused on the REFLACX subset of this integrated dataset because it contained annotations
of CXR abnormalities.

6.3. Data Preprocessing

In the MIMIC-EYE dataset, radiologists were instructed to evaluate chest X-ray images
using a think-aloud protocol while their eye movements were recorded. Initially, radiol-
ogists silently observed each image before verbally reporting their findings. Moreira et
al. [17] observed significant differences in radiologists’ eye movements during the silent
examination phase compared to when they began speaking. The authors posited that
radiologists focused more on regions containing abnormalities during the reporting phase,
making these moments valuable for informing deep learning models. In this study, follow-
ing Moreira et al. [17], we opted to generate fixation masks solely for the moments when
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radiologists were speaking as these instances exhibited a stronger correlation between
fixations and the ground truth locations of abnormalities in the X-ray images (Figure 2).

Figure 2. Examples of chest X-rays featuring radiologist fixations during both silent observation
and reporting phases, alongside their ground truths. The fixations made during the reporting phase
demonstrate a stronger correlation with the ground truth, suggesting that these moments may provide
informative cues for DL models.

6.4. Evaluation

We employed the Free-Response Receiver Operating Characteristic (FROC) analysis
to evaluate the proposed EyeXNet’s performance on the MIMIC-EYE dataset. FROC
analysis is a sophisticated method used to evaluate the performance of diagnostic systems,
particularly those involved in detecting and identifying multiple occurrences of objects,
such as tumors or lesions, within medical images. Unlike the traditional Receiver Operating
Characteristic (ROC) curves, designed for binary classification tasks, FROC curves provide
a more nuanced evaluation. They allow for the assessment of systems where true and false
positives can occur multiple times within the same image set [47].

We assessed the performance of our model at various false positive rates, specifically
0.5, 1, 2, and 4 false positives per image. The FROC curve is generated by plotting the
sensitivity (true positive rate) against the average number of false positives per image (FPI)
at these different thresholds,

FROC@i = [FPI@(i, t), Sensitivity@(i, t)]

where t ∈ [0, 1]
(8)

where FROC@i represents the FROC value of a given class i, Sensitivity@(i, t) is the true
positive rate at threshold t for class i, FPI@(i, t) is the number of false positives at threshold
t per image for lass i, and t is the score threshold (probability confidence). A higher FROC
value indicates a better diagnostic system performance, implying that the model can detect
more true positives with fewer false positives at a given threshold. A higher FROC value
primarily results from: (1) increased detection sensitivity, (2) reduced false positives, and
(3) model robustness. A higher FROC value suggests that the system achieves an optimal
balance between sensitivity and Precision, which is critical for clinical reliability. It indicates
that the system effectively identifies true positives with fewer false positives, enhancing
its utility in patient care. The FROC curve plot analysis is crucial in medical imaging
because it offers a detailed measure of a system’s ability to correctly identify multiple
pathological findings while quantifying the rate of false alarms. Such information is vital
for determining the practical utility of diagnostic systems in clinical settings, where high
sensitivity and controlled false positive rates are essential for effective patient management.

To supplement our quantitative analysis, we enlisted the expertise of two seasoned
radiologists, each with over 15 and 25 years of experience, to provide insights into the
best- and worst-performing predictions made by our proposed EyeXNet model, using
the top-performing backbone. Our goal was to determine whether instances where the
model struggled to make accurate predictions were also challenging for human radiologists
to evaluate.
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6.5. Model Complexity Analysis

The computational complexity of the proposed architecture can be approximated to
the complexity of the original Mask R-CNN model. Since both the CXR image and fixation
masks are fused, the resulting feature maps approximate the performance of the Mask
R-CNN with a single modality. It can be estimated by summing the complexities of the
components of the original Mask R-CNN model:

O(NHW) + O(NCHW) + O(NCHW) ≈ O(NCHW),

where N is the number of region proposals, C is the number of classes (five classes, in our
case), H is the feature map height, and W is the feature map width.

7. Results

Table 1 displays the sensitivity results at false positive rates of 0.5, 1, 2, and 4, along
with the corresponding mean FROC, FROC@[0.5, 1.0, 2.0, 4.0], for various backbones em-
ployed in the proposed EyeXNet. The FROC curves for each backbone, depicted in Figure 3,
illustrate the trade-off between sensitivity and false positive rates for different predicted
classes. These curves aid in identifying an optimal threshold that maximizes sensitiv-
ity while minimizing false positive rates, thereby providing valuable insights into each
backbone’s performance.

Table 1 presents varying performance outcomes between the baseline models (uti-
lizing chest X-ray images solely) for DenseNet, EfficientNet, and EyeXNet; it combines
radiologists’ fixation maps with ConvNextHowever, these results do not directly suggest
the effectiveness of integrating fixation maps into a multimodal architecture.

Table 1. Sensitivity at average false positive rates of 0.5, 1, 2, and 4, along with the corresponding mean
FROC scores for different EyeXNet backbones using both chest X-ray (CXR) images and radiologists’
fixation masks, as well as the CXR images alone. This comparison highlights the performance
of each EyeXNet backbone in detecting abnormalities, considering the influence of incorporating
fixation masks.

Backbone Setting
Sensitivity

@[0.5]
Sensitivity

@[1.0]
Sensitivity

@[2.0]
Sensitivity

@[4.0]
mFROC

@[0.5, 1, 2, 4]
mRecall

image only 0.489 0.665 0.813 0.916 0.720 0.345
MobileNet [33]

fixation maps 0.520 0.686 0.830 0.946 0.745 0.448

image only 0.547 0.700 0.844 0.927 0.755 0.348
ResNet18 [34]

fixation maps 0.571 0.735 0.881 0.969 0.789 0.448

image only 0.597 0.796 0.922 0.967 0.820 0.396
DenseNet161 [35]

fixation maps 0.564 0.721 0.860 0.957 0.775 0.414

image only 0.565 0.744 0.886 0.951 0.787 0.491
EfficientNetB5 [36]

fixation maps 0.566 0.752 0.883 0.961 0.791 0.391

image only 0.575 0.750 0.877 0.947 0.786 0.325
EfficientNetB0 [36]

fixation maps 0.581 0.764 0.895 0.971 0.803 0.414

image only 0.574 0.748 0.902 0.965 0.797 0.457
ConvNextNet [37]

fixation maps 0.597 0.759 0.907 0.975 0.808 0.491

image only 0.570 0.753 0.897 0.970 0.798 0.443
VGG16 [38]

fixation maps 0.582 0.784 0.914 0.987 0.817 0.430

image only 0.432 0.626 0.786 0.910 0.688 0.470
RegNet [39]

fixation maps 0.565 0.734 0.869 0.959 0.782 0.430

Overall
Best Model

ConvNextNet
[w/fixations]

DenseNet161
[Image only]

DenseNet161
[Image only]

VGG16
[w/fixations]

DenseNet161
[image only]

ConvNextNet
[w/fixations]
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Figure 3. Comparison of FROC curves for DenseNet (image only) and ConvNext (with fixation
masks), illustrating their performances in detecting various abnormalities in chest X-ray images.
The curves demonstrate the similarities in performance between the two models, highlighting the
effectiveness of both approaches for abnormality detection in CXRs.

To enhance the understanding of these results and determine whether fixation masks
in reporting moments improve performance, an in-depth analysis of each model’s confusion
matrix was conducted (Table 2). Upon analyzing the number of True Positives (TPs), False
Positives (FPs), and False Negatives (FNs), it becomes evident that ConvNextNet achieved
superior performance when utilizing the fixation masks. ConvNextNet detected a higher
number of TPs and fewer FNs than all other tested backbones. Furthermore, ConvNextNet
registered fewer FPs than its baseline model. These findings are supported by the top-
ranking performances exhibited by ConvNextNet in terms of average Recall and average
Precision, demonstrating the effectiveness of incorporating fixation masks in the model.
However, other backbones were close to ConvNextNet in terms of performance, such as
EfficientNet using the images alone.

The researchers in Luís et al. [5] also implemented a Mask-RCNN-based approach to
incorporate eye tracking data into an abnormality detection network’s learning process in a
technique analogous to the one described here, using the same datasets. However, contrary
to this work, the authors of Luís et al. [5] obtained better results for instances of the model
that used only the original CXR, further hinting at the usefulness of the selection of gaze
associated with reporting moments included in models’ learning processes,
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Table 2. Performance Compare EyeXNet with different backbones using chest X-ray (CXR) images
and radiologist fixation masks or just the CXR images. The table presents the number of True Positives
(TPs), False Positives (FPs), and False Negatives (FNs); the Average Recall (mRecall); and the Average
Precision (mPrecision) for each model. ConvNext, when using fixation masks, demonstrates the
best performance in both Average Recall and Average Precision, highlighting its effectiveness in
abnormality detection.

Backbone Setting #TP #FP #FN mRecall mPrecision

image only 690 3387 844 0.345 0.096
MobileNet

fixation maps 931 6485 603 0.448 0.111

image only 685 3014 849 0.348 0.110
ResNet18

fixation maps 878 5197 656 0.448 0.124

image only 849 4920 685 0.396 0.105
DenseNet161

fixation maps 821 3983 713 0.414 0.123

image only 915 8657 619 0.491 0.126
EfficientNetB5

fixation maps 819 3710 715 0.391 0.117

image only 691 2707 843 0.325 0.103
EfficientNetB0

fixation maps 842 3755 692 0.414 0.123

image only 905 5145 629 0.457 0.138
ConvNextNet

fixation maps 945 4758 589 0.491 0.150

image only 918 6122 616 0.443 0.122
VGG16

fixation maps 888 4228 646 0.430 0.120

image only 945 8008 590 0.470 0.095
RegNet

fixation maps 848 4260 686 0.430 0.118

Overall
Best Model

ConvNextNet
[w/fixations]

EfficientNetB0
[Image only]

ConvNextNet
[w/fixations]

ConvNextNet
[w/fixations]

ConvNextNet
[w/fixations]

Human Grounded Results

The qualitative analysis from the think-aloud experiment, involving two experienced
radiologists evaluating the four best-performing and worst-performing chest X-ray images
processed by EyeXNet using a ConvNext backbone and fixation masks, yielded the follow-
ing findings:

Radiologist Assessment Variability and Discrepancies from Groundtruth Annotations. The
evaluations provided by the two expert radiologists exhibited considerable deviations from
the ground truth annotations in the REFLACX dataset. Although it is well documented in
the literature that the assessment of X-ray images is subject to variability [48], it is worth
noting that in only a few instances did the diagnoses made by our radiologists align with
the ground truth.

Challenges in Image Interpretation due to External Devices and Limited Clinical Infor-
mation. The radiologist faced considerable difficulty interpreting multiple images as the
presence of various external devices such as tubes, surgical sutures, bone prostheses, and
pacemakers complicated them. These devices suggested a complex medical history for
the patients. Lacking access to clinical information and relying solely on the images, the
radiologist’s task of accurately assessing the images was further complicated. Some recent
studies have already been proposed where they try to incorporate patients’ clinical data in
multimodal DL frameworks to improve diagnostic accuracy [49].

Challenges in Data Quality and Contextual Factors. The chest X-ray images that yielded
the lowest performance from the classifier were deemed challenging to assess by our radiol-
ogists, primarily due to image quality issues: (1) The images appeared too dark, obscuring
specific details; (2) the patients were not in the standard AP position but rather semi-erect
or angled, making the detection of certain lesions difficult to evaluate; and (3) the absence of
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comprehensive patient clinical history made it problematic for the radiologists to determine
whether a lesion in the chest X-ray represented a previous or a current medical issue.

While our results confirm our initial hypothesis, we conducted various analyses to
comprehend the diverse performances exhibited by the different backbones when utilizing
fixation masks.

8. Discussion

In the existing literature, complete fixation masks (without distinguishing between
fixations made during moments of silence and moments of reporting) are employed in
multimodal DL architectures for abnormality detection or diagnosis classification in CXRs.
However, no study has conclusively demonstrated a clear superiority advantage of using
fixation masks.

Contrary to existing literature, we hypothesized that radiologists would likely fo-
cus more on the chest X-ray regions with abnormalities while reporting their findings,
potentially enhancing system performance [17]. Our findings suggest that incorporating
radiologists’ fixation maps into EyeXNet with ConvNext may result in more True Positives
and fewer False Negatives, ultimately leading to improved Recall and Precision. However,
other backbones, such as EfficientNet or DenseNet, achieved comparable performances in
terms of sensitivity at different false positive rates by relying solely on chest X-ray images.
Indeed, ConvNextNet tends to generate more False Positives than other architectures,
which accounts for its performance deficit in this metric. Nevertheless, ConvNextNet
appears to be the most suitable backbone for abnormality detection when combined with
fixation masks in EyeXNet.

To investigate these results further, we propose various technical factors, such as
potential redundancy in fixation masks, which could explain DenseNet’s architectural
advantages and ConvNextNet’s high generation of FPs. We also identify several data
quality aspects, including discrepancies between the annotated abnormalities in the original
REFLACX dataset and the abnormalities reported in the MIMIC-CXR medical records from
the hospital information system.

8.1. Redundancy in Fixation Masks

It is possible that the fixation masks used in the study do not provide significant
additional information beyond what is already present in the chest X-ray images, leading
to only marginal improvements when combined with the images. DenseNet’s inherent
ability to extract complex features from the images alone may be sufficient for the task,
rendering the fixation masks less impactful. Moreover, fixation masks contain considerable
noise, such as multiple revisits to a specific region. Radiologists at different stages of their
careers also exhibit varying fixation patterns; less experienced radiologists tend to make
more fixations compared to experts [50,51]. Figure 4 provides an example illustrating the
noisiness of fixation masks.

Figure 4. Two distinct chest X-ray images, each annotated with red ellipses by different radiologists.
These patterns reveal that the raw gaze data are intricate and noisy, highlighting the complexity of
interpreting these visual cues.
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It is also plausible that the fixation masks do not provide significant additional in-
formation beyond what is already present in the chest X-ray images. However, they
contribute to our study’s decrease in FNs and the increase in TPs. Moreover, several studies
in the literature have reported substantial reductions in FPs when employing fixation
masks [52–55].

In the case of DenseNet, this neural network architecture has been specifically designed
to learn complex features from image data efficiently. Its ability to adeptly capture these
features from chest X-ray images may already be sufficient for identifying abnormalities,
reducing the added value of incorporating fixation masks. As a result, the redundancy
in the fixation masks may contribute to the observed performance differences between
models using images alone and those that also include fixation masks. DenseNet’s inherent
proficiency in feature extraction might render the additional data from fixation masks less
impactful on the model’s performance.

8.2. Model Architecture.

DenseNet, ConvNext, and EfficientNet feature unique architectural designs that im-
pact their capacity to learn and extract features from the input data. DenseNet’s dense
connections excel at reusing features and enhancing gradient flow, which could lead to su-
perior FROC performance without the need for redundant information from fixation maps.
DenseNet achieves this by connecting each layer to every other layer in a feed-forward
manner, allowing for the more efficient use of parameters and better information flow
during training.

Conversely, ConvNext and EfficientNet may possess architectures specifically opti-
mized for attaining higher Recall rates, prioritizing identifying true positive cases. Con-
vNext utilizes a hierarchical structure composed of multiple convolutional stages, with
each stage successively increasing the network’s depth. This hierarchical design enables
the model to capture features at various scales, which can be beneficial for detecting ab-
normalities of differing sizes and shapes. Within this hierarchical configuration, feature
maps may offer a more comprehensive feature extraction process as our results indicate
that ConvNext performs better when using both images and fixation masks compared to
relying solely on images.

EfficientNet, on the other hand, employs a compound scaling method that simulta-
neously adjusts the model’s depth, width, and resolution. By scaling all three dimensions
together, EfficientNet can achieve a better balance between model complexity and accu-
racy, which may contribute to its heightened performance in terms of Recall. However,
performance improvement is not observed when fusion with fixation masks is attempted,
as shown in Tables 1 and 2. This could be due to EfficientNet’s already optimized archi-
tecture, which efficiently extracts essential features from the images, potentially making
the additional information from fixation masks less impactful. Additionally, noise and
redundancy in fixation masks may hinder the model’s ability to effectively capitalize on
the supplementary data, thus not contributing significantly to overall performance.

8.3. Data Quality Challenges.

To gain a deeper understanding of the data quality challenges identified by our expe-
rienced radiologists, we examined the original medical reports associated with each chest
X-ray. We then compared the labels extracted using NegBio, a natural language processing
tool specifically designed for this task, to the annotations present in the REFLACX dataset.
Our objective was to determine the number of images with annotations that deviated from
the original medical reports.

Considering the five lesion types that EyeXNet predicted, we discovered that in over
30% of cases, the annotations on the chest X-rays diverged from the lesions mentioned
in the hospital medical reports. The discrepancy rate for Pulmonary Edema was notably
lower, only 16% .
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9. Conclusions

This study explored the effectiveness of incorporating radiologists’ fixation maps into
DL models to detect abnormalities in chest X-ray images. We compared the performance
of different backbones, including ConvNext, DenseNet, and EfficientNet, combined with
EyeXNet and various fixation maps. Our findings indicate that using fixation maps in
EyeXNet with ConvNext can improve Recall and Precision by increasing the number of
true positives and reducing the number of false negatives. However, other backbones, such
as EfficientNet and DenseNet, achieved similar performance using only CXR images, sug-
gesting that fixation maps might not always contribute significant additional information.
Overall, integrating the fixation masks in a multimodal DL architecture outperformed the
baseline model in 5 out of 8 experiments regarding average Recall and 6 out of 8 in terms
of average Precision.

We conclude that the effectiveness of incorporating fixation masks into a multimodal
DL architecture depends on the correlation between the fixation masks and the generated
proposal regions. When the fixation masks do not align well with the proposal regions, the
information from the image feature maps extracted by the backbone dominates during the
fusion process. As a result, the performance is comparable to the baseline Mask R-CNN,
which considers only the image input; however, in cases where the fixation masks correlate
well with the proposal regions, the fusion process benefits from the additional information
provided by the fixation masks. This leads to improved lesion detection for CXR images.
Consequently, integrating fixation masks, which capture radiologists’ classification patterns,
into a multimodal DL architecture proves advantageous for enhancing the overall lesion-
detection task. These observations highlight the potential benefits of leveraging fixation
masks in multimodal DL architectures and emphasize the importance of considering the
alignment between fixation masks and proposal regions when designing and evaluating
such architectures for CXR image analysis.
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