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Abstract: Flowable electrodes, a versatile alternative to traditional solid electrodes for electrochemical
applications, exhibit challenges of high viscosity and carbon content, limiting flow and device
performances. This study introduces colloidal suspensions of thin multiwall carbon nanotubes
(MWCNTs) with diameters of 10–15 nm as electrode materials. These thin nanotubes, stabilized in
water with a surfactant, form percolated networks, exhibiting high conductivity (50 ms/cm) and
stability at a low carbon content (below 2 wt%). Colloidal clustering is enhanced by weak depletion
attractive interactions. The resulting suspensions display yield stress and a shear thinning behavior
with a low consistency index. They can easily flow at a nearly constant shear over a broad range of
shear rates. They remain electrically conductive under shear, making them a promising option for
flow electrochemical applications. This work suggests that the use of depletion-induced MWVNT
aggregates addresses crucial issues in flow electrochemical applications, such as membrane fragility,
operating energy, and pressure. These conductive colloidal suspensions thereby offer potential
advancements in device performance and lifespan.
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1. Introduction

Flowable electrodes are emerging as a versatile and promising alternative to traditional
solid electrodes in various electrochemical applications, including flow capacitors [1–3]
and water capacitive desalination [4–6]. Flow capacitors enjoy several promising features
such as cost effectiveness and high-energy storage capabilities. More critically, flow elec-
trochemical technologies offer the possibility to decouple energy and power ratings. The
energy scales with the volume of the reservoirs, whereas the charge transfer depends on the
structure and stacks of the device. These features make flow capacitors and flow batteries
particularly suited for storage of intermittent renewable energies. Flowable electrodes are
also promising to address an environmental concern that is the global water resource short-
age [7]. The so-called flow capacitive deionization of water using carbon slurry was already
introduced in 2013 [8] and has been a topic of extensive research since then [9–11]. More-
over, flow capacitive water desalination has been shown to be potentially more effective by
implementing energy recovery during continuous deionization process [12].

In these applications, which are based on related physico-chemical mechanisms,
carbon micro- or nanoparticles [2] are suspended in an electrolyte medium, often containing
formulating agents [13,14]. At elevated concentrations, the colloidal particles create an
electrically conductive network [15]. Upon the application of a given voltage, ions from
the volume of the electrolyte adsorb onto the particle surface during the charging stage.
Conversely, electrical charges are delivered to a current collector in the discharge mode. In
contrast to their solid counterparts, flowable electrodes offer numerous advantages, such as
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a high surface area accessible from the entire electrolyte volume, enhanced mass transport,
and ease of replacement. Flowable electrodes in these applications generally contain a high
amount of carbon particles to ensure electrical conductivity. High concentration yields
viscoelastic suspensions, with a slurry like texture, impeding easy flow. They necessitate
high pressure and energy to be pumped. More critically, a high concentration of carbon
particles can result in plug formation or membrane rupture, limiting the performance and
lifespan of devices [11]. This can become critical when using ion exchange membranes,
which are costly components of energy storage or deionization devices.

To overcome these limitations, an approach consists of developing flowable electrodes
with reduced carbon content. Reducing carbon content holds the potential for improving
device stability, prolonging lifespan, and enhancing energetic efficiency. The first chal-
lenge towards this objective involves optimizing the rheological performance of carbon
dispersions. Maintaining the dispersion’s ability to flow is crucial. The second challenge is
to formulate flowable dispersions that still exhibit sufficient electronic conductivity and
electrochemical capacitance. Generally, as reviewed in references [3,16], carbon-based
slurries made of carbon black particles display conductivities below a few mS/cm, for
carbon contents of the order of 10 wt% or more. Moreover, the conductivity of such slurries
decreases sometimes substantially in flow conditions.

A way of maintaining conductivity over a wide shear rate range is by utilizing a
fluid that can accommodate high shear rates with limited viscous dissipation. This is
particularly the case of threshold fluids with low plastic viscosity or, more precisely, with
a low consistency index and a high yield stress. Their equation of state is σ = σs + A

.
γ

n,
where A is the consistency index, σs the yield stress, σ the applied shear stress,

.
γ the shear

rate, and n the flow index [17]. In the limit of low A, the applied stress is maintained
around the yield stress. The apparent viscosity, defined as ηapp = σ.

γ
= σs.

γ
+ A

.
γ

n−1 ≈ σs.
γ

,
varies with the shear rate to the power of −1. Flow in such fluids generally occurs through
minute structural variations, characterized by fractures that continuously form and heal,
especially as the fluid flows in close proximity to its yield stress. Such a behavior is
usually observed at low shear rates in yield stress fluids with high carbon contents [3,18,19].
Achieving such flow conditions over a broad range of shear rates and at low carbon contents
remains challenging.

Carbon nanotubes appear as natural candidates to meet the above challenges. Indeed,
carbon nanotubes display a high conductivity [20] and a low percolation threshold at
equilibrium because of their high aspect ratio, L/d, where d and L are the diameter and
length of the nanotubes, respectively [21]. They hold therefore the potential for making
conductive suspensions at a low carbon content. Actually, such particles have been used
as additives, mixed with other carbon particles, to improve capacitive water desalination
performances [22–24]. Nanotubes contribute to generate connectivity between the carbon
particles. They have also been used as sole conductive species in aqueous electrodes
with remarkable properties [16,25,26]. In these earlier studies, electronic conductivities at
equilibrium reached values between 5 and 10 ms/cm for carbon contents typically between
2.5 and 10 wt%. These remarkable properties result from the high conductivity of carbon
nanotubes and from their high aspect ratio. Nevertheless, nanotubes used in these studies
have a diameter of 50–80 nm and a length of 10 µm. Stabilization of such particles remains
quite difficult because of their large size and tendency to settle. In addition, the large size of
the particles results in a more limited specific surface area and electrochemical capacitance
compared to smaller colloidal nanoparticles.

Following the investigation of carbon nanotube-based flowable electrodes, we report
in the present work the obtainment of electrodes made of suspensions of thin multiwall
carbon nanotubes (MWCNTs) with a diameter of 10–15 nm. Even if not as good as activated
carbons in terms of performances for static supercapacitors, they are expected to display
greater capacitance compared to thick nanotubes. These thinner nanotubes do not settle
and can be more easily dispersed than large multiwall nanotubes. The nanotubes are
stabilized in water with surfactant. Addition of excess surfactant is used to promote the
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formation of percolated networks in response to weak depletion attractive interactions [27].
We perform characterizations following the methodology used for carbon black particles [3].
In this previous work, conductivity measurements and rheology characterizations were
conducted. The methodology also includes the measurement of conductivity in flow cells
as detailed in [3] and in the Materials and Methods Section of the present article. However,
the present work is focused on fundamentally distinct materials since carbon black is made
of aggregates of quasi-spherical particles. Here, carbon nanotubes are 1 D dimensional
objects with a high aspect ratio. They form structures different from carbon black systems.
The present structures are shown to display high conductivity and high stability along
with decent electrochemical capacitance. Typically, the best dispersions investigated in the
present work display an electronic conductivity of 50 ms/cm for a carbon content below
2 wt%. The viscosity of these suspensions does not exceed 2 Pa.s for a shear rate of 5 s−1.
This original combination of high electronic conductivity and low plastic viscosity makes
the present suspensions promising for flow electrochemical applications where membrane
fragility, operating energy, and pressure are key issues.

2. Materials and Methods

Two types of commercial multiwall carbon nanotubes have been used, namely,
Graphistrength C100 materials from Arkema (Colombes, France) and NC 700 materi-
als from Nanocyl (Sambreville, Belgium). These nanotubes are produced by a chemical
vapor deposition process and contain small fractions of metal catalysts. They are used as
received without further purification. Both materials have diameters in the 10–15 nm range.
According to statistical analyses of the correlation between the diameter and number of
nanotube walls, this diameter range corresponds typically to a number of walls varying
between 10 and 15 [28]. The nanotube length exceeds several microns in their raw state.

The carbon nanotubes are added to distilled water and stabilized with surfactant
molecules. US4498 from US Research Nanomaterials is presently used. The exact molecular
structure of the surfactant is unknown, but the compound is provided by US Research
Nanomaterials as a non-ionic surfactant suited for the stabilization of carbon nanotubes
in water. This surfactant contains aromatic groups with good affinity towards carbon
nanotubes. As a non-ionic molecule, the surfactant is not expected to affect the ionic
conductivity of the suspensions. However, surfactant molecules adsorbed at the surface of
the nanotube can increase the contact resistance between the particles. This effect would
likely lower the overall electronic conductivity of the suspension. Mother suspensions
are prepared by mixing 1 wt% of MWCNTs and 2 wt% of US4498 in distilled water for
Arkema samples and 0.5 wt% of MWCNTs and 2 wt% of US4498 for Nanocyl samples.
The suspensions are homogenized by tip sonication for 30 min. They are obtained using
a Branson homogenizer, Sonifier model S-250A (Fisher Scientific, Leicestershire, UK),
associated with a 13 mm step disruptor horn and a 3 mm tapered microtip, operating at a
20 kHz frequency. The suspensions are found to be free of aggregates after such treatment.
Tip sonication induces the disentanglement and scission of the nanotubes [29,30]. The latter
display a typical length in the range of 500 nm–1 µm. Transmission electron micrographs
of isolated MWCNTs after sonication are shown in Figure 1.

The mother suspensions are then further concentrated by dialysis. This is achieved by
placing the suspensions in Spectra/Por dialysis membrane bags with a 6–8 kD molecular
weight cut-off. This cut-off allows the transport of water and surfactant molecules, but the
membranes retain MWCNTs. The dialysis bags are placed in contact with a Spectra/gel
absorbing hydrogel. Water and surfactant molecules are adsorbed by the gel, and the
concentration of MWCNTs in the dialysis bag increases with time. The concentration of
surfactant also increases nearly similarly because of its much lower diffusion compared to
that of water molecules. Using aqueous solutions of surfactants, we have actually verified
that the transport of surfactants across the membrane is negligible on the time scale of the
present experiments. Typically, the surfactant concentration is found to increase almost
linearly with the reduction in volume of the solution. The ratio of surfactant to MWCNTs
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can therefore be considered to be constant when the total concentration of dried materials
increases. Varying the time of dialysis allows different concentrations of MWCNTs to be
achieved. The amount of dried materials, including surfactant and MWCNTs, contained in
the suspensions is measured by dry extract experiments. The weight fraction of MWCNTs
is deduced from the known initial ratio of surfactant to MWCNT. The most concentrated
samples investigated in the present work have a MWCNT weight fraction above 4 wt%
obtained after 6 h of dialysis.
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Figure 1. Transmission electron micrographs of individual Arkema (a) and Nanocyl (b) MWCNTs
after sonication. Scale: 100 nm.

The phase behavior of the samples is assessed by optical microscopy using a Leica
DM2500 microscope.

The conductivity of the samples at equilibrium is measured using a Radiometer
CDC749 conductivity cell connected to a Keithley 2000 multimeter. A constant voltage of
0.5 V is applied between the electrodes of the cell, and the current is measured as a function
of time. The current decreases until it reaches a stationary value, typically after a few
minutes. The stationary current corresponds to the contribution of electronic conductivity of
the samples, without the contribution of ionic conductivity [31]. Conductivity is measured
at a room temperature of 20 ◦C. It is anticipated that increasing the temperature could result
in an increase in conductivity via thermally induced tunneling, as commonly observed in
nanocomposite systems [32]. However, actual experiments would be required to confirm
the effect.

Conductivity in shear flow is measured using a Couette cell (Caplim Rheophysique
West 3400) as detailed in [3]. In the present work, conductivity is measured in the radial
direction of the Couette cell with two concentric circular electrodes. The conductivity
corresponds to the conduction in the shear plane, perpendicular to the flow direction.

The rheological properties are characterized by an AR1000 controlled stress rheometer
from TA Instrument (New Castle, DE, USA). A ramp of shear rate is applied from 200 s−1

to 0.1 s−1, with 5 points per decade. Each shear rate is maintained for 30 s, and the viscosity
is measured by averaging the measurements over the last 5 s. The temperature is set with a
Peltier system at 20 ◦C.

The electrochemical capacitance of the suspensions is measured in a two-electrode
symmetric cell configuration. The setup is described in detail in [3]. The liquid electrodes
have the same volume and are separated from each other by using an anion exchange
membrane (SnakeSkin®Dialysis Tubing 1000 MWCO, Fisher Scientific). Cyclic voltammetry
is performed using an Autolab PGSTAT204 Metrohm potentiostat/galvanostat (Metrohm
Autolab Inc., Utrecht, The Netherland).
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3. Results and Discussion

Optical micrographs of MWCNT suspensions are shown in Figure 2 for Arkema sam-
ples and in Figure 3 for Nanocyl samples. It is observed in both cases that aggregates tend
to form with the increasing concentration of MWCNTs and surfactant in the suspensions.
This aggregation behavior is ascribed to depletion attraction between the nanotubes due to
the presence of surfactant micelles [27,33]. Depletion attraction is weak [34] and results in
loose aggregates that do not settle with time. The aggregates remain in constant equilibrium
with dispersed and individualized nanotubes.
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Figure 3. Optical micrographs of aqueous suspensions of Nanocyl nanotubes at different weight
fractions. Large aggregates form in response to the depletion attractive interactions. Scale: 100 µm.

The results of electronic conductivity measurements at equilibrium are shown in
Figure 4. A typical percolation-type behavior is observed. The conductivity increases by
several orders of magnitude at the percolation threshold. These thresholds are about 1
and 1.5 wt% for Nanocyl and Arkema materials, respectively. Particularly high conduc-
tivity values are obtained for concentrations above 2 wt% for both materials, approach-
ing 100 ms/cm. Arkema materials are investigated in higher concentrations compared to
Nanocyl nanotubes because of their difference in percolation threshold. The difference
is likely arising from slight differences in the aspect ratio of the particles after sonica-
tion. The lower percolation threshold of Nanocyl nanotubes can be explained by a greater
aspect ratio. This expectation is consistent with optical microscope images reported in
Figures 2 and 3 where Nanocyl nanotubes tend to form a sample-spanning network of
aggregates at a lower weight fraction compared to Arkema ones. As discussed further,
the expectation that Nanocyl nanotubes have a greater aspect ratio is also supported by
rheological characterizations.
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of nanotubes (%wt).

Rheological properties of samples with different weight fractions are shown in Figure 5.
The presence of MWCNTs results in a clear shear thinning behavior of the suspensions.
Shear thinning in nanotube suspensions can arise from the shear-induced alignment of
the particles but also from network formation when the particles tend to aggregate [35,36].
Here, the viscosity decreases as a function of shear rate by three orders of magnitude,
with an exponent close to −1, thereby revealing a yield stress fluid behavior. A distinctive
feature of these suspensions is their low carbon content and very low consistency index,
ensuring that the stress remains near a constant value across a broad range of shear rates. A
likely representation of the flow involves the formation of a small number of weak regions
that are the locus of rearrangements and fractures that constantly form and heal.
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Figure 5. Viscosity as a function of shear rate for suspensions of Arkema (open squares) and Nanocyl
(filled circles) MWCNTs. Weight fractions of the samples are indicated in wt% in inset.

This behavior results in interesting effective viscosity properties. The suspensions
containing 1.8 wt% of Nanocyl material, which are highly conductive, display an effective
viscosity of 1.2 Pa.s for a shear rate of 5 s−1. Even highly concentrated Arkema suspensions
with 4.5 wt% of MWCNT still display a limited viscosity of only 6.4 Pa.s at a shear rate
of 5 s−1. The present results therefore confirm that the use of thin MWCNTs enables the
achievement of highly conductive suspensions with reasonably low apparent viscosity.
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In order to confirm the potential interest of the present suspensions for flow electro-
chemical applications, it remains critical to check their conductivity under shear. Results
of conductance measurements in a Couette cell [3] are shown in Figure 6 for Arkema and
Nanocyl materials. The conductance, 1/R, is plotted as a function of shear rate, where R is
the resistance measured between the concentric circular electrodes. It is observed that the
conductance decreases very slightly for all the investigated MWCNT suspensions. This
slight decrease can result from small fractures that allow the flow of the material. The
fact that conductivity does not vanish with shear shows that the structural changes in
nanotube suspensions remain limited. This is consistent with the description given above
of a yield stress fluid with a low consistency index. The material resists the fluidization
and disruption of conductive pathways up to shear rates of several hundreds of s−1, even
for solid contents as low as 1 wt%.
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Results of cyclic voltammetry experiments [37] are shown in Figure 7. The current I
was measured when the voltage V was varied from −0.5 V to 0.5 V at a scan rate

(
dV
dt

)
of 50 mV/s. The specific gravimetric capacitance Csp is then deduced by normalizing the
current measured for V = 0 by the weight m of carbon material contained in the volume of
the cell. The cell volume in the present setup is 0.24 cm3 per electrode [3].

Csp =
2I

m·
(

dV
dt

)
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The Arkema suspension containing 4.5 wt% of MWCNT, and the Nanocyl suspension
containing 1.8 wt% of MWCNT, respectively, display specific gravimetric capacitance of
2 F/g and 6.5 F/g. These values are not particularly high but comparable to those measured
for low-viscosity carbon black suspensions at similar scan rates [3].

4. Conclusions

In conclusion, this study presents a novel approach to address challenges associated
with flowable electrodes in electrochemical applications by introducing colloidal suspen-
sions of thin multiwall carbon nanotubes (MWCNTs). The suspensions are stabilized in
water with a non-ionic surfactant and are further concentrated through a dialysis process.
The used surfactant molecules contain aromatic groups that promote their adsorption
at the interface of the nanotubes. The suspensions are homogenized by tip sonication
prior to concentration by dialysis. Characterizations of electrical properties demonstrate a
percolation-type behavior in electronic conductivity, with a strong increase above a critical
concentration of carbon nanotubes. Additionally, the suspensions display a shear-thinning
behavior in rheological properties and stable conductance under shear conditions. Clus-
tering of nanotubes is enhanced and conductivity is improved because of weak depletion
attractive interactions between the nanotubes. The depletion attraction is attributed to the
presence of a large excess of surfactant micelles. Shear induces small structural variations
in the depletion-induced aggregates through constant minute structural rearrangements.
These reversible rearrangements allow maintaining flow at a nearly constant stress of
a globally persistent percolated and conductive network. Optimal suspensions display
high conductivity of the order of 50 ms/cm at a low carbon content, below 2 wt%. Cyclic
voltammetry experiments reveal specific gravimetric capacitance values comparable to
low viscosity carbon black suspensions. This work contributes therefore to advancing
the field of flowable electrodes, offering a potential solution to the challenges associated
with high viscosity and carbon content. The use of thin MWCNTs in colloidal suspensions
presents a promising approach for further developments in flow electrochemical appli-
cations, emphasizing the importance of balancing electronic conductivity and viscosity
for improved device performance and longevity. Future research directions should focus
on enhancing energy storage capabilities and in characterizing these capabilities in flow
conditions. At present, using a low carbon content is naturally an intrinsic limitation for
achieving high gravimetric capacitance. This limitation can be somehow mitigated using
thin carbon nanotubes, but it remains an obstacle. A promising perspective would consist
of using pseudo-capacitive flow electrodes by introducing active redox species, such as
quinone derivatives, in the formulations. This approach has already been proved to be
efficient at increasing performances of flow electrochemical systems [38–42].
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