
Citation: Teslyuk, V.; Batyuk, A.;

Voityshyn, V. Preliminary Estimation

for Software Development Projects

Empowered with a Method of

Recommending Optimal Duration

and Team Composition. Appl. Syst.

Innov. 2024, 7, 34. https://

doi.org/10.3390/asi7030034

Academic Editor: Luís Oliveira

Received: 16 February 2024

Revised: 9 April 2024

Accepted: 18 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Preliminary Estimation for Software Development Projects
Empowered with a Method of Recommending Optimal Duration
and Team Composition
Vasyl Teslyuk * , Anatoliy Batyuk and Volodymyr Voityshyn

Department of Automated Control Systems, Computer Science and Information Technologies Institute,
Lviv Polytechnic National University, 79000 Lviv, Ukraine; anatolii.y.batiuk@lpnu.ua (A.B.);
volodymyr.v.voityshyn@lpnu.ua (V.V.)
* Correspondence: vasyl.m.teslyuk@lpnu.ua

Abstract: In the early software development stages, the aim of estimation is to obtain a rough
understanding of the timeline and resources required to implement a potential project. The current
study is devoted to a method of preliminary estimation applicable at the beginning of the software
development life cycle when the level of uncertainty is high. The authors’ concepts of the estimation
life cycle, the estimable items breakdown structure, and a system of working-time balance equations
in conjunction with an agile-fashioned sizing approach are used. To minimize the experts’ working
time spent on preliminary estimation, the authors applied a decision support procedure based on
integer programming and the analytic hierarchy process. The method’s outcomes are not definitive
enough to make commitments; instead, they are supposed to be used for communication with project
stakeholders or as inputs for the subsequent estimation stages. For practical usage of the preliminary
estimation method, a semistructured business process is proposed.

Keywords: software development effort estimation; rough order of magnitude; ballpark figures;
semistructured business process

1. Introduction

From the business standpoint, predictability is an essential aspect of software develop-
ment. In other words, before starting a project, it is important to understand how many
resources and how much time the implementation will require. This is why estimation is
an integral part of the software development life cycle. Following the cone-of-uncertainty
concept [1], estimation is envisioned as a multistage process starting from an early phase of
project ideation and finishing along with the implementation completion. At each project
life cycle stage, estimation has certain goals, requires specific methods, and produces
different outcomes.

Most well-known and practically proven estimation methods were developed in the
second half of the 20th century. As a result, the application of those methods to modern
software development projects causes difficulties or even is hardly possible. Such methods
as COCOMO II [2] are quite complex and require special training. Another widely used
method, PERT [3,4], is relatively easy but does not take into account the agile nature
of modern software development projects. Agile-oriented methods like planning poker,
T-shirt sizing, affinity grouping, and their variations are rather applicable by agile teams
at the implementation stage [5–8]. A common downside of the existing methods (except
COCOMO II) is that they do not cover the whole software development life cycle starting
from project ideation and ending with production, including maintenance and support.

To fill in this gap, the authors propose the concept of the estimation life cycle (ELC),
tailoring estimation activities to the software development life cycle (SDLC) stages. Ac-
cording to the ELC, early project stages are accompanied by introductory, preliminary, and

Appl. Syst. Innov. 2024, 7, 34. https://doi.org/10.3390/asi7030034 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi7030034
https://doi.org/10.3390/asi7030034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0002-5974-9310
https://orcid.org/0000-0001-7650-7383
https://orcid.org/0000-0002-7889-2593
https://doi.org/10.3390/asi7030034
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi7030034?type=check_update&version=2


Appl. Syst. Innov. 2024, 7, 34 2 of 21

intermediate [9] estimations (listed in the order of increasing levels of details, reliability,
and accuracy). The commonality of these estimations is that their outputs are not definitive
enough to take on obligations. Instead, the following step—precise estimation—aims at
providing outcomes that can be used for making commitments. Precise estimation takes
place before the implementation start, when the analysis and design are completed. At
the implementation stage, the estimates are compared with actual efforts, and a project
team is responsible for keeping up-to-date the remaining estimates. After completing
implementation, the ELC prescribes finalizing feedback on estimates.

The current study is devoted to a method of preliminary estimation. The method’s
objective is to roughly understand the resources and time required to implement a project,
minimizing the efforts spent on the estimation itself. Usually, this type of estimation is
applicable in the initial steps of SDLC. The main outputs of the preliminary estimation are
project scope (represented as an estimable-item breakdown structure, defined below), team
composition, and project duration. Obviously, due to the quite high level of uncertainty,
these outcomes are not supposed to be used for making commitments; instead, they will be
elaborated on in the following stages: the intermediate and precise estimations [9,10].

The method of preliminary estimation proposed in this study is based on a simplified
version of a system of working-time balance equations [9,10]. This applied simplification (in
comparison with the intermediate estimation) aims, first of all, at the minimization of efforts
spent on the estimation, intentionally sacrificing its accuracy. Additionally, the method
is empowered with a decision support procedure based on a multiobjective optimization
with the purpose of providing the involved experts with several estimate alternatives. For
practical usage, the method of preliminary estimation involves a semistructured knowledge-
intensive business process [11,12], predefining steps to be performed and, at the same time,
leaving enough space for flexibility and creativity.

The rest of this paper is structured as follows: the research background is given in
Section 2; a literature review is in Section 3; the main results, including the semistructured
business process, the concept of an estimable-item breakdown structure, the sizing ap-
proach, the system of working-time balance equations, the approach to compose a project
team, the project duration estimation, and the multiobjective decision support procedure,
are presented in Section 3; the challenges of the project scope decomposition, development
specializations, development working time coefficient, and validity of the proposed method
are discussed in Section 4; conclusions are in Section 5.

2. Background

The current study is a logical continuation of the authors’ past works—the preliminary
estimation method is based on their estimation framework [9,10]. This section is devoted to
the basic terms and concepts introduced previously, in particular, the concept of the estima-
tion life cycle, the structure of software developer working time, and the “normalization”
approach to measure development efforts.

2.1. Concept of Estimation Life Cycle

A common mistake is to consider estimation as a one-time activity that takes place
before the project start. As a rule, such a mistake leads to a low-quality estimate that, in
turn, causes the unpredictability of project resources and deadlines. The key to avoiding
this issue is to organize the estimation as a multistep process taking place at each SDLC
stage. Of course, depending on the project life cycle stage, the estimation targets different
goals, requires various methods, and satisfies certain accuracies. In the current paper, the
estimate accuracy means closeness of the estimated values to the corresponding actual
value requirements; obviously, the accuracy defined in this way can be measured only
after receiving the actual values, i.e., during the project implementation or even after
its completion. In Figure 1, the concept of the estimation life cycle (ELC) proposed by
the authors is visualized. Being based on the cone-of-uncertainty idea [1], the concept
represents estimation as an integral part of SDLC.



Appl. Syst. Innov. 2024, 7, 34 3 of 21

Figure 1. Concept of estimation life cycle.

The estimation starts from the so-called ideation phase (which is a very early stage
of a project), when the level of uncertainty in the understanding of different aspects of
the project is the highest. As a rule, the estimates at this stage are represented as wide
ranges that rather express a rough order of the required resources and time. In the project
ideation stage, introductory and preliminary estimates are undertaken. The main difference
between these successive steps is that introductory estimates are mostly based on similarity
with past projects and do not need a project scope analysis. In its turn, the preliminary
estimation requires the project scope analysis. Definitely, such estimate types are rather
informative and not recommended for commitments (e.g., when signing a contract). The
estimation goal at the project ideation stage is to roughly understand the project scope and
resources required for the project’s implementation while minimizing the efforts to prepare
the estimate itself.

As the level of uncertainty decreases, it becomes possible to provide more accurate
estimates using the outcomes from the previous stages as inputs. Higher accuracy of
intermediate estimates is mostly achieved through the elaboration of the project scope as
well as distinguishing the project implementation phases. In order to reduce the efforts
spent on the estimation itself, the corresponding methods do not consider dependencies
among the project tasks. Although their definitiveness is higher, intermediate estimates
are still not reliable enough to be used for commitments. Further information about
intermediate estimation can be found in [9,10].



Appl. Syst. Innov. 2024, 7, 34 4 of 21

After a certain amount of analysis and design, providing a precise estimate and a
project release plan becomes possible. Unlike in the previous stages, the precise estimate’s
accuracy is acceptable to use to make commitments. In this regard, precise estimation is
similar to what is called the definitive estimate [13]. Since the efforts required to prepare
such an estimate are greater in comparison to the previous stages, it is worth undertaking
it in the case of a high probability of the project implementation’s start.

In the project implementation phase, it is important to constantly monitor progress,
comparing the actual efforts with the estimate and reacting proactively to undesirable
deviations from the release plan. To avoid missing deadlines, regular re-estimation of the
remaining project tasks is necessary. As this part of the project life cycle is likely to follow
an agile methodology, the agile team is the main source of feedback on the estimate, and
the team is responsible for adjusting the estimate according to the actual project state.

After project completion, it is quite useful to finalize the feedback on the estimates
comparing them with the actual working time as well as analyzing lessons learned. The
collected feedback is valuable for future project estimation and planning.

The main idea of splitting estimation into several stages is that the estimate accuracy be-
comes higher, while the level of uncertainty decreases. The stages are consequent—outcomes
of the previous stage are inputs for the next one. Therefore, performing estimation succes-
sively by following the ELC ensures higher quality and less total effort in comparison with
the case where, for example, the previous stages are skipped and only the precise estimation
is performed before the project implementation start.

2.2. Structure of Software Developer Working Time

One of the core concepts of the authors’ estimation framework [9,10] is the structure of
software developer working time. The project working time (PWT), W, means total working
time spent by a software engineer working on a project. PWT consists of the following
three parts: M, the working time spent on project scope implementation; G, the working
time spent on general project activities such as daily meetings, sprint plannings, etc.; N,
nonworking time including idle time as well as days off, sick leaves, vacations.

In turn, the project scope implementation time, M, is split into two parts: development
working time (DWT), D, and supplementary development activities, A. D is the time that a
software engineer spends on coding activities. And A is the time spent on supplementary
activities such as writing unit tests, defect fixing, team collaboration, etc.

The nonworking time, N, also consists of two parts. The first is idle time, I, when a
software engineer does not do actual work due to, for example, lack of project tasks. And
leave time, O, includes planned vacations, unplanned days off, and sick leave.

Hence, the structure of software developer working time is expressed as follows:

W = M + G + N = (D + A) + G + (I + O). (1)

The preliminary estimation proposed in the current paper is based on a simplified
version of the structure of software developer working time including only the PWD and
DWT, omitting the other variables (Equation (8) in (Section 4).

2.3. Measurement of Development Efforts

The existing approaches to measurement (or sizing) of development efforts can be
grouped into the three main categories [14,15]. The most commonly used category is based
on the idea of function points [16]. Such units as object points [2], use-case points [17],
story points [5–8], etc., are derived from the concept of function points. Another well-
known development effort measurement unit comprises logical lines of code (the so-called
SLOC metric) used by COCOMO [18] and COCOMO II [2]. And the third category is
working time-based (e.g., used in PERT [3,4]), expressing development efforts in man-
hours, man-days, man-months, etc. The main downside of the approaches from the first
and second categories is the difficulty in converting them to time-based units, which usually
requires some historical data. To eliminate such an issue, the authors’ estimation framework



Appl. Syst. Innov. 2024, 7, 34 5 of 21

operates with time-based units to measure development efforts. The theoretical basis of
this is given in the current section below.

An “average” software developer (ASD) is a software developer who possesses a high
enough competency level to act as a team player and implement project tasks of acceptable
quality without permanent supervision by more experienced colleagues; and, at the same
time, such a developer has room for improvement in terms of efficiency and complexity of the
work performed. A middle software engineer is the position which is closest to the ASD. The
development effort “normalization” approach follows from the concept of the ASD.

The normalized development working time (NDWT), U, is the DWT spent by an ASD
implementing certain project tasks who is 100% involved (i.e., 8 h per working day) in
a project. If D is the DWT spent by a developer who is different from the ASD, then the
following expression takes place:

U = ρD, (2)

where ρ is the productivity coefficient (PC). Assuming that the development productivity is
influenced by the competency level and the project involvement,

ρ = αη, (3)

where α is the competency-level productivity coefficient (CLPC) and η is the involvement produc-
tivity coefficient (IPC). For an ASD, α = 1; 0 < α < 1 for a developer of a competency level
lower than the ASD, and α > 1 for a competency level higher than the ASD. In the case of
100% of project involvement, η = 1; for partial involvement or overtime, 0 < η < 1. The
IPC and CLPC parameters are used in Section 4 to define the project team composition.

The normalized development capacity (NDC), C, is maximum possible value of NDWT
that can be spent on the project tasks implementation:

C = max U
U∈U

= ρ max D
D∈D

, (4)

where U and D are the sets of all possible values of NDWT and DWT respectively. In
particular, the maximization in (4) is aimed at minimizing idle time I and leaves time O.
For the preliminary estimation, NDC is defined as (12) and (13).

The normalized development estimate (NDE), E, of a certain portion of the project scope is
a forecasted DWT assuming that the work is performed by an ASD. Usage of the NDE for
preliminary estimation is explained in Section 4, in particular, for sizing of estimable items.

In the authors’ estimation framework, the NDC and NDE occupy one of the key places,
being “common denominators” for measuring development efforts. Importantly, these
parameters determine project duration (Inequalities (14) and (15) in Section 4). It is worth
noting that the described “normalization” approach has been expanded to include the
project involvement definition, introducing a new term—normalized development full-time
equivalent (Equation (7) in Section 4).

3. Literature Review

The preliminary estimation represented in the current paper is close to such well-known
terms as “rough order of magnitude” (ROM) [13,19] and more informal ones—“guesstimate”
or “ballpark figures”—that are usually used to express an approximation of future project
efforts, schedule, and budget. The method proposed by the authors is supposed to be applied
under the following circumstances: (a) an early project life cycle stage when the level of
uncertainty is high; (b) limited time to prepare an estimate; (c) acceptability of low estimate
accuracy; (d) an estimate that is not recommended for making commitments; (e) unknown
dependencies among project tasks. In the current section, a thorough overview is provided
of the existing methods that can be applied under the conditions mentioned above.

An estimation by analogy [20–23] allows one to understand the approximate efforts
and duration based on similar past projects. Such methods can either utilize formal



Appl. Syst. Innov. 2024, 7, 34 6 of 21

approaches using similarity metrics [24] and a database with historical projects or rely
more on experts’ opinion. A significant drawback of those methods is the lack of project
scope analysis; the main advantage is the speed of estimation. In the case of an existing
solid database of past projects, analogy-based methods can be empowered with machine
learning and AI techniques [23,25,26].

One of the most mature of the existing estimation methodologies—COCOMO
II [2]—supports the concept of tailoring estimation models to the project life cycle stages. In
the early prototyping phase, the Application Composition model is applicable. This model
is based on the idea of measuring the size of software in so-called object points (which, in
turn, derives from the concept of a function point [16]). The application-points approach
involves identifying objects of a software product (e.g., screens, reports, database tables,
etc.) and defining their complexity levels, which are used to calculate application points
that are translated to the efforts and schedule. In the subsequent early design phase, the
COCOMO II Early Design model is suggested. The usage of this model requires trained
estimation experts, availability of historical data, and calibration of the model parameters.
Its challenging part is also the sizing, which requires the calculation of so-called logical
lines of source code (i.e., the SLOC metric) or function points. Whilst both Application
Composition and Early Design models are applicable in the initial SDLC stages, the second
one seems to be more difficult for usage in practice.

In this regard, it is also worth mentioning the approach based on use-case points [17,27–31].
An advantage of such a method is the usage of UML use-case models to analyze project function-
ality. The strong side of this method is its relatively simple visual notation representing both
the users (actors) and functionality (use cases) of a software system (which is quite handy
in the early project life cycle stages). However, the calculation formulas proposed in the
original publication [17] most probably will require some adjustments before application to
a specific project.

Widespread use of agile methodologies has led to the creation of agile-fashion esti-
mation techniques. Usually, such techniques are used by project teams during the project
implementation phase. However, some of their elements can also be applied in the early
project life cycle phases before the development start, even before forming an agile team.
One such method is affinity grouping [5–8]: tasks are grouped into clusters by their similar-
ity (e.g., estimated efforts or complexity), and then the clustered tasks are assigned with
estimates. Another well-known method is T-shirt sizing [5–8], where tasks are attributed to
one of the predefined categories that usually correspond to the sizes of T-shirts: XS, S, M, L,
XL, etc. Both methods can be used either by teams or by individual experts for sizing of
estimable items in the preliminary estimation stage.

Another quite popular method is the so-called three-point estimation, where experts
provide three values: optimistic, pessimistic, and most likely. Then, the final estimate is
calculated as a weighted average of these three points. Such an approach is inherited from
the PERT methodology [3,4]. To apply this method to preliminary estimation, it is required
to prepare a work breakdown structure that, in turn, is estimated by experts.

Despite the considerable number of existing methods, none of them fully covers
the requirements of the preliminary estimation provided at the beginning of the section.
Furthermore, the majority of the methods suffer from the absence of a holistic vision of
estimation as a multistep process inseparable from SDLC.

4. Results
4.1. Preliminary Estimation as a Semistructured Business Process

Before starting a discussion of the preliminary estimation method in detail, it is
worth analyzing its usage in practice. Since preliminary estimation heavily relies on the
knowledge, experience, and creativity of the involved experts, it makes sense to keep
it as a semistructured business process [11,12], leaving some level of freedom for the
participants. In other words, such a process involves certain steps; however, there are no
strict recommendations on the steps’ order (i.e., some of the steps can be interchanged, and



Appl. Syst. Innov. 2024, 7, 34 7 of 21

some of them can be repeated several times). The preliminary estimation semistructured
process is represented in Figure 2.

Figure 2. Preliminary estimation as a semistructured business process.

The process starts with understanding the essence of a project and getting familiar
with the available requirements (step A). An important aspect of the process is identify-
ing the project scenarios (step B). Under a project scenario, a hypothetical way of project
implementation is understood. Depending on the circumstances, the criteria of scenario
identification might be different, for example, development efforts, scope of work, imple-
mentation technologies, architecture design, etc. The “backbone” of the process consists
of three steps: D, E, and F. In these steps, the estimation outcomes are produced. The
rest of the Section 4 covers step E and, partially, step D. Importantly, steps D, E, and F
are performed for each of the identified scenarios (it is worth noting that optimistic and
pessimistic estimates represent an estimate range for a single scenario, not two different
scenarios). The final step G is aimed at communication of the estimates to the concerned
parties (e.g., to a potential client).

The process involves the following participant roles: a project manager, a technical
expert, and a business analyst. The primary responsibility areas of each role are shown
in Figure 2. However, it is worth noting that regardless of the primary responsible role,
other roles are also supposed to contribute to a certain process step (e.g., a business analyst
is responsible for the project scope decomposition; however, a technical expert can also
contribute to this). In practice, a person can combine the duties of more than one role (e.g.,
a technical expert can also perform the tasks of a business analyst). Or, in the opposite case,
the business analyst role can be covered by two people: a business analyst and a business
domain expert (or a subject matter expert).

4.2. Estimable-Item Breakdown Structure

To provide reliable estimates, it is necessary to have some representation of the project
scope—the object of estimation. Usually, the project scope is decomposed into a treelike
construction called a work breakdown structure (WBS) [32] or into one of its subtypes (e.g., a



Appl. Syst. Innov. 2024, 7, 34 8 of 21

component-based work breakdown structure, CBWBS [33]). In practice, such a breakdown
structure is received as the result of a combination of several decomposition approaches
(e.g., work packages, work items, epics, features, components, use cases, etc.). In order to
incorporate a project scope breakdown into the authors’ estimation framework, the terms
“estimable item” (EI) and “estimable-item breakdown structure” (EIBS) are introduced.

An estimable item (IE), x, is a representation of a project scope portion which can be
sized (i.e., assigned with a normalized development estimate, NDE [9]), decomposed to
child estimable items, and analyzed in terms of assumptions, dependencies, risks, etc. An
estimable item x possesses a set of attributes; the value of an attribute can be denoted in
squared brackets—x[attribute name]. For example, x[parent] is a parent of estimable item
x; x[risks] is a set of risks associated with x. Especially important is x[NDE]. An item is
called a leaf estimable item (LEI) when it does not have any child items, x[children] = ∅. In
turn, if x does have child items, x[children] ̸= ∅, it is named a composite estimable item (CEI).

An estimable-item breakdown structure (EIBS) X is a tree (in terms of graph theory) with
estimable items as the vertices, parent–child relationships between the estimable items as
the edges, and the root item representing the scope of the whole project.

To show how the preliminary estimation is applied, a software product named “Real-
time Business Process Monitoring for Estimation” (RTBPM-E) [34,35] is used here and
below. In Table 1 and in Figure 3, an EIBS is provided for RTBPM-E.

Table 1. Table-based representation of EIBS for RTBPM-E.

Identifier Title Description

RTBPM-E Real-time business process monitoring for estimation The whole scope of the RTBPM-E project.

EI-1 Table visualization of estimation process logs Table-based visual representation of logs collected from performed estimation
processes including standard table features such as filtering and grouping.

EI-2 Etalon model of the estimation process
Read-only visualization of the etalon model is based on the 4-stage
estimation process: (a) introductory estimate, (b) preliminary estimate,
(c) intermediate estimate, and (d) precise estimate.

IE-3 Actual model of the estimation process Visualization of the estimation process model based on the collected logs
built with process mining [11].

IE-3.1 Method of building a process model Implementation of the method of building a process model utilizing the
collected log data.

IE-3.2 Visualization of a process model Graph-based visualization of a process model on a web page.

IE-4 Alerting on project estimation process Alerts highlighting issues or risks during estimation of a particular project.
Alerts are visualized on the graphic user interface and sent via email.

IE-5 Data processing pipeline Integration with the data sources and implementation of a data processing
pipeline [34].

IE-6 Security and user management Typical security-related functionality: (a) authentication, (b) authorization,
(c) user management, etc.

IE-7 Administration and configuration Admin dashboard and configuration of the system.

IE-8 Project infrastructure Setting up project infrastructure including structuring of the source code and
continuous integration.

An important part of EIBS creation is assigning attributes to items. Such an attribute
is nothing but a piece of information associated with an EI. In Table 2, attribute types are
listed. They, in the authors’ opinion, correspond to the most frequently analyzed aspects of
the project scope.

Considering the limit on the preparation time and the high level of uncertainty, as well
as not-so-strict accuracy requirements, an EIBS created during the preliminary estimation
stage is not supposed to be quite detailed. Even identification of the first-level items might
be enough to provide a preliminary estimate.



Appl. Syst. Innov. 2024, 7, 34 9 of 21

Figure 3. Treelike representation of EIBS for RTBPM-E.

Table 2. Most common types of estimable item attributes.

Name Shortcut Description

Identifier ID Uniquely identifies an EI in an EIBS.
Title TITLE Several words of summary of an EI.
Description DESC Explanation of what an EI is about.
Assumptions ASMP Assumptions associated with an EI.
Risks RISK Risks associated with an EI.
Dependencies DEPN Dependencies of an IE.
Functional requirements FR Functional requirements associated with an EI.
Nonfunctional requirements NFR Nonfunctional requirements associated with an EI.
Constraints CON Constraints associated with an EI.
Architecture considerations ARCH Architecture ideas, patterns, tactics.
Out of scope OOS Explicitly stated what is out of the project scope.
Normalized development estimate NDE NDE associated with an EI.
Questions Q Questions associated with an EI.

4.3. Sizing of Estimable Items

As already mentioned in Section 2, the authors’ estimation framework uses NDE as a
measure of development efforts. NDE is a time-based unit expressing the amount of work
in man-hours, man-days, etc. Such time-based measuring ensures seamless translation of
the estimated efforts into the project schedule. However, it is worth highlighting that the
NDE itself is defined in a way that makes it independent from neither the project schedule
nor the team composition.

In essence, sizing is aimed at designating each EI as an NDE. For the preliminary
estimation, a two-step sizing approach is proposed: (a) designate each LEI using such
attributes as an estimable item point (EIP) and an estimable item uncertainty (EIU); (b) then,
obtain optimistic and pessimistic NDEs from the corresponding EIP and EIU.

Let x ∈ X be an LEI belonging to EIBS X. The estimable item point (EIP) of x, x[EIP],
is a positive number representing the relative measure of development efforts required
to implement x. In turn, the estimable item uncertainty (EIU), x[EIU], is a non-negative
dimensionless number expressing how much is unknown with regard to x; in other words,
the bigger the x[EIU], the less definitive the x[NDE] and vice versa. It is worth emphasizing
that EIPs and EIUs are supposed to be designated for LEIs (not CEIs).

EIPs and EIUs are based on experts’ judgment. In Figure 4, an example is shown of
EIP and EIU estimation based on the idea of affinity grouping [5]: the LEIs are placed on a
coordinate plane where the horizontal axis corresponds to the size (EIP), and the vertical
axis defines the level of uncertainty (EIU). One of the strengths of the described approach is
its visual representation of the project scope on a two-dimensional plain, allowing a relative
comparison of EIs’ sizes and uncertainties.



Appl. Syst. Innov. 2024, 7, 34 10 of 21

Figure 4. Defining EIPs and EIUs for the RTBPM-E estimable items.

After estimating EIPs and EIUs, it is necessary to transform them into NDEs. Define
the relationship between NDE and EIP as follows:

x[NDEbasic] = p · x[EIP], (5)

where p > 0 is the NDE corresponding to one EIP. In turn, optimistic and pessimistic NDEs
are related to the EIU as follows:

x
[
NDEopt

]
= (1 − u1 · x[EIU]) · x[NDEbasic],

x
[
NDEpsm

]
= (1 + u2 · x[EIU]) · x[NDEbasic],

(6)

where x
[
NDEopt

]
and x

[
NDEpsm

]
are the optimistic and pessimistic NDEs, respectively;

0 ≤ u1 < 1 and u2 ≥ 0 are the coefficients defining deviation of the optimistic and
pessimistic estimates from the basic NDE. Values of parameters p, u1, u2 can be either based
on experts’ judgment or defined statistically from past projects. In Table 3, an example of
applying the above approach to RTBPM-E is represented; for calculations, the following
values of the parameters were chosen by the authors: p = 168 man-hour

EIP , u1 = 0.1, u2 = 0.2.

Table 3. NDEs of the RTBPM-E estimable items.

IE Identifier EIP Basic NDE,
Man-Hours EIU Optimistic NDE,

Man-Hours
Pessimistic NDE,

Man-Hours

EI-1 2 336.0 2 268.8 470.4
EI-2 1 168.0 1.5 142.8 218.4

IE-3.1 3 504.0 3 352.8 806.4
IE-3.2 3.5 588.0 2.5 441.0 882.0
IE-4 1 168.0 1.5 142.8 218.4
IE-5 1.5 252.0 2 201.6 352.8
IE-6 1.5 252.0 1 226.8 302.4
IE-7 1 168.0 1 151.2 201.6
IE-8 0.5 84.0 0.5 79.8 92.4

Total – 2520.0 – 2007.6 3544.8

Therefore, the RTBPM-E NDEs are the following:

RTBPM-E[NDEbasic] = 2520.0 man-hours,

RTBPM-E
[
NDEopt

]
= 2007.6 man-hours,

RTBPM-E
[
NDEpsm

]
= 3544.8 man-hours,



Appl. Syst. Innov. 2024, 7, 34 11 of 21

where the optimistic and pessimistic estimates form the range −20.3% . . . + 40.7% (relative to
the NDEbasic), which, from authors’ perspective, is acceptable for the preliminary estimation.

4.4. Project Team Composition

Along with the NDE discussed in the previous section, project team composition is
one of the key ingredients of an estimate. As can be seen in the sections below, the varying
of the project team composition allows to one to obtain estimates with different project
durations and costs.

Project team composition means a set of project team member roles, T, and the attributes
associated with each role (e.g., a full-time equivalent, FTE). A project team includes roles
in two main categories: development, TD ⊆ T (software engineers), and nondevelopment,
TND ⊆ T (e.g., project managers, test engineers, etc.). The main difference between these
categories is that the efforts spent by team members in development roles are estimated in the
NDE, while the efforts of the nondevelopment roles are not included in the NDE.

In order to match FTEs of development roles with the NDE, let us extend the estimation
framework with a new term—normalized development full-time equivalent (ND-FTE), ψ:

ψ = ρ ϕ, (7)

where ρ is the productivity coefficient (PC) defined in [9]; ϕ is the corresponding FTE. Using
the introduced term, a team composition with nondifferentiated specializations applicable
to RTBPM-E is provided in Table 4.

Table 4. Team composition for RTBPM-E.

Identifier (m) Type * Role FTE (ϕm) CLPC (αm) IPC (ηm) PC (ρm) ND-FTE (ψm)

1 D Senior developer 1.5 1.2 0.9 1.08 1.62
2 D Middle developer 4.0 1.0 1.0 1.00 4.00
3 D Junior developer 2.0 0.7 1.0 0.70 1.40
4 ND Project manager 1.0 n/a n/a n/a n/a
5 ND Technical leader 0.5 n/a n/a n/a n/a
6 ND Business analyst 1.0 n/a n/a n/a n/a
7 ND UX designer 1.0 n/a n/a n/a n/a
8 ND DevOps engineer 1.0 n/a n/a n/a n/a
9 ND Test engineer 3.0 n/a n/a n/a n/a

* D and ND stand for “development” and “nondevelopment”, respectively.

In most cases, the simplest type of development team composition—with nondifferen-
tiated specializations—fulfills the preliminary estimation needs. However, in situations
where highlighting development specializations is quite important, development teams
with differentiated or even mixed specializations can also be applicable at the preliminary
estimation stage. Further information about the team composition types is in Section 5.

4.5. System of Working-Time Balance Equations

The idea of a system of working-time balance equations was introduced in the authors’
past works [9,10]. Its purpose is to define the relationships between the key estimate ingre-
dients such as the structure of software developer working time, project team composition,
project duration, and NDE.

For the preliminary estimation, a simplified version of the system of working-time
balance equations is used. To achieve the simplification, we assume the following:

1. The project timeline is not split into sprints or phases.
2. The project team does not change throughout the whole project.
3. There is no differentiation of the development specializations.
4. There is a linear relationship between the project working time, W, and the develop-

ment working time, D (in contradiction to (1), where that relationship is based on the
structure of software developer working time):

Wm = ξ Dm, m ∈ TD, (8)



Appl. Syst. Innov. 2024, 7, 34 12 of 21

where ξ > 1 is the development working time coefficient (DWTC) (again, for simplicity reasons,
it is assumed that ξ does not depend on project role m ∈ TD). Further information about
the DWTC is provided in Section 5.

Therefore, the system of working-time balance equations for the preliminary estima-
tion is as follows: 

Wm = ξDm, m ∈ TD,
Wm = ϕmL, m ∈ T,
E = ∑

m∈TD

ρmDm,
(9)

where T is the set of project roles; TD ⊆ T is the subset of development roles; Wm is the
project working time (PWT) of role m ∈ T; Dm is the development working time (DWT)
of role m ∈ TD; ξ > 1 is the development working time coefficient (DWTC); ϕm is the
full-time equivalent (FTE) of role m ∈ T; L is the duration of the project; E is the normalized
development estimate (NDE) of the entire project; ρm is the productivity coefficient (PC) of
development role m ∈ TD.

4.6. Estimation of Normalized Development Capacity

One of the key characteristics of a project team is the normalized development capacity
(NDC), which is the maximum possible NDWT that can be spent on the project scope
implementation (Equation (4) in Section 2). For the preliminary estimation, the following
expression for NDC takes place:

Cm = max
Um∈ Um

Um, m ∈ TD, (10)

where Cm is an NDC of development role m ∈ TD; Um is an NDWT of development m ∈ TD;
Um is a set of all possible values of NDWT. Taking into account (2), NDC is expressed
as follows:

Cm = ρm max
Dm∈ Dm

Dm, m ∈ TD, (11)

where Dm is a set of all possible values of the DWT for development role m ∈ TD. Then,
from (9), it follows:

Cm =
L
ξ

ψm, m ∈ TD, (12)

and
C = ∑

m∈TD

Cm =
L
ξ ∑

m∈TD

ψm. (13)

In practice, (12) and (13) can be used to solve an inverse problem—finding the amount
of project scope that a particular project team is capable of implementing if project duration
L is known.

4.7. Estimation of Project Duration

In the case of the preliminary estimation, the main criterion of estimating project
duration is that the project team must have enough NDC to implement the project scope,
measured as NDE, E:

C =
L
ξ ∑

m∈TD

ψm ≥ E. (14)

Therefore, project duration, L, is estimated with the following inequation:

L ≥ ξE
∑

m∈TD

ψm . (15)

An example of estimating the optimistic and pessimistic durations for RTBPM-E is
represented in Table 5—to implement the project scope from Table 3 utilizing the project
team defined in Table 4, it will take from Lopt = 6.5 to Lpsm = 11.5 months. Due to the



Appl. Syst. Innov. 2024, 7, 34 13 of 21

high level of uncertainty, the estimated duration range is wide, which is expected for the
preliminary estimation.

Table 5. Duration estimation for the RTBPM-E project.

Optimistic Pessimistic

NDE, man-hours 2007.6 3544.8
DWTC 3.8 * 3.8 *
Development FTE 7.5 7.5
ND-FTE 7.02 7.02
Duration, hours 1086.8 1918.9
Working hours per month 168 168
Duration, months 6.47 11.42
Rounded duration, months 6.5 11.5

* The DWTC value is based on the authors’ expert judgment.

The duration estimation based on (15) does not guarantee high accuracy; instead, it al-
lows a roughly evaluation of the duration of the project using relatively simple calculations.
Narrowing down the estimate range will be undertaken in the next estimation stages.

4.8. Optimization of Project Duration and Team Composition

As can be seen above, the preliminary estimation operates with these three main
ingredients: project scope, team composition, and project duration. Given that the project
scope is fixed (i.e., the NDE does not vary), the other two components are interdependent:
changes in the team composition imply different project durations and vice versa: depend-
ing on the project duration, different team compositions are required. Manual selection of
the best combination of these two ingredients requires time spent on calculations. To make
this more efficient, a multiobjective optimization is proposed:

F = L ∑
m∈T

rmϕm → min, (16)

L → min, (17)

Φ = ∑
m∈T

ϕm → min, (18)

I = C − E → min, (19)

where T is the set of project team roles; m ∈ T is a particular role belonging to the team;
rm ∈ [0, 1] is the normalized hourly rate of role m ∈ T; Wm is the PWT of role m ∈ T;
ϕm is the FTE of role m ∈ T; L is the project duration; C is the NDC of the development
team TD ⊂ T; E is the NDE; I is the development team idle time. It is worth noting
that applying normalization to the cost-related variables brings the following benefits:
(a) avoiding disclosure of commercially sensitive information; (b) avoiding too-big values
of the objective function; (c) currency-independent calculations with further conversion of
the normalized costs to a required currency.

One of the main constraints to be satisfied is (14)—the chosen team composition and
project duration have to allow the implementation of the project scope estimated as E. Also,
it is worth applying restrictions on the project duration:

[L]min ≤ L ≤ [L]max. (20)

The other group of constraints is applicable to the project role FTEs:[
ϕT∗]

min
≤ ∑

m∈T∗
ϕm ≤

[
ϕT∗]max

, (21)



Appl. Syst. Innov. 2024, 7, 34 14 of 21

where T∗ ⊆ T is a subteam of project team T. For example, a team has to include at least
one middle software engineer: 1 ≤ ∑

m∈Tmid
ϕm (where Tmid ⊆ T is a subset of middle software

engineers); or, the size of the whole team, T, does not have to exceed 25 FTEs: ∑
m∈T

ϕm ≤ 25.

The interrelation of FTEs for different project roles is expressed with this type of constraint:

γ1 ∑
m1∈T1

ϕm1 ≤ γ2 ∑
m2∈T2

ϕm2 , (22)

where T1 ⊆ T and T2 ⊆ T are a subteams of T; γ1 > 0 and γ2 > 0 are constants. For
example, 1 project manager cannot lead more than 15 team members: ∑

m1∈T\Tmgt
ϕm1 ≤

15 ∑
m2∈Tmgt

ϕm2 (where Tmgt ⊆ T is a subteam of project managers).

Let us substitute real decision variables ϕm with the corresponding integer variables f m:

ϕm = µm f m, m ∈ T, (23)

where f m ∈ N0 = {0, 1, 2, . . .} is a whole number of minimum FTEs for role m ∈ T;
µm > 0 is a minimal possible step of FTE change for role m ∈ T. Also, let us vary the project
duration within a range (20):

[L]min = L1 < L2 < . . . < Lp = [L]max. (24)

Therefore, for each Lk, k = 1, p, a sequence of integer programming problems with an
objective (16), constraints (14), (21), (22), and decision variables (23) is received. Solving
these optimization tasks produces a sequence of p alternatives (Lk, Tk, Fk, Φk, Ik), k = 1, p.
Then, the alternatives are ranked using the analytic hierarchy process (AHP) [36].

In application to the RTBPM-E example, let us solve a sequence of integer program-
ming problems, varying the project duration from [L]min = 4 months to [L]max = 16 months
with the step of 0.5 month for both optimistic and pessimistic estimates. Then, the received
alternatives are ranked with AHP according to the criteria from Table 6. The top alternatives
are provided in Tables 7 and 8 for the optimistic and pessimistic estimates, respectively. As
a result, for the optimistic estimate, alternative 1 is chosen (as recommended according to
the AHP ranking). However, alternative 2 is selected for the pessimistic estimate (in this
regard, it is worth emphasizing that the AHP-based alternative ranking is just a decision
support tool, while the final conclusion is made by the experts). Table 9 provides the project
team composition corresponding to the chosen alternatives.

Table 6. AHP criteria comparison for RTBPM-E.

Cost Duration Team Size Idle Time

Cost 1 3 1 5
Duration 1/3 1 1 3
Team size 1 1 1 1
Idle time 1/5 1/3 1 1

Table 7. Top alternatives for the RTBPM-E optimistic estimate.

No. AHP Rank Duration
(L), Months

Norm. Cost
(F)

NDC (C),
Man-Hours

NDC-NDE,
Man-Hours

Team FTE
(ϕ)

Develop.
FTE (ϕD)

1 0.069 5.5 10,395.00 2061.98 54.38 15.75 9.00
2 0.068 4.0 10,668.00 2072.59 64.99 22.25 12.50
3 0.061 6.5 11,193.00 2149.52 141.92 14.25 8.00
4 0.060 6.0 11,340.00 2249.43 241.83 15.75 9.00



Appl. Syst. Innov. 2024, 7, 34 15 of 21

Table 8. Top alternatives for the RTBPM-E pessimistic estimate.

No. AHP Rank Duration
(L), Months

Norm. Cost
(F)

NDC (C),
Man-Hours

NDC-NDE,
Man-Hours

Team FTE
(ϕ)

Develop.
FTE (ϕD)

1 0.075 6.5 18,099.90 3655.33 110.53 23.25 13.50
2 0.072 9.5 17,955.00 3561.60 16.80 15.75 9.00
3 0.070 7.0 18,669.00 3627.03 82.23 22.25 12.50
4 0.068 9.0 18,711.00 3589.01 44.21 17.00 9.50
5 0.068 11.0 18,942.00 3637.64 92.84 14.25 8.00

Table 9. Optimized team composition for RTBPM-E.

Identifier (m) Type * Role FTE (ϕm) CLPC (αm) IPC (ηm) PC (ρm) ND-FTE (ψm)

1 D Senior developer 1 1.2 0.9 1.08 1.08
2 D Middle developer 6 1 1 1 6
3 D Junior developer 2 0.7 1 0.7 1.4
4 ND Project manager 1 n/a n/a n/a n/a
5 ND Technical leader 1 n/a n/a n/a n/a
6 ND Business analyst 1 n/a n/a n/a n/a
7 ND UX designer 0.75 n/a n/a n/a n/a
8 ND DevOps engineer 0.5 n/a n/a n/a n/a
9 ND Test engineer 2.5 n/a n/a n/a n/a

* D and ND stand for “development” and “nondevelopment”, respectively.

The calculations in the current section were performed with a Python script using the
following libraries: (a) Pyomo v.6.5.0 (https://www.pyomo.org/, (accessed on 11 May 2023))
as an optimization model builder; (b) FICO Xpress v.9.1.0 under the community license
(https://www.fico.com/, (accessed on11 May 2023)) as an optimization task solver; (c) ahpy
v.2.0.0 (https://github.com/PhilipGriffith/AHPy, (accessed on 11 May 2023)) for the AHP-
based ranking of the alternatives.

A comparison of the manual (Tables 4 and 5) and optimized (Tables 7–9) estimates is
given in Tables 10 and 11—the optimized estimate, on the one hand, slightly increases the
ND-FTE and, on the other hand, outperforms the manual estimate, reducing the project
duration and cost.

Table 10. Comparison of the manual and optimized optimistic estimates for RTBPM-E.

Manual Optimized Manual–Optimized

Duration, months 6.5 5.5 −1.00 (−15.4%)
Team FTE 15.00 15.75 +0.75 (+5.0%)
Development FTE 7.50 9.00 +1.50 (+20.0%)
ND-FTE 7.02 8.48 +1.46 (+20.8%)
Normalized cost 12,285.00 10,395.00 −1890.00 (−15.4%)

Table 11. Comparison of the manual and optimized pessimistic estimates for RTBPM-E.

Manual Optimized Manual–Optimized

Duration, months 11.5 9.5 −2.00 (−17.4%)
Team FTE 15.00 15.75 +0.75 (+5.0%)
Development FTE 7.50 9.00 +1.50 (+20.0%)
ND-FTE 7.02 8.48 +1.46 (+20.8%)
Normalized cost 21,735.00 17,955.00 −3780.00 (−17.4%)

The proposed decision support tool set reduces the experts’ time spent on deciding on
the team composition and the project duration. However, it requires a specific software
implementation and calibration of the parameters.

5. Discussion
5.1. Project Scope Decomposition

Building an EIBS might be one of the most challenging and time-consuming parts of a
preliminary estimation. This is mostly caused by quite high uncertainty and limited time.

https://www.pyomo.org/
https://www.fico.com/
https://github.com/PhilipGriffith/AHPy


Appl. Syst. Innov. 2024, 7, 34 16 of 21

Despite this, it is necessary to break down the project scope at a high level without diving
into details but, at the same time, covering all of the functionality of the future project.

Working with an EIBS includes these three main steps: (a) decomposition; (b) analysis;
(c) sizing. Each of them is related to the necessity of processing a quite large amount of
information under time restrictions. In this regard, the following mistakes are possible:
(a) missing significant parts of the project functionality; (b) blowing up the scope by
including unnecessary features; (c) incorrect structuring of the project scope, which can be
difficult to elaborate on during the next estimation stages.

These are some recommendations that can help with the challenges mentioned above:

1. Use a project scope visualization that makes the perception and analysis of large
amounts of information easier.

2. Cover the unknown with assumptions and risks.
3. Add placeholder EIs to cover the unknown parts of the functionality.
4. Use EIBS templates based on historical estimates and projects.

Methods of building an EIBS still require further research and testing in practice.

5.2. Development Specializations

Depending on distinguishing specializations, a development team belongs to one of
the following three types. The simplest is a team with nondifferentiated specializations. It
is worth noting that this does not mean that the developers on such a team do not have
specializations during the project implementation phase; instead, it means that at certain
estimation stages, those specializations are just not defined. For the preliminary estimation,
this kind of team is used for simplicity reasons. In the case of a development team with
differentiated specializations, each development role belongs to one of the specializations.
Developers belonging to this type of team can perform tasks of a single specialization only
(not two or more). And the third type is a development team with mixed specializations,
where a particular software engineer can perform tasks belonging to several specializations.
Such a situation takes place, for example, when a so-called full-stack developer performs
both front-end and back-end tasks. In the case of nondifferentiated specializations, NDE
and NDC are single numbers, while for the other two types they are defined as vectors,
each component of which corresponds to a particular specialization [9,10].

5.3. Development Working Time Coefficient

The current section aims at disclosing the nature of the development working time
coefficient (DWTC).

For intermediate estimation [9], the relationship between PWT and DWT reflects the
structure of developer working time:

WD = ∑
m∈TD

∑
i∈K

Wm
i = ∑

m∈TD

∑
i∈K

 ∑
s∈Q

(
Dm(s)

i + Am(s)
i

)
+ Gm

i +
(

Om
i + Im

i

), (25)

where WD is the development project working time; TD is the set of development project
roles; K is the set of project phases; Q is the set of development specializations; Wm

i , Dm
i , Am

i ,
Gm

i , Om
i , Im

i are, respectively, the project working time (PWT), the development working
time (DWT), the supplementary development activities, the general project activities, the
leave time, and the idle time for development role m ∈ TD in project phase i ∈ K (further
information about these variables is provided in [9]).

The DWTC from (8) is introduced in order to decrease complexity by reducing the
number of variables in the system of working-time balance equations. Therefore, for the
preliminary estimation, development project working time, WD, is expressed as follows:

WD = ∑
m∈TD

Wm = ξ ∑
m∈TD

Dm, (26)



Appl. Syst. Innov. 2024, 7, 34 17 of 21

where ξ is the development working time coefficient (DWTC); Dm is the development
working time (DWT) of role m ∈ TD. Following the concept of the ELC, a preliminary
estimate is supposed to be “wider” than the corresponding intermediate estimate (given
that the NDE is the same for both estimates); on the other hand, WD does not have to be
too big to prevent making a wrong impression regarding the project duration and budget:

q · WD ≥ WD ≥ WD, (27)

where q > 1 is the coefficient defining the high boundary of PWT, WD, received as the
outcome of preliminary estimation; WD is the corresponding PWT resulting from the
intermediate estimation.

Summarizing the above, DWTC depends on what is defined by (25): (a) the structure of
software developer working time; (b) the project release plan (splitting into project phases);
(c) the development team composition (roles, development specializations, involvement
in different project phases). And the coefficient’s boundaries are limited according to (27).
To define DWTC, it is suggested that one rely on the data from historical projects imple-
mented in a particular company as well as on experts’ judgment. For practice usage, it is
recommended that a decision tree is created that allows one to obtain a value of DWTC
based on the specifics of a particular project.

5.4. Alternative Approach to Define Development Working Time Coefficient

In the current section, an alternative way to simplify the system of working-time
balance equations is presented. Let us keep Assumptions 1–3 from Section 4.5, replacing
the fourth assumption with a linear relationship between the PWT of the development
team, WD = ∑

m∈TD

Wm, and the NDE, E:

WD = κ E, (28)

where κ > 1 is an alternative way to define the DWTC (which is originally introduced
in (8)). This implies the following system of working-time balance equations:

κE = ∑
m∈TD

Wm,

Wm = ϕmL, m ∈ T,
E = ∑

m∈TD

ρmDm,
(29)

an expression for NDC:

C =
L
κ ∑

m∈TD

ϕm, (30)

and the estimated project duration:

L ≥ κE
∑

m∈TD

ϕm . (31)

As can be noticed, (30) and (31) are quite similar to (13) and (15), respectively. The only
difference is that (30) and (31) rely on the development FTE, ∑

m∈TD

ϕm, while (13) and (15)

are based on the ND-FTE (which, in turn, takes into account productivity coefficients ρm

of each development role m ∈ TD). From this standpoint, (28) results in even simpler
estimation formulas in comparison to the ones following from (8).

To choose between the two approaches for a particular case, it is recommended that
one take into account such factors as the necessity of considering the PCs and the availability
of historical data to define the DWTC (in particular, (8) requires more granular historical
project data than (28)).



Appl. Syst. Innov. 2024, 7, 34 18 of 21

5.5. Threats to Validity

The conditions under which usage of the proposed preliminary estimation is not
recommended are discussed in the current section.

The preliminary estimation is supposed to be applicable in the early project stages,
when the level of “unknown” is quite high. However, its usage is not recommended when
the level of uncertainty is so high that it is not possible to define the project scope (i.e., build
an EIBS) even at a high level without going into details. In such a case, an introductory
estimation based on project similarity might be more suitable.

In situations where it is difficult to define the DWTC, usage of preliminary estimation
is not desirable. This might happen, for example, in the case of completely new implementa-
tion technologies or project teams whose performance is difficult to forecast. As a solution,
intermediate estimation [9,10] can be applied. Intermediate estimation does not use the
DWTC; instead, it requires more detailed analysis and operates with more parameters.

Another case when preliminary estimation is not applicable is the situation when the
composition of a project team significantly changes along the project timeline. Intermediate
estimation [9,10] is more suitable under this condition, since team composition changes
are built into this method.

As can be seen from (18) and (19), the preliminary estimation defines the project
duration depending on the NDE of the project scope and the NDC of the project team.
Obviously, in situations where there are strict dependencies between project tasks or
dependencies on other projects, the preliminary as well as intermediate estimation project
duration formulas are not going to work. Using approaches based on the critical path
method (CPM) and the project evaluation and review technique (PERT) [3,4,37,38] might
be a solution in such a case.

Although the ELC (Figure 1) defines preliminary estimation as one of the successive
steps that are complementary to the SDLC stages, under the circumstances described above,
it is suggested that one skip the preliminary estimation, replacing it with other methods.

6. Conclusions

The preliminary estimation proposed in the current study is an integral part of the
authors’ estimation framework [9,10]. According to the concept of the estimation life cycle
(ELC), the preliminary estimation can be either the first stage or a logical continuation
of the predecessor stage—the introductory estimation. In the second case, apart from an
approximation of a timeline and budget, the introductory stage passes along the problem
statement understanding, information about a business domain, and identified similar
projects or products. Then, at the subsequent stage—the intermediate estimation—the in-
puts from the previous step are made more definitive by (a) reducing the number of project
scenarios (ideally, to one main scenario); (b) detailing an EIBS; (c) adding specializations to
a development team; and (d) splitting a project timeline into phases.

The key advantage of the proposed preliminary estimation is that it belongs to the
estimation framework covering the whole SDLC. Except for COCOMO II [2], none of the
existing methods is aimed at supporting the entire software project life cycle. Despite its
high level of maturity, the main obstacle to using COCOMO II is its complexity—preliminary
estimation clearly has an advantage in this aspect. Use-case point analysis [17,27–30], which
is also applicable in the early project stages, does not lose to the preliminary estimation
regarding ease of use; however, in the authors’ opinion, the formulas aimed at calculating
use-case points and translating them to time-based units require a certain rethinking.
Probably, an adjusted version of use-case point analysis might be a useful extension of the
preliminary estimation sizing approach. The agile estimation methods [5–8] are supposed
to be applied rather at the implementation phase by an agile team when the project scope
is decomposed to the user story level. Furthermore, those methods suffer from the lack of a
tool set to translate story points to time-based units. Therefore, agile estimation methods
(as they are originally defined) are hardly applicable at the early project stages. Similarity-



Appl. Syst. Innov. 2024, 7, 34 19 of 21

based estimation [20–23] can be either used in the introductory estimation stage or applied
in conjunction with the preliminary estimation in order to verify the results.

One of the most time-consuming and challenging parts of preliminary estimation is
the project scope decomposition, i.e., building an EIBS. Usually, for this reason, an expert (a
business analyst or a domain expert) has to process a large amount of information within a
limited time frame. Some ideas on how to overcome such difficulties are given in Section 5.
However, this matter is a separate topic that still requires further research.

An important role that preliminary estimation plays is in the development working
time coefficient (DWTC). Despite the considerations in Section 5, the recommendations
on how to choose a DWTC value for a particular project are still not definitive enough.
Obviously, the past project estimates are supposed to be used to define the coefficient’s
values. In the case of insufficiency of such historical data, DWTC values can rather be based
on experts’ judgment. To fully cover DWTC-related questions, further research is needed.

From the practical implementation standpoint, preliminary estimation is a semistruc-
tured business process that, on the one hand, states what has to be done, and, on the other
hand, intentionally leaves certain space for the involved experts’ creativity.

The proposed method of preliminary estimation is simple enough to be easily imple-
mented with a spreadsheet like MS Excel or Google Spreadsheet. However, to ensure the
use of the decision support tool set and to take full advantage of the estimation life cycle
(ELC) concept, the method’s integration into a fully scaled estimation information technol-
ogy is envisioned [34], including other estimation methods with the ability to accumulate
historical data (which, in particular, will be beneficial for the use of AI-based techniques).
Apart from estimation methods, the envisioned information technology will include a
process-mining module aimed at monitoring and improving the estimation processes [35].

Author Contributions: Conceptualization, V.T. and V.V.; investigation, A.B. and V.V.; methodology,
V.V.; project administration, V.T. and A.B.; software, V.V.; validation, V.T. and A.B.; visualization, V.V.;
writing—original draft, V.T. and V.V.; writing—review and editing, V.T. and V.V. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to express appreciation for the editors and the anony-
mous reviewers for their insightful suggestions to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AHP Analytic hierarchy process
AI Artificial intelligence
ASD Average software developer
CEI Composite estimable item
CLPC Competency-level productivity coefficient
COCOMO Constructive cost model
CPM Critical path method
DWT Development working time
DWTC Development working time coefficient
EI Estimable item
EIBS Estimable-item breakdown structure
EIP Estimable item point
EIU Estimable item uncertainty
ELC Estimation life cycle
FTE Full-time equivalent
IPC Involvement productivity coefficient



Appl. Syst. Innov. 2024, 7, 34 20 of 21

LEI Leaf estimable item
NDC Normalized development capacity
NDE Normalized development estimate
ND-FTE Normalized development full-time equivalent
NDWT Normalized development working time
PC Productivity coefficient
PERT Project evaluation and review technique
PWT Project working time
ROM Rough order of magnitude
RTBPM-E Real-time business process monitoring for estimation
SDLC Software development life cycle
SLOC Source lines of code
UML Unified modeling language

References
1. McConnell, S. Software Project Survival Guide: How to Be Sure Your First Important Project Isn’t Your Last; Microsoft Press: Redmond, WA, USA, 1998.
2. Boehm, B.W.; Abts, C.; Brown, A.W.; Devnani-Chulani, S.; Clark, B.K.; Horowitz, E.; Madachy, R.J.; Reifer, D.J.; Steece, B. Software

Cost Estimation with COCOMO II; Prentice-Hall: Saddle River, NJ, USA, 2000.
3. Bureau of Naval Weapons, United States, Special Projects Office. Program Evaluation Research Task PERT Summary Report: Phase 1.

Technical report, Special Projects Office, Bureau of Naval Weapons; Department of the Navy: Washington, DC, USA, 1958.
4. Bureau of Naval Weapons, United States, Special Projects Office. Program Evaluation Research Task PERT Summary Report: Phase 2.

Technical report, Special Projects Office, Bureau of Naval Weapons; Department of the Navy: Washington, DC, USA, 1958.
5. Mallidi, R.K.; Sharma, M. Study on Agile Story Point Estimation Techniques and Challenges. Int. J. Comput. Appl. 2021, 174, 9–14.

[CrossRef]
6. Sudarmaningtyas, P.; Mohamed, R. A Review Article on Software Effort Estimation in Agile Methodology. Pertanika J. Sci.

Technol. 2021, 29, 837–861. [CrossRef]
7. Munialo, S.W.; Muketha, G.M. A Review of Agile Software Effort Estimation Methods. Int. J. Comput. Appl. Technol. Res. 2016,

5, 612–618. [CrossRef]
8. Vyas, M.; Bohra, A.; Lamba, D.C.S.; Vyas, A. A Review on Software Cost and Effort Estimation Techniques for Agile Development

Process. Int. J. Recent Res. Asp. 2018, 5, 1–5.
9. Teslyuk, V.; Batyuk, A.; Voityshyn, V. Method of Software Development Project Duration Estimation for Scrum Teams with

Differentiated Specializations. Systems 2022, 123, 123. [CrossRef]
10. Teslyuk, V.; Batyuk, A.; Voityshyn, V. Method of Recommending a Scrum Team Composition for Intermediate Estimation of Software

Development Projects. In Proceedings of the 2022 IEEE 17th International Conference on Computer Sciences and Information
Technologies (CSIT), Lviv, Ukraine, 10–12 November 2022; pp. 373–376. [CrossRef]

11. van der Aalst, W. Process Mining: Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [CrossRef]
12. Di Ciccio, C.; Marrella, A.; Russo, A. Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contempo-

rary Approaches. J. Data Semant. 2015, 4, 29–57.[CrossRef]
13. Project Management Institute. Project Management Institute, a Guide to the Project Management Body of Knowledge (PMBOK-Guide)—

Sixth Version; PMBOK® Guide; Project Management Institute: Newtown Square, PA, USA, 2017.
14. Stutzke, R.D. Estimating Software-Intensive Systems: Projects, Products, and Processes; SEI Series in Software Engineering; Addison

Wesley: Upper Saddle River, NJ, USA, 2005.
15. Trendowicz, A.; Jeffery, R. Software Project Effort Estimation: Foundations and Best Practice Guidelines for Success; Springer

International Publishing: Cham, Switzerland, 2014. [CrossRef]
16. Albrecht, A.J. Measuring Application Development Productivity. In Proceedings of the IBM Applications Development Symposium,

Monterey, CA, USA, 14–17 October 1979; IBM Corporation: White Plains, NY, USA, 1979.
17. Karner, G. Resource Estimation for Objectory Projects. 1993. Available online: https://citeseerx.ist.psu.edu/document?repid=

rep1&type=pdf&doi=17b5f04743cd13f6077fbdec227719e5d83dba10 (accessed on 12 July 2023 ).
18. Boehm, B.W. Software Engineering Economics; Prentice-Hall: Saddle River, NJ, 1981.
19. Gorey, J.M. Estimate Types. AACE Bull. 1958, 1, 4–17.
20. Keung, J. Software Development Cost Estimation Using Analogy: A Review. In Proceedings of the Software Development Cost Estimation

Using Analogy: A Review, Gold Coast, QLD, Australia, 14–17 April 2009; pp. 327–336. [CrossRef]
21. Idri, A.; azzahra Amazal, F.; Abran, A. Analogy-based software development effort estimation: A systematic mapping and

review. Inf. Softw. Technol. 2015, 58, 206–230. [CrossRef]
22. Phannachitta, P. Robust comparison of similarity measures in analogy based software effort estimation. In Proceedings of the

2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Malabe, Sri
Lanka, 6–8 December 2017; pp. 1–7.[CrossRef]

23. Phannachitta, P. On an optimal analogy-based software effort estimation. Inf. Softw. Technol. 2020, 125, 106330. [CrossRef]

http://doi.org/10.5120/ijca2021921014
http://dx.doi.org/10.47836/PJST.29.2.08
http://dx.doi.org/10.7753/IJCATR0509.1009
http://dx.doi.org/10.3390/systems10040123
http://dx.doi.org/10.1109/CSIT56902.2022.10000432
http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1007/s13740-014-0038-4
http://dx.doi.org/10.1007/978-3-319-03629-8
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=17b5f04743cd13f6077fbdec227719e5d83dba10
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=17b5f04743cd13f6077fbdec227719e5d83dba10
http://dx.doi.org/10.1109/ASWEC.2009.32
http://dx.doi.org/10.1016/j.infsof.2014.07.013
http://dx.doi.org/10.1109/SKIMA.2017.8294126
http://dx.doi.org/10.1016/j.infsof.2020.106330


Appl. Syst. Innov. 2024, 7, 34 21 of 21

24. Auch, M.; Weber, M.; Mandl, P.; Wolff, C. Similarity-based analyses on software applications: A systematic literature review. J.
Syst. Softw. 2020, 168, 110669. [CrossRef]

25. Hameed, S.; Elsheikh, Y.; Azzeh, M. An optimized case-based software project effort estimation using genetic algorithm. Inf.
Softw. Technol. 2023, 153, 107088. [CrossRef]

26. Mustafa, E.I.; Osman, R. A random forest model for early-stage software effort estimation for the SEERA dataset. Inf. Softw.
Technol. 2024, 169, 107413. [CrossRef]

27. Satapathy, S.M.; Acharya, B.P.; Rath, S.K. Early stage software effort estimation using random forest technique based on use case
points. Inst. Eng. Technol. Softw. 2016, 10, 10–17. [CrossRef]

28. Azzeh, M.; Nassif, A.B. A hybrid model for estimating software project effort from Use Case Points. Appl. Soft Comput. 2016,
49, 981–989. [CrossRef]

29. Project Estimation Using Use Case Metrics Tutorial in Enterprise Architect|Sparx Systems. Available online: https:
//sparxsystems.com/resources/tutorials/use-case-metrics.html (accessed on 12 July 2023

30. Azzeh, M.; Nassif, A.B.; Elsheikh, Y.; Angelis, L. On the value of project productivity for early effort estimation. Sci. Comput.
Program. 2022, 219, 102819. [CrossRef]

31. Azzeh, M.; Bou Nassif, A.; Attili, I.B. Predicting software effort from use case points: A systematic review. Sci. Comput. Program.
2021, 204, 102596. [CrossRef]

32. Webster, F.M. The WBS. PM Netw. 1994, 8, 40–46.
33. Luby, R.E.; Peel, D.; Swahl, W. Component-based work breakdown structure (CBWBS). Proj. Manag. J. 1995, 26, 38–43.
34. Batyuk, A.; Voityshyn, V. Software Architecture Design of the Information Technology for Real-Time Business Process Monitoring.

Econtechmod Int. Q. J. Econ. Technol. Model. Process. 2018, 7, 13–22.
35. Batyuk, A.; Voityshyn, V. Process mining-based information technology for operational support of software projects estimation.

In Proceedings of the XVI International Scientific Conference on Intellectual Systems of Decision-Making and Problems of
Computational Intelligence (ISDMCI’2020), Kherson, Ukraine, 25–29 May 2020; pp. 9–11.

36. Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [CrossRef]
37. Kelley, J.E.; Walker, M.R. Critical-Path Planning and Scheduling. In Proceedings of the Eastern Joint IRE-AIEE-ACM Computer

Conference, Boston, MA, USA, 1–3 December 1959; Association for Computing Machinery: New York, NY, USA, 1959; pp. 160–173.
[CrossRef]

38. Trietsch, D.; Baker, K.R. PERT 21: Fitting PERT/CPM for use in the 21st century. Int. J. Proj. Manag. 2012, 30, 490–502. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jss.2020.110669
http://dx.doi.org/10.1016/j.infsof.2022.107088
http://dx.doi.org/10.1016/j.infsof.2024.107413
http://dx.doi.org/10.1049/iet-sen.2014.0122
http://dx.doi.org/10.1016/j.asoc.2016.05.008
https://sparxsystems.com/resources/tutorials/use-case-metrics.html
https://sparxsystems.com/resources/tutorials/use-case-metrics.html
http://dx.doi.org/10.1016/j.scico.2022.102819
http://dx.doi.org/10.1016/j.scico.2020.102596
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1145/1460299.1460318
http://dx.doi.org/10.1016/j.ijproman.2011.09.004

	Introduction
	Background
	Concept of Estimation Life Cycle
	Structure of Software Developer Working Time
	Measurement of Development Efforts

	Literature Review
	Results
	Preliminary Estimation as a Semistructured Business Process
	Estimable-Item Breakdown Structure
	Sizing of Estimable Items
	Project Team Composition
	System of Working-Time Balance Equations
	Estimation of Normalized Development Capacity
	Estimation of Project Duration
	Optimization of Project Duration and Team Composition

	Discussion
	Project Scope Decomposition
	Development Specializations
	Development Working Time Coefficient
	Alternative Approach to Define Development Working Time Coefficient
	Threats to Validity

	Conclusions
	References

