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Abstract: This work is an addition to the previously developed two-dimensional model of the shock-
plasma interaction, extending it into the third dimension. The model can trace the evolution of the
state of the hypersonic flow and the shock front refracted at a thermal discontinuity. The advantages
of using the spherical coordinate system for this type of problem include increased transparency in
interpreting the solution and a shortened calculation procedure, because all the changes to the front
are reduced to one distortion component. Although the vorticity generation triggered at the interface
is a consequence of the refraction and tied to the steep changes in the front, it is shown here that this
is not because of an instant parameter jump at the interface due to refraction itself.
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1. Introduction

The previously developed two-dimensional model [1] describes the state of the shock
front and the changes to the hypersonic flow behind it as a result of its interaction with a
thermal discontinuity created in a discharge, a flame, or an interstellar environment [2,3].
This work is a short addition to this model, extending it into the third dimension.

The model is mainly focused on modification of the hypersonic flow state as the shock
is traveling through a heated volume of gas or plasma, floating in an environment with
different state properties. The processes accompanying the interaction include intensive
modifications to both the supersonic flow and the structure of the heated spot. In case of a
regular refraction, upon the incidence of a shock at that spot, the shock wave splits, with
one portion being transmitted through the hot spot, and another one being reflected off
the interface. When inside the heated medium, the shock front is accelerated and becomes
increasingly curved and locally weakened [4]. Redistribution of the flow parameters
following the shock front deformations and the strong local reduction in the gas pressure
result in an intensive vortex system setting at the shock front. The positive dynamics
of the vortex intensity in the aftershock flow suggest volume effects following the shock
refraction at the interface. The sucking effect caused by the pressure redistribution results
in distortion and the eventual collapse of the heated region span through a non-linearly
intensified vortex system. In case of irregular refraction, additional structures feature a
triple point with reflected shocks and a Mach stem formed in front of the interface. Since the
model is focused on the flow inside the hot spot, the irregular structures will be assumed
to be secondary, being superimposed onto the image of a regular refraction.

In determining the mechanisms of the interaction, the existing research can be con-
ditionally split into two major approaches, falling into the categories of a thermal or
non-thermal nature. The first one considers thermal heating as a possible reason for
the Mach number decrease due to changes in the speed of sound, and the possibility of
mean molecular weight and number density changes caused by molecule dissociation and
ionization [5].

The second approach takes into consideration processes such as atomic and molecular
transitions, gas kinetics, the electrical properties of plasmas, and non-equilibrium states.
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The latter may take place as a result of a relative delay between different terms contributing
to the energy content of the gas, which occur during the establishment of thermal equi-
librium in the past shock flow. Similar effects occur due to the fast-evolving processes
in the presence of radiation or fast expansion [2]. A number of other mechanisms have
been proven to contribute, such as the appearance of charged particles leading to upstream
momentum transfer in the hypersonic flow, the possibility of deflection of the incoming
flow due to plasma in front of the shock via electronic momentum transfer collisions, and
the release of heat into the shock layer via exothermic reactions enhancing the shock layer
temperature and thus reducing the pressure and density behind the shock wave. The
references and an analysis of this research can be found in [1].

Although the effects seen in experiments are the consequence of a mix of contributions
taking place in different phases of the interaction, it was admitted by the community
of researchers that the thermal mechanism is prevalent and is responsible for the most
observable features. At the same time, the contribution of the second type, involving
atomic, molecular, and electrical processes, could be responsible for the finer structure of
the shock front refracted into the plasma medium. For example, under non-equilibrium flow
conditions, an extended structure of the shock front forms with the continuous distribution
of gas parameters [2]. In the presence of charged particles in the afterglow of a discharge, a
double electric layer set up at the shock front during its passage through the medium can
affect the shock motion [6].

The problem of shocks propagating through the plasma medium has been under
consideration for decades, resulting in a number of models that are used to describe the
evolution of the supersonic flow. These include the following: a simplified geometrical
shock dynamics model, in which the shock is decomposed into elementary ray tubes, with
each portion propagating along rays normal to the front, with a velocity dependent on
the local Mach number [7]; a geometrical acoustic model, as an extension of the Huygen'’s
wave front construction method, applied to the weakly nonlinear wave front [8-10]; a
kinematic model using the singular surface theory [11,12] and the compatibility conditions
derived along a shock ray [13,14]; the geometrical shock dynamics model [15] based on
Whitman’s geometrical acoustics theory [16], used for numerical calculations studying
the self-focusing of initially curved shock fronts and applied to the shock’s propagation
along walls and in channels; the model of interaction of weak shocks with discrete gaseous
inhomogeneities, in which wave configurations are determined by the geometrical acoustics,
including the effects of refraction, reflection and diffraction [17]; and the three-dimensional,
time-dependent, multifluid-Euleriam method used for numerical simulations of weak
plane shocks interacting with a heated volume of gas [18], which provides a very detailed
description of the interaction picture.

The shock-plasma interaction model presented here is of a mixed type. While based on
the thermal mechanism, it can be extended by considering atomic and molecular transitions
that contribute to non-equilibrium states, thus affecting the finer structure of the shock and
its refraction into the plasma medium. Even though it does not directly account for the
electrical properties of plasma, the model is specifically developed for the gas parameter
distributions, geometry, and dimensions common for plasmas obtained in discharges.

Both the open and closed interfaces of an arbitrary shape are covered by the existing
model, in the plane of symmetry oriented along the shock propagation direction that corre-
sponds to the cylindrical symmetry case. In describing the evolution of the hypersonic flow
over time, the model essentially relates the perturbation to the front with the incident shock,
plasma medium, and the interface geometrical parameters. Under definite conditions, the
dynamics of the perturbation to the front represents an instability that develops in the form
of wave-like stretchings into the lower-density medium, followed by the loss of stability in
the flow behind it, which eventually evolves into an intense vortex structure. The instability
mode in this case is aperiodical and unconditional, and the shock state evolves with either a
transition to another stable state or continuous development as a secondary flow [19]. The
instability contains a set of interesting features, such as the following: a similarity law in the
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spatial and temporal evolution of the perturbations with respect to the interface curvature;
the instability locus” independence of the gas density distribution, thus identifying the
interface conditions as the sole triggering factor; the specific role of the density gradient
in the instability evolution, discriminating between qualitatively different outcomes; the
possibility of decay via non-viscous damping mechanisms; the connection between the
shock and the interface stability.

Both a sharp and an extended type of interface can be accommodated within the
model, resulting in a considerable difference in the refraction effect [20]. If accounting
for real gas effects, the model predicts significant deviations in the shock reflection and
refraction strengths at the interface with plasma [20-24], and shows that the presence
of thermodynamic non-equilibrium in the hypersonic flow can result in a variation in
the shock wave structure during the interface crossing and its interaction with plasma
medium [2,22,25,26]. Studying the dynamics of the two components of the front distortion,
in the longitudinal and transversal directions, revealed another interesting feature of the
interaction, showing the possibility of vorticity generation in the hypersonic flow behind
the refracted front. This is triggered at the interface due to parameter redistribution in
the flow behind the front and continues inside the plasma spot in an intense non-linear
dynamics mode [1]. The induced rotation of the shock velocity components tended to
occur under definite conditions, and was typically attributed to the front portion which
underwent the steepest changes. In this connection, considering the model in 3D would
allow one to see whether the presence of a third dimension in the interaction can instantly
produce a component of the shock velocity at the interface due to refraction itself, resulting
in an additional spinning of the front elements around the longitudinal symmetry axis.

In the following examples, two problems featuring spherical and cylindrical geome-
tries will be solved numerically in 3D, and the results for the front profiles will be matched
to those obtained with the 2D model.

2. Refraction Parameters and the Shock Distortion Components in 3D

The aim of this paragraph is to determine the shock refraction parameters and the front
distortion in 3D, with time as a function of the interface coordinates. It will be assumed that
the plasma medium inside the sphere is heated to temperature T5, and the gas surrounding
the sphere is kept at T; and the same pressure p; = py = parm- A planar shock wave will
be incident on a spherical interface in the x-direction with the velocity Vi, as shown in
Figure 1, i.e,,

Vi = Vi 1)

Figure 1. Schematic diagram of a planar shock wave incident on a spherically shaped heated spot
with a velocity V; along the x-direction.
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In the spherical coordinate system, this translates into a three-component vector:

17; = Vi (sin(0)cos(¢)? + cos(0)cos(9)0 — sin(¢) @) ()

where (x,y,z) and (r,0,¢) are the corresponding coordinates of the point of interaction (i) on
the sphere, 6 is the angle between the #- and z-directions, the angle ¢ is in the x-y plane, the
symbol “hat” over a coordinate denotes the unit vector in the corresponding direction, and
the angles ¢ and 6 are determined as follows:

6 = tan1< x2 +y2/z), ¢ = tan " (y/x) (3)

The component of the velocity normal to the surface, which its the radial component,
Vip = Vip = leSin(G)COS(q)) 4)

and the tangential component

Vie = Vi [cos(0)cos ()0 — sin(p)§)] (5)

Then, the incidence angle «, defined as the angle between vector V; and the normal to
the sphere at the point (i), is determined by the relation:

cos(a) = sin(6)cos(¢) (6)

The velocity V; of the shock wave refracted into the hot sphere is obtained through its
normal and tangential components, V,, and V;;. The normal component of the velocity
V5, is determined by the ratio of normal components of the Mach number M;,,(M1,,). It is
obtained from a pair of shock refraction equations and depend on the temperature ratio
conditions across the interface [19]:

Vou = €V, € = Mé’}) V1 ()
where Tp; = T,/T; and Mé’ll) = My, /My,

from which
Vo = eViysin(0)cos(¢), Vi, =Wy 8)

Using the continuity principle for tangential components across the interface,
Var = Viz ©)

the shock velocity vector inside the sphere for the front element crossing the point (i) takes
the following form:

172 = Vix (esin(0)cos(¢)? + cos(0)cos(9)0 — sin(9) ), (10)

Then, the refraction angle y, which is the one between vectors V; and V5, is determined
by the following equation:

cos?¢ (esin29 + 60529) + sin®¢

cosy = (11)

\/coszq) (szsinZG + 60526) +sin®g

In the next step, the shock front distortion can be found by following the path of a
small element “s” of the incident shock front through the plasma inside the sphere, as
shown in Figure 2.
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Figure 2. The initially planar shock front (green vertical line) distorted (green curve) during its

refraction into a spherical plasma spot, projected onto the (z,x)-plane.

In the reference frame moving with the velocity V7, the distortion vector is as follows:

- —
1) :I’O—FVz(f—fo)—Vlt (12)

where ¢ is the interaction time starting at the moment the initial planar shock arrives at
the location x = R, R is the sphere radius, 75 is the radial coordinate of the small element
“_ 1 . . . V787 — — — .

s” that eventually crosses the sphere at the interaction point “i”, ry = rs — r; is the local
displacement for the time ty when the shock approaches the interface, and the third term in
the right-hand side of Equation (12) is introduced to obtain the front coordinates relative to
the portion of the front that is undisturbed by the plasma spot.

For the shock front approaching the interface along the x-direction,

ro= (R —x;) [sin(0)cos (@) + cos(0)cos(¢)d — sin(¢) ] (13)

Using (3) and (10), Equation (12) transforms into

Z = #sin(0)cos(@)[(R — x;) + Vi (t — to) — Vit] + Bcos(8)cos(9)[(R — x;) — Vito) (14)
—¢sin(@)[(R — x;) = Vito]

where angles ¢ and 0 are referred to the point of interaction i.
Since tg = (R — x;)/ V1, the § and ¢ components of the distortion in Equation (14) are
equal to zero

— —
6 =0y =0 (15)
and the expression (14) takes the following final form

—

5 =6, — tsin(8)cos(¢) (e — Vit — (R — x;)], ¢ > to (16)

from which it immediately follows that all the changes in the front occur in the radial
direction only. It should be noted that the “radial” direction has a current status as it is
dependent on the position of the interaction point “i”, and thus it changes as the interaction
point progresses along the interface surface, starting in the (x,y)-plane at {t = 0, x = R} and
ending up in the (z,y)-plane (at x = 0). Consequently, referring to Figure 2, the vector 6, will
always be parallel to the current radial direction r; drawn through the interaction point i.
Going back to the Cartesian coordinate system, to determine the projections of
Equation (16) onto the (x, y, z) basis, the factor ¢ in (7) should first be expressed in the
spherical coordinate system. In accordance with the results in [21], the normal component

of the Mach number Mén) is a function of My, that is very close to linear

MZn = é + ’7Mln = f(Mln) (17)
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where factors ¢ and # are numerical coefficients that are dependent on the Mach number
M, the ratio T, and the specific heat ratio constants for the two media.
Then, with
M, = Mysin(0)cos(¢@) (18)

and Equations (4) and (7), we can obtain the following:
€ = /Ty [+ nMisin(8)cos(@)]/ Mysin(8)cos(¢) (19)

from which, and in accordance with Equation (16),

Or = sin(9)605((¢){x/)F[C + i Mysin(8)cos(@)]/ [Musin(B)cos(9)] =1} Vat o)
—(rs — R

and the three cartesian components of the distortion are as follows:
Ox = dpsin(8)cos(@), oy = dysin(8)sin(¢), 8, = drcos(0) (21)

Equation (20) can be further generalized by presenting it in a dimensionless form if
scaling J, with the characteristic length R and time—with 7 = R/V;_ Then, for the dimen-
sionless time n; = t/7 and the coordinates § = §/R, 75 = rs/R, it yields the following
dimensionless equation for J,:

Sy = sin(9)cos(<p){@[§+ nMjysin(0)cos(¢)]/[Mysin(0)cos(p)] — 1} [f— (7 —1)] (22)

and its corresponding cartesian components:
Ox = bpsin(0)cos(¢), oy = b,sin(0)sin(g), 6- = rcos(6) (23)
where the “bar” over a variable represents its dimensionless equivalent.

3. Numerical Results for Spherical and Cylindrical Geometries

For illustration purposes and to match them with the existing 2D model results (in
the two planes of symmetry), a numerical simulation was carried out for a particular
case of non-dissociating nitrogen gas heated to temperature T, = 2000 K with the outside
temperature of T1 = 300 K, the incident shock Mach number M; = 3.5, and p = patm. In the
slow—fast scenario present at the entrance of the heated spot, the ratio of normal components
of the Mach number in (7) was obtained using the refraction equation that assumes that the
reflected wave is a rarefaction wave. For the shock and gas conditions considered here, the
function My, =f (M) was determined in [27] and the factors ¢ and 1 in (17) can also be
borrowed from there. With those parameters in place, the radial component of the front
distortion J, and its projections into the Cartesian basis dx, dy, dx were calculated using
Equations (20) and (21). The simulation results in the (z,y)-plane, which is transversal to the
shock incidence direction, are presented in Figure 3 and correspond to the dimensionless
time ny = 1.0.

For the longitudinally oriented (x,y)-plane, the results are presented in Figure 4.

As the plots in Figure 3 demonstrate, the distributions for J, and dx in the radial and
longitudinal directions are fully symmetrical, as well as those in Figure 4, exhibiting the
same tendency and maximum locations. With projecting the profiles into the two planes of
symmetry in Figures 3 and 4, it can be seen that they are similar to those obtained with the
2D model in [27] (Figure 5). In the plot of Figure 5, the curve used for comparison at the
moment of time 7; = 1.0 is the one crossing the sphere pole.
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Figure 3. The distortion components Jr, dx, dy, and é, at the moment of time n; = 1.0, plotted in the
(z,y)-plane. Diatomic nitrogen gas at T = 300 K, T, = 2000 K, M; = 3.5, and p = pam.

Figure 4. The distortion components 4y, dx, dy, and &, at the moment of time 1 = 1.0, plotted in the
(x,y)-plane, for the same shock and gas parameters shown in Figure 3.
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Figure 5. Shock profiles obtained with a 2D model in the (z,y)-plane at various times, as shown in
Figure 3. The curves correspond to dimensionless times through the equal intervals of An, = 0.2 for

the first six curves, An; = 0.15 for the next three crossing the back interface, and An; = 0.3 for those
propagating freely behind it. The curve crossing the sphere pole corresponds to the time n; = 1.0.

A problem featuring cylindrical symmetry can be considered here by using the polar
coordinate system (i.e., to which the 2D model is applied), in which the relations derived
above are reduced to the planar case by taking ¢ = 0 and leaving 0 as a variable, resulting
iny; =0,ys =0, and Jy = 0. In this case, the problem corresponds to a planar shock
interacting with the interface of a cylindrical shape that is shown by the gray-colored
surface in Figure 6a. The results for the distortion profiles at the time 7; = 1.0 and the same
shock and gas parameters as used above are presented in Figure 6.

Figure 6. The initial planar shock front modification in the case of cylindrical symmetry at the time
nt = 1.0 and with the same shock and gas parameters as shown in Figure 3.

The profiles match those in the previous figures when projected onto the corresponding
planes of symmetry, as well as those in Figure 5 if taken as a slice in the (z,x)-plane. To
demonstrate the exact matching, the data obtained with the 3D model are compared with
the data of the 2D case in Figure 5 at a particular moment of time, n; = 1.0. For this, the
longitudinal component of the front distortion dy is plotted against one of the two lateral
coordinates, z, as shown in Figure 7. The 2D plot, as a projection of the 3D function dx(x,y,2),
was obtained by taking it at y = 0 (¢ = 0). The function Jx (x,y = 0,z) corresponds to the
plane passing through the longitudinal axis of symmetry of the heated spot (y = 0), where
the distortion of the front has an extremum.
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Figure 7. The distortion component dy vs. coordinate z in the plane passing through the longitudinal
axis of symmetry (y = 0), at the time n; = 1.0.

Comparing the data in the Figure 7 and the curve in Figure 5 corresponding to
the moment of time n; = 1.0 (the one crossing the sphere pole) shows that they exactly
match each other. Thus, in both planes of symmetry, the 3D model transitions into its
2D equivalent. Because of the symmetry, the y- and z-directions are equivalent, which
essentially justifies the use of the 2D model for axi-symmetrical geometries. The results
for the two models match analytically as well, if different definitions of the angles are
accounted for using the transition 8 — 77/2 — «.

4. Conclusions

The examples obtained based on the 3D spherical coordinate representation illustrated
that the front distortion in the transversal plane exhibits a fully symmetrical distribution,
thus validating the use of the 2D model in spherically symmetrical problems. The projection
of the 3D results onto the two planes of symmetry coincided with the results obtained with
the 2D model, thus showing that the 3D model relations can exactly transition into their 2D
equivalent (at ¢ = 0).

Considering the interaction problem in 3D, it was shown to be advantageous using the
spherical coordinate system instead of the cartesian system, as this reduces all the changes
to the front to one component of the distortion vector. This is the direct consequence
of the continuity principle for the tangential components of the velocity, from which it
follows that there will be no change in the distortion vector components in the azimuthal
and orbital directions. It immediately follows that the lack of tangential components of
the distortion vector at the interface excludes the possibility of an additional spinning of
the front elements due to refraction itself. When relating this result to the phenomena of
vorticity generation triggered at the interface and described in [1], the following difference
should be noted. While there is no instant, jump-like rotation of the shock velocity vector
at the moment of refraction at the interface, the positive dynamics in the radial component
of the front distortion initiates and further supports the production of vorticity. As shown
in [1], the vorticity is triggered and amplified at the locations of the steepest changes in
the front. Thus, a presentation of the distortion components in the spherical coordinate
system offers a transparent way to show and essentially rule out the possibility of an
instant vorticity generation at the interface. It points to a different type of mechanism and a
different location, suggesting that vorticity production occurs at a later point in the shock
propagation, rather than at the interface.

It should be noted that one of the findings here associated to no vorticity generation
immediately at the interface is not generally related to the Crocco’s theorem. The theorem
states that in a case of non-zero change in the entropy and/or enthalpy, the flow must
be rotational. The statement particularly applies across a curved shock wave, as the
parameter jumps are dependent on the local shock angle . Consequently, the rotational
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component of the flow velocity is dependent on the shock front curvature doc/dl along the
front surface [28]. This implies that as long as the shock front is curved, it is an effective
generator of vorticity. To avoid possible confusion, it should be noted that the findings of
this work apply to the change in the hypersonic flow across the interface with a heated gas,
while the theorem is valid in the area across the shock front.

Still, the findings are in agreement with this theorem locally when considering the flow
motion in the shock—plasma interaction, which can be divided into two separate stages. The
first one is the shock wave refraction at the interface, where instant changes in the shock
parameters occur. At the second stage, the shock front of an increasing with time curvature
propagates freely inside the heated spot until it hits its rear boundary. Assuming the heated
gas parameters are uniformly distributed, Crocco’s theorem applies at this stage and the
generation of vorticity in the post-shock flow is expected. This goes along with the findings
in [1], where the vorticity tied to the locations of the steepest distortions in the shock front,
i.e., proportionally to the derivative do/dl, is produced during its propagation in the heated
medium. It was also shown that this occurs in the medium with a non-uniform parameter
distribution as well. This fact does not contradict the theorem of [28], where the theorem’s
validity was extended to the conditions of non-uniformity and reacting gases.

As another bonus of the spherical coordinate representation, the form of the solution
obtained here is more transparent in terms of its interpretation. It significantly shortens the
calculation by eliminating a set of parameters needed in the procedure, such as the incident
and refraction angles, the associated Mach number, and velocity components. As in the 2D
model, the 3D relations can be presented in a dimensionless form and thus can be applied
in a wider range of applications.
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