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Abstract: The effective action in the renormalizable quantum theory of gravity provides entropy
because the total Hamiltonian vanishes. Since it is a renormalization group invariant that is constant
in the process of cosmic evolution, we can show conservation of entropy, which is an ansatz in
the standard cosmology. Here, we study renormalizable quantum gravity that exhibits conformal
dominance at high energy beyond the Planck scale. The current entropy of the universe is derived
by calculating the effective action under the scenario of quantum gravity inflation caused by its
dynamics. We then argue that ghost modes must be unphysical but are necessary for the Hamiltonian
to vanish and for entropy to exist in gravitational systems.
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1. Introduction

The origin of a huge amount of cosmic entropy, most of which is currently carried
by the cosmic microwave background radiation (CMB), remains a big mystery. Within
the framework of Einstein’s theory of gravity, it cannot be satisfactorily explained without
introducing an unknown scalar field as a source of all matter. Moreover, the standard
cosmology assumes that it is conserved during evolution [1]. The conservation law has
been explained thermodynamically after the big bang, but we wonder if that is really
sufficient. The observed CMB anisotropy spectra [2,3] show that the whole universe is
entangled in every corner. It suggests that there was a moment in the past when they were
correlated with each other. Therefore, it is natural to think that the origin of entropy and its
conservation law were ruled by the laws of physics at that time. In this paper, we argue that
it is derived from quantum spacetime states described by renormalizable quantum gravity.

In general, the effective action in renormalizable quantum field theory is finite and
is renormalization group (RG) invariant [4]. If the theory is diffeomorphism invariant,
the energy–momentum tensor is also finite, i.e. a normal product, and RG invariant [5–9].
Furthermore, when gravity is quantized, the whole energy–momentum tensor vanishes.

Although this fact is widely known as the Hamiltonian and momentum constraints [10–12],
it is best to use the Schwinger–Dyson (SD) equation to see that this holds as an identity at
the quantum level [13]. Considering the partition function defined by the path integral over
the gravitational field, eiΓQG =

∫
[dg]eiI , where I is a renormalizable gravitational action

and ΓQG is the effective action, then it can be expressed as

i
1
2
⟨
√
−g Tµν(x)⟩ =

∫
[dg]

δ

δgµν(x)
eiI = 0. (1)

Strictly speaking, we need to define the path integral measure as shown later; thus it is still
a symbolic formula at this point, but it captures the essence.

The partition function of quantum gravity represents the sum over states of quantum
spacetime. Since the effective action is defined by the logarithm of the partition function,
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it is entropy itself if the total Hamiltonian of the system vanishes. (It may be helpful to
recall that effective action corresponds to free energy in ordinary quantum field theory.
However, note that there are no ordinary particle states in quantum gravity considered
here; thus, there is no concept of temperature or thermal equilibrium, but the formula is
defined as purely counting the number of states. The inability to define temperature and
the vanishing of the Hamiltonian are thus complementary). Thus, the quantum gravity
effective action provides statistical entropy for the state of the universe. That is,

ΓQG = −SUniv, (2)

where SUniv is the entropy, which is conserved as an RG invariant. This is a general
conclusion derived from diffeomorphism invariance and renormalizability.

On the other hand, as if to deny this idea, it is often emphasized that conventional
renormalization methods are not applicable to the quantum theory of gravity. In fact,
Einstein’s theory of gravity is unrenormalizable. To escape this problem, researchers
usually introduce a finite ultraviolet (UV) cutoff in the Planck scale and often think of it as
an entity of spacetime quantization. However, this idea breaks diffeomorphism invariance.
To preserve diffeomorphism invariance, renormalizability is necessary: then spacetime
exists continuously while fluctuating greatly even beyond the Planck scale.

The problem with renormalization is relevant to the existence of singularities. Since
the Einstein–Hilbert action does not contain the Riemann tensor Rµνλσ that controls cur-
vature, singularities cannot be removed. Introducing positive-definite fourth-derivative
actions involving R2

µνλσ makes gravity renormalizable because coupling constants become
dimensionless [14–16], and furthermore, singularities are statistically forbidden as objects
for which the action diverges. But if we formulate it simply in the usual graviton picture
defined by a perturbation expansion around flat spacetime, another difficulty arises called
the ghost problem.

However, the existence of ghost modes itself is not the problem. The local particle
world has to be positive definite, but the universe as a whole is not so. Ghost modes are
rather essential elements for the total Hamiltonian to vanish, i.e., to preserve diffeomor-
phism invariance. As a matter of fact, Einstein’s theory of gravity has a ghost mode due to
the indefinitness of the Einstein–Hilbert action, which allows non-trivial solutions such as
the Friedmann solution to exist.

The ghost mode in renormalizable quantum gravity exists in a different sense from
that in Einstein’s theory of gravity. It exists as a characteristic of higher-derivative fields
even though the action is positive definite. That is, the gravitational field itself does not
become a ghost, but it is hidden within the field as a sub-mode. In any case, if all modes
were positive definite, the only state in which the Hamiltonian vanishes would be the
trivial vacuum, and thus, there would be no entropy. The ghost mode causes problems
only when it appears as a physical particle.

The particle picture propagating through a specific spacetime is not appropriate to
describe spacetime that itself fluctuates quantum mechanically. In order to solve the ghost
problem, this picture should be discarded. Renormalizable quantum gravity that exhibits
background freedom asymptotically has been proposed as a way to achieve this [17–21].
A distinctive feature of the theory is that it implements a novel perturbation technique
expanding around spacetime where the Weyl tensor Cµνλσ vanishes instead of the conven-
tional perturbation expansion around flat spacetime. In the UV limit of this perturbation,
the conformal mode of the gravitational field determining distance is not subject to any
restrictions and thus fluctuates largely in a non-perturbative manner. (Its statistical behav-
ior appears to be in the same universality class as four-dimensional simplicial quantum
gravity [22]) . Hence, scalar fluctuations dominate in the early universe. The correctness of
this approach is supported by the idea of inflation [23–29].

This theory has a new mechanism for constraining ghosts called the BRST conformal
invariance [30–36] (BRST is an acronym for Becchi, Rouet, Stora, and Tyutin, which is
used to emphasize that this is a gauge symmetry), which arises as part of diffeomorphism
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invariance in the UV limit [17–21]. It represents the background freedom that all different
conformally flat spacetimes are gauge equivalent. The BRST conformal invariance condition
shows that all ghost modes involved in the gravitational field are unphysical and can never
be seen, while there are an infinite number of physical states, which are only scalar-type
(primary scalars): there are no tensor-type states [34–36]. For the unitarity issue and the
definition of this symmetry, see Appendices A and B.

In this paper, we show that the effective action of this quantum gravity indeed provides
the entropy of the present universe.

2. Renormalizable Quantum Gravity

The action of renormalizable quantum gravity that indicates conformal dominance
asymptotically is given by [17–21]

I =
∫

d4x
√−g

{
− 1

t2 C2
µνλσ − bG4 +

1
h̄

(
1

16πG
R + LM

)}
. (3)

The first is the Weyl action, and the second is the Euler term, where G4 = R2
µνλσ − 4R2

µν + R2,
both of which are conformally invariant. The third with the scalar curvature R is the
Einstein–Hilbert action, where G is the Newton constant. The fourth LM denotes matter
field actions that are conformally invariant in the UV limit, but their specific expressions
are not necessary below.

The Planck constant h̄ appears only before the lower derivative terms, which is due to
the fact that the gravitational field is completely dimensionless. This implies that all of the
fourth-derivative gravitational actions here and below describe purely quantum dynamics
and produce entropy of spacetime. In the following, h̄ = 1.

Using the conformal mode ϕ and the traceless tensor mode hµ
ν, the gravitational field

is decomposed as

gµν = e2ϕ ḡµν (4)

with ḡµν = (ηeh)µν = ηµλ(δ
λ
ν + hλ

ν + hλ
σhσ

ν/2 + · · · ). The conformal factor e2ϕ is handled
nonperturbatively, while hµ

ν is expanded as being small at the UV limit. The coupling
constant for the expansion is t and is introduced in front of the Weyl action, while b is not
an independent coupling because the Euler term does not contain a kinetic term. The flat
metric ηµν = (−1, 1, 1, 1) defines the comoving frame with coordinates xµ = (η, x).

The key to quantization is to rewrite the theory into a quantum field theory defined
on the familiar flat spacetime. The partition function is then expressed as [17–21,34–36]

eiΓQG =
∫
[dg]g eiI(g) =

∫
[dϕdh]η eiS(ϕ,ḡ)+iI(g), (5)

where S is the Wess–Zumino action [37] for the conformal anomaly [38–41], which is
necessary to preserve diffeomorphism invariance when rewriting the path integral measure
to the practical measure on flat spacetime. The SD Equation (1) is precisely defined for the
fields ϕ and hµ

ν, which are nothing but the equations of motion for them and are derived
from the effective action. (When quantizing gravity using dimensional regularization
that preserves diffeomorphism invariance manifestly, the SD Equation (1) holds at it is,
including contributions from the measure, without rewriting it as in (5), because it is a
regularization that does not depend on how to choose the measure [19]).

The Wess–Zumino action S is responsible for fourth-derivative dynamics of the con-
formal mode ϕ. The Riegert action associated with the Euler-type conformal anomaly [30]
that remains even in the zeroth order of t is particularly important and is

SR =
∫

d4x
{
− bc

(4π)2 B
[

2ϕ∆̄4ϕ +

(
Ḡ4 −

2
3
∇̄2R̄

)
ϕ

]}
, (6)
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which provides a kinetic term of ϕ. (At higher orders of t, the Wess–Zumino actions
such as ϕn+1(2∆̄4ϕ + Ḡ4 − 2∇̄2R̄/3), ϕnC̄2

µνλσ, and also ϕn F̄2
µν for a gauge field Fµν with

n ≥ 1 arise. These terms are eventually incorporated into the running coupling con-
stant [42]). The quantities with the bar denote those defined by ḡµν, and

√−g∆4 is a
fourth-order differential operator that is conformally invariant for scalars and is defined
by ∆4 = ∇4 + 2Rµν∇µ∇ν − 2R∇2/3 + ∇µR∇µ/3. The lowest coefficient is given
by bc = (NX + 11NW/2 + 62NA)/360 + 769/180 [16,17,33,38–41], where NX, NW, and
NA are the number of scalar fields, Weyl fermions, and gauge fields in the matter sec-
tor, respectively, and bc = 7.0 for the Standard Model. A correction by t is denoted as
B = 1 − γ1t2/4π + o(t4), where γ1 is positive.

The beta function is negative as µdt/dµ = −β0 t3 + o(t5) with
β0 = [(NX + 3NW + 12NA)/240 + 197/60]/(4π)2 [16,17,33,38–41], where µ is an arbitrary
mass scale introduced upon quantization. The dynamics of the tensor mode cause running
of the coupling constant, expressed as t̄2(Q) = [β0 log(Q2/Λ2

QG)]
−1, where Q2 = q2/e2ϕ is

physical momentum squared, q2 is comoving momentum squared, and the ϕ-dependence
comes from the Wess–Zumino actions [18,27,42]. The effective action is then expressed in
the form that t2 is replaced with t̄2(Q), such as −[1/t̄2(Q)]

√−g C2
µνλσ for the Weyl part.

(More precisely, this is a rewriting of −[1/t2 − 2β0ϕ + β0 log(q2/µ2)]
√−g C2

µνλσ, where
the second is the Wess–Zumino action and the third is a loop correction. The inside of the
square brackets is summarized to the form of 1/t̄2(Q). This effective action form holds even
when higher-order corrections are involved, in which case the running coupling constant
is expressed by incorporating contributions from the higher-order Wess–Zumino actions
listed above). The new dynamical energy scale ΛQG (= µ e−1/2β0t2

) is a physical constant,
i.e., an RG invariant satisfying dΛQG/dµ = 0, as is the Planck mass [43]. The correlation
length is given by ξΛ = 1/ΛQG, so that spacetime will be dynamically discretized by this
length [44].

The inflationary solution exists only for MP > ΛQG, where MP is the reduced Planck
mass [26–29]. This relation also serves as a unitarity condition to ensure that ghost modes
do not appear as particles in the world after the spacetime phase transition. In quantum
spacetime, all ghost modes are constrained by the BRST conformal invariance, but this
cannot be applied after the transition. Therefore, the transition must occur below the Planck
scale so that ghost gravitons with masses of about MP are not created.

3. Entropy of the Universe

Most of entropy in the quantum gravity state is carried by the conformal mode rather
than tensor or matter modes. Its dynamics cause inflation, and entropy in that period will
give the entropy of the universe. The homogeneous component of the conformal mode is
then responsible for it significantly; it is denoted by ϕ̂ and is an average value of spacetime
fluctuations.

The effective action for this mode, which plays the main part of inflation dynamics, is
given by

ΓQG = V3

∫
dη

{
− bc

8π2 Bϕ̂∂4
η ϕ̂ + 3M2

Pe2ϕ̂
(
∂2

η ϕ̂ + ∂η ϕ̂∂η ϕ̂
)}

, (7)

where V3 =
∫

d3x, and the first and second terms are contributions from the Riegert and
Einstein–Hilbert sectors, respectively.

Since Cµνλσ ≃ 0 during most of the period of inflation, the contribution from the Weyl
part of the effective action to entropy is sufficiently small and can be ignored. The main role
of the Weyl sector is to transfer the entropy carried by the conformal mode to matter fields
during the spacetime phase transition. The reason why the matter sector is disregarded is
that the matter energy density is almost zero during the inflation period, as stated below.
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The equation of motion for the homogeneous mode is given by

− bc

4π2 B∂4
η ϕ̂ + 6M2

Pe2ϕ̂
(
∂2

η ϕ̂ + ∂η ϕ̂∂η ϕ̂
)
= 0. (8)

This equation has a stable inflationary de Sitter solution at t → 0 (B → 1) [26]. (It has
been confirmed that the solution converges to (9) even if the initial conditions are changed
significantly). Introducing the proper time defined by dτ = adη with the scale factor a = eϕ̂

and using the Hubble variable H = ∂τa/a, the solution is expressed as

H = HD, HD =

√
8π2

bc
MP. (9)

This shows that the scale factor increases exponentially as a = eHDτ , where let it be unity
at τ = 0 representing infinite energy so that V3 is the spatial volume far before inflation
begins. Since bc is about 10, HD is also a Planck scale and is slightly larger than MP.

In addition, letting ρ be an energy density of matter fields, we obtain an energy
conservation equation from the vanishing of the time–time component of the energy–
momentum tensor as [27]

bc

8π2 B
(
2∂3

η ϕ̂∂η ϕ̂ − ∂2
η ϕ̂∂2

η ϕ̂
)
− 3M2

Pe2ϕ̂∂η ϕ̂∂η ϕ̂ + e4ϕ̂ρ = 0. (10)

Substituting the de Sitter solution (9) into this equation with B = 1 yields ρ = 0. Thus,
matter is generated when the coupling constant t increases so that B decreases.

The inflationary expansion starts at the Planck scale HD and terminates at the dynam-
ical scale ΛQG where a spacetime phase transition occurs [26–29]. The running coupling
constant t̄2 indicates that spacetime is initially conformally invariant, while when energy
drops to the vicinity of ΛQG, t̄2 increases rapidly and deviates from such a spacetime.
The phase transition is expressed as a process in which the conformal gravity dynamics
disappear as t̄2 grows and the spacetime shifts to the present universe dominated by the
Einstein–Hilbert action. At this time, since the energy of the whole system is preserved to
be zero as in (10) due to diffeomorphism invariance, the disappeared energy of quantum
gravity is transferred to ρ, causing the big bang. (Interactions that cause the big bang are
given by the Wess–Zumino actions, such as ϕ

√−g F2
µν and ϕ

√−g C2
µνλσ. These interactions

are open near the phase transition as the running coupling constant increases). Entropy of
the universe (2) is also released to matter while preserving its total amount.

To describe such dynamics, we have proposed a model that approximates the running
coupling constant by a time-dependent mean field t̄2(τ) = [β0 log(τ2

Λ/τ2)]−1 that diverges
at the dynamical time τΛ = 1/ΛQG [27–29]. The running behavior is incorporated by
replacing t2 with t̄2(τ), and the replaced B is denoted as B̄(τ). The disappearance of con-
formal gravity dynamics is expressed by assuming its form as B̄(τ) = [1 + γ1 t̄2(τ)/4π]−1,
where β0 and γ1 are treated as phenomenological parameters. However, to be able to carry
out calculations analytically, here we mainly consider a radically simplified model so that
t̄2 remains almost zero and diverges sharply at τΛ, so that B̄ is almost 1 and abruptly goes
to zero at τΛ as a step function. In the meantime, we refer to the original unsimplified
dynamical model as appropriate.

The number of e-foldings Ne = log[a(τΛ)/a(τP)] from the Planck time τP = 1/HD to
the dynamical time τΛ is then given by the ratio of two energy scales as

N =
HD

ΛQG
. (11)

If we solve (8) with the dynamical factor B̄(τ) rather than the step function, H becomes
larger than HD near the phase transition, and the number of e-foldings becomes slightly
larger than N (see Figure 1).
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Figure 1. The inflationary solution presented by renormalizable and asymptotically background-free
quantum gravity: The left is the time evolution of the scale factor a, and the right is that of the
Hubble variable H, where HD is normalized to unity, and t (= HDτ) is a normalized proper time.
The solid lines (violet and blue) are the solutions of the dynamical model approximating the running
coupling constant with the time-dependent mean field, and the dashed lines (green and red) are the
radically simplified case. The vertical dotted line represents the dynamical time τΛ, which is set to
60 and at which the spacetime phase transition occurs. After time bigger than τΛ, the variables are
calculated using the low-energy effective gravity theory defined by derivative expansions centered on
the Einstein–Hilbert action (see [27] in detail), while the dashed lines display the Friedmann solution.

If N is fixed, the number of e-foldings is determined, and the energy scale ΛQG is
also determined. Scalar spacetime fluctuations, which account for most of the initial
fluctuations, have been shown to reduce in amplitude during inflation [27–29]. The magni-
tude at the phase transition can be roughly estimated as δR/R ∼ Λ2

QG/12H2
D = 1/12N2,

where the denominator is the de Sitter curvature. It should be the order of the CMB
anisotropy, 10−4 ∼ 10−5 [2,3]. Furthermore, the comoving dynamical scale λ = ΛQG/a0,
where a0 is the current scale factor, is approximately given by the current Hubble constant
H0 ≃ 0.00023 Mpc−1 to explain the sharp falloff in low multipole components of the CMB
anisotropy spectrum [26]. From these conditions, N is determined to be about 60, and ΛQG
is given on the order of 1017GeV, which is two orders of magnitude lower than the Planck
energy [26–29]. The magnitude of a0 that expresses how much the universe has expanded
since before inflation is determined to be about 1059 (see Figure 2). From previous studies,
we have found that ΛQG is a tight parameter whose value cannot be changed very much.

B
ig

 B
an

g

Friedmann Universe Inflation

Universe

correlation length

Hubble distance
≅ 4000 Mpc

1030 1059
scale factor

1

Figure 2. The evolution scenario of quantum gravity inflation: This shows that most of the universe
we see today, represented by the Hubble distance, was originally the size of a quantum gravity
excitation given by the correlation length ξΛ (= 1/ΛQG). That is, 1/H0 ≃ 1059ξΛ or H0 ≃ λ. This
suggests that the universe is an entangled quantum system.
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Rewriting the effective action (7) with the equation of motion (8) yields

ΓQG = −3M2
PV3

∫
dη

(
ϕ̂ − 1

)
e2ϕ̂

(
∂2

η ϕ̂ + ∂η ϕ̂∂η ϕ̂
)
. (12)

If the inflationary period given by (9) continues until it terminates at τΛ in the proper time,
the entropy of quantum gravity is given from Formula (2) as

SUniv = 6M2
PH2

DV3

∫ τΛ

0
dτe3HDτ

(
HDτ − 1

)
= 2M2

PHDV3

[
e3HDτΛ

(
HDτΛ − 4

3

)
+

4
3

]
. (13)

Omitting the negligible last term and rewriting with the scale ratio N, we finally get

SUniv = 2

√
8π2

bc
M3

Pe3N
(

N − 4
3

)
V3. (14)

The scalar curvature changes to zero during the spacetime phase transition, and matter
is produced with energy density ρ(τΛ) = 3M2

PH2(τΛ). The universe then evolves according
to the Friedmann solution. Since it a solution in which the Einstein–Hilbert action vanishes,
spacetime itself has no entropy; thus, matter propagating through the spacetime, including
gravitons, hold most of the entropy. Changing to this phase, we can define what is called
thermal state.

The quantum gravity entropy (14) is inherited in matters as a conserved quantity. It
should match the current entropy, which is given in density by [1]

s =
SUniv

Vtoday
3

=
2π2

45
g∗ST3 ≃ 2.91 × 103 cm−3, (15)

where g∗S = 3.91 and T = 2.73 K = 11.9cm−1. When comparing the two expressions, note
that V3 in (14) is the initial three-dimensional volume before inflation. The universe has
undergone inflation and the subsequent Friedmann eras, increasing the current scale factor
to a0. Therefore, from Vtoday

3 = a3
0V3, the current entropy density can be expressed as

s = 2

√
8π2

bc
M3

Pe3N
(

N − 4
3

)
a−3

0 . (16)

Here, fixing the parameters to bc = 7 and a0 = 1059 as derived before and finding the value of N
so that this agrees with (15), we get N = 62.2, where MP = 2.436×1018 GeV = 1.235×1032 cm−1

is used. Thus, we find that the current entropy of the universe is consistent with the scenario of
quantum gravity inflation.

The ratio between 2.73 K and ΛQG suggests that the universe expands about 1029 times
after settling into the Friedmann spacetime. Therefore, the universe has to expand about
1030 times during the inflationary era. This corresponds to Ne ≃ 70, which is greater
than 60. This contradiction can be resolved by considering a more realistic dynamical
model described by the time-dependent running coupling constant above. Figure 1 shows
an inflationary solution calculated by choosing the phenomenological parameters to be
β0 = 0.171 and γ1 = 0.1, with N = 60 so that entropy obtained by evaluating (12) with this
solution numerically agrees with (15). (The calculation is done by piecewise integration
in the proper time with the division width ϵ = 10−4. At this time, to avoid numerical
singularities, the initial time is set to 10−3, and the transition time is set to N − ϵ; then ϵ
is determined so that the result does not change even if it is made smaller). In any case,
quantum gravity can generate sufficient entropy.
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4. Conclusions

The current entropy of the universe is derived from the effective action of renormal-
izable quantum gravity with asymptotic background freedom. The result suggests that
entropy of the universe originates from quantum gravity. The conservation of entropy can
be shown from diffeomorphism invariance and renormalizability. Hence, these conditions
should be taken as guiding principles even in the trans-Planckian world.

The ghost modes in gravity as unphysical beings are necessary to provide entropy
while preserving the total Hamiltonian to be zero, and the zero-point energy then disap-
pears due to them [13]. The cosmic time, which is a change in the central value of the
conformal-mode fluctuation given by the inflation and Friedmann solutions, is also one of
things dynamically generated due to the existence of the ghost modes.

They also contribute to the structure formation of the universe. The ghost mode that
makes the Einstein–Hilbert action unbounded below is responsible for the instability of
the Friedmann universe: that is, the growth of fluctuations after the big bang resulting
in the large-scale structure of the current universe. Conversely, spacetime fluctuations
reduce in amplitude during the inflation period, giving the initial condition of the current
universe [27–29]. This stability is due to the fact that the fourth-derivative gravitational
action is positive definite even though it contains ghosts as sub-modes. In this way, these
various ghost modes play a decisive role when considering the universe as a whole. We
should pay more attention to this fact.

Instead of denying the existence of the ghost, we should consider what it brings to
a quantum system of the entire universe. (There is an idea to introduce boundaries and
remove ghost modes by appropriately imposing boundary conditions [45], but here we
are considering a universe in which there are no boundaries leading to the unknown
outside world, which is also a condition required for the SD equation (1) to hold). For
gravitational systems, since the Hamiltonian vanishes identically, we cannot directly apply
no-go theorems proving that the energy spectrum is unbound from below, such as the
Ostrogradsky theorem [46].

Reconciling quantum mechanics and gravity requires a deep understanding of what
it means for the Hamiltonian to vanish. The ghost mode reminds us of Bohm’s “hidden
variables” in the sense that it is “invisible, but being”. Note, however, that there is no
such variable in special relativity, and the ghosts are necessary only when gravity has a
substantial contribution.

The weak-field (graviton) approximation is nothing more than reducing the gravi-
tational system to a system in special relativity. It is an ordinary quantum-mechanical
system, in which case we consider the Hamiltonian eigenstate and no longer care about
the vanishing of the Hamiltonian. All states in this system are subject to observation; thus,
ghost modes must be erasable. This approximation only applies to local particle worlds
that do not affect the entire spacetime structure and is improper for the trans-Planckian
world where spacetime itself fluctuates quantum mechanically.
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Appendix A. Notes on Unitarity or Reality

Quantum spacetime where quantum gravity is fully activated is described in terms of
a conformal field theory so that the particle picture no longer holds true and the scattering
matrix is not defined. In such cases, the unitarity issue becomes easier to understand if we
consider quantum field theory in Euclidean space by performing the Wick rotation so that
the partition function is described from the perspective of statistical mechanics like

∫
e−I .

If the Euclidean action I is real and bounded below, the Boltzmann weight e−I is
positive and finite, and thus, the path integral is correctly defined. In this case, the reality
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of the field is not lost, and unitarity holds: that is, two-point functions are positive-definite
and structure constants (three-point functions) are real. This also state that a singular
configuration where I is positively divergent can be removed as an unphysical state that
does not exist stochastically because the Boltzmann weight vanishes, as mentioned in
the introduction.

On the other hand, if I is an indefinite action that can be negative infinite, the path
integral will diverge, and thus, the field reality will be sacrificed to regularize the divergence.
As can be seen from this fact, the path integral of quantum gravity cannot be correctly
defined by the indefinite Einstein–Hilbert action alone; thus, the square of curvature is
required to ensure positive definiteness.

Why does the ghost problem occur? Ultimately, the root cause of the problem lies in
not adopting a perturbation expansion method suitable for describing quantum spacetime.
Usually, it is carried out by employing a picture where gravitons propagate in flat spacetime.
Einstein’s theory of gravity allows us to describe spacetime with this picture because ghosts
can be removed locally. In fourth-derivative quantum gravity, however, this description
poses the problems that the positive- and negative-metric modes behave as independent
physical degrees of freedom asymptotically; thus, ill-defined correlation functions among
the negative-metric modes have physical meaning.

Conversely, if we consider physical quantities using the gravitational field as a “funda-
mental field” without separating into positive- and negative-metric sub-modes, correlation
functions among the fields are correctly defined because the field actions, the Riegert and
Weyl actions, are positive definite. Therefore, the reality of the field is never lost. In this
argument, it is extremely important that in Einstein’s theory of gravity, ϕ itself becomes a
ghost mode, whereas in fourth-derivative quantum gravity, ghost modes do not appear
unless the fundamental fields ϕ and hµν are further expanded into sub-modes.

Hence, in order to define fourth-derivative quantum gravity, it can be seen that when
dealing with physical quantities, there must be some kind of constraints that do not allow
the separation of the field into positive- and negative-metric modes so that the Hamiltonian
vanishes. The BRST conformal invariance plays exactly this role.

Appendix B. BRST Conformal Invariance

The key to the asymptotically background-free quantum gravity lies in special proper-
ties of the core of perturbation theory. Unlike the usual weak-field expansion, free particle
states do not appear as asymptotic states, as stated repeatedly. The core part is described
by a special conformal field theory, and the coupling constant t represents the degree of
deviation from it.

In normal conformal transformations, when the coordinates are transformed to
xµ → x′µ, the line element ds representing distance changes only by a conformal factor
like ds2 → ds′2 = Ω2ds2. At this time, the metric field remains fixed. Conversely, it can
also be defined as a transformation (Weyl transformation) that expands the metric field by
a conformal factor without changing the coordinates.

In contrast, since the BRST conformal transformation is a manifestation of diffeo-
morphism in the UV limit, the metric field is also transformed under the coordinate
transformation so that the line element remains unchanged as ds2 = ds′2. Moreover, physi-
cal quantities must be conformally invariant in the BRST conformal field theory, which is
very different from normal conformal field theory where only the vacuum is conformally
invariant. This symmetry was first studied in two-dimensional quantum gravity [47–50]
and then extended to four dimensions.

Hence, normal conformal invariance refers to the theory becoming independent of
a particular scale, although there is a metric that defines distance. On the other hand,
conformal invariance in quantum gravity occurs when the distance itself fluctuates; thus, it
truly represents a world without scale.

Specifically, it is expressed as follows [34–36]. First of all, diffeomorphism is a trans-
formation in which the line element ds2 = gµνdxµdxν remains unchanged under the
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coordinate transformation xµ → x′µ = xµ − ξµ. If the gauge parameter ξµ is infinitesimal,
then diffeomorphism is expressed as δξ gµν = gµλ∇νξλ + gνλ∇µξλ. When the metric field
is decomposed as in (4), diffeomorphism is expressed as

δξϕ = ξλ∂λϕ +
1
4

∂λξλ,

δξ hµν = ∂µξν + ∂νξµ − 1
2

ηµν∂λξλ + ξλ∂λhµν +
1
2

hµλ

(
∂νξλ − ∂λξν

)
+

1
2

hνλ

(
∂µξλ − ∂λξµ

)
+ o(h2), (A1)

where ξµ = ηµνξν.
The lowest term δξ hµν = ∂µξν + ∂νξµ − ηµν∂λξλ/2 in (A1) is the part that contributes

the most in the UV limit. The kinetic term of the Weyl action given by the quadratic term of
the traceless tensor field becomes invariant under this transformation. This gauge degree
of freedom is fixed using the standard gauge-fixing method in gauge theory.

Even if these gauge degrees of freedom ξµ are fixed, there still remain 15 gauge degrees
of freedom ζµ that satisfy the conformal Killing equation:

∂µζν + ∂νζµ − 1
2

ηµν∂λζλ = 0. (A2)

For this gauge degree of freedom, since the lowest term in transformation law (A1) dis-
appears and the next term becomes effective, diffeomorphism is expressed in conformal
transformations as

δζϕ = ζλ∂λϕ +
1
4

∂λζλ,

δζ hµν = ζλ∂λhµν +
1
2

hµλ

(
∂νζλ − ∂λζν

)
+

1
2

hνλ

(
∂µζλ − ∂λζµ

)
. (A3)

where the field-independent shift term in the first, which is not present in normal conformal
transformation, shows that this transformation is derived from diffeomorphism. For
formulation in the BRST formalism, see [35,36].

The BRST conformal invariance is thus a hidden symmetry that becomes visible
when the theory is rewritten as a quantum field theory (5) in a background spacetime. It
represents the background freedom that all theories on different backgrounds connected by
the conformal transformation are gauge equivalent.

Physical quantities of quantum gravity in the high energy limit must be invariant
under the conformal transformation (A3). One of the characteristics of this transformation
is that the right-hand side depends on the field. In an ordinary gauge transformation, the
lowest term depends only on the gauge parameter and is independent of the field. Under
such a transformation, modes that make up the field become independent without mixing.
On the other hand, under the transformation (A3), the modes mix with each other and are
not gauge-invariant independently.

Therefore, gravitational ghost modes do not themselves become physical states. Physi-
cal states can be expressed as states in which the whole Hamiltonian exactly vanishes. The
reason why they can exist as non-trivial states with entropy rather than an empty vacuum
is because of the ghost mode. The BRST conformal invariance truly defines physical states
that appear in the UV limit far beyond the Planck scale, and they are given by scalar
states only.
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