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Abstract: Texture, soil organic matter (SOM), and soil depth (SoD) are crucial properties in forest
management because they can supply spatial information on forest site productivity and guide
fertilizer applications. However, soil properties possess an inherent uncertainty that must be mapped
to enhance decision making in management applications. Most digital soil mapping predictions
primarily concentrate on the mean of the distribution, often neglecting the estimation of local
uncertainty in soil properties. Additionally, there is a noticeable scarcity of practical soil examples to
demonstrate the prediction uncertainty for the benefit of forest managers. In this study, following a
digital soil mapping (DSM) approach, a Quantile Regression Forest (QRF) model was developed to
generate high-resolution maps and their uncertainty regarding the texture, SoD, and SOM, which
were expressed as standard deviation (Sd) values. The results showed that the SOM (R2 = 0.61,
RMSE = 2.03% and with an average Sd = 50%), SoD (R2 = 0.74 and RMSE = 19.4 cm), clay (R2 = 0.63,
RMSE = 10.5% and average Sd = 29%), silt (R2 = 0.59, RMSE = 6.26% and average Sd = 33%), and
sand content (R2 = 0.55, RMSE = 9.49% and average Sd = 35%) were accurately estimated for forest
plantations in central south Chile. A practical demonstration of precision fertilizer application,
utilizing the predictive distribution of SOM, effectively showcased how uncertainty in soil attributes
can be leveraged to benefit forest managers. This approach holds potential for optimizing resource
allocation and maximizing economic benefits.

Keywords: soil prediction uncertainty; precision forestry; LiDAR-derived DEM; SCORPAN

1. Introduction

Environmental characteristics and soil site conditions have a significant impact on
forest growth and stand development [1], and as a result, understanding them is critical
for forecasting planting limits on specific forest species and their productivity [2]. Soils, in
particular, play an important role in regulating, supporting, and provisioning ecosystem
services, and data on soil properties represent critical information for forest planning and
management schemes [3]. Key soil properties such as the texture and organic matter content
are essential to estimate site productivity, which is defined as a quantitative estimate of a
site’s potential to produce a volume of trees in a given time [4].

Soil texture has shown to be strongly related to the movement, retention, capacity, and
availability of nutrients and water content, as well as the ease with which plant roots may
penetrate the ground and absorb water [5]. Previous research on forest growth has observed that
soil texture is one of the most important properties for evaluating soil compaction recovery to
guide future planting procedures [6]. For example, Ref. [7] found a strong correlation (R2 = 0.84)
between the soil texture content and soil density. Soil organic matter (SOM) is an important
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chemical property for evaluating forest site fertility because it has a large influence on the soil
cation exchange capacity [8], which is a vital factor for nutrient supply to plants [9]. Previous
research found that increasing the SOM by 1% raised the site index (the height of dominant
trees per stand in a target year) by approximately 20% in Pinus banksiana plantations and by
7% in Picea glauca plantations [10]. Additionally, soil depth (SoD), described as the depth of the
soil profile from the top surface to the bedrock or root barriers [11], is also correlated to nutrient
capacity and the plant’s available water content, and it controls biological activity [12]. This
soil property has been linked to site index prediction in Pinus plantations [13] as well as overall
productivity in forest plantations [14]. Changes in the SoD have also been linked to variations in
the basal area within hardwood plantations. Specifically, the loss of soil thickness due to erosion
is projected to decrease the basal area from an initial estimate of 18 to 26 m2/ha to a range of
8 to 21 m2/ha in future generations of forest plantations [15].

Understanding the interplay between physical and chemical soil properties that con-
tribute to forest biomass production and carbon storage is vital, particularly in managed
forest plantations where the goal is to maximize productivity over short rotation cycles.
Enhancing the spatial characterization of soil properties not only facilitates an increased
understanding of site productivity [4] but also optimizes fertilizer applications. Forests
planted on sites with high nutrient contents tend to be less responsive to fertilizer applica-
tions, potentially eliminating the need for such interventions [16]. Ref. [17], for instance,
observed a 400% increase in volume in Pinus ponderosa plantations due to fertilizer applica-
tions at sites with low concentrations of organic matter and nitrogen content. Consequently,
identifying site fertility is critical for reducing fertilization management costs without
significantly compromising potential growth. Furthermore, soil property data helps in
optimizing heavy machinery allocation during timber harvesting and site preparation in
plantations to minimize soil compaction.

Conventionally, the representation of soil properties and their relationships with envi-
ronmental characteristics are traditionally obtained through field surveys, soil pit samples,
and laboratory analyses [18]. Several approaches for interpolating the spatial information
of soil properties, commonly employing geostatistical models, have emerged in recent
decades based on field and laboratory measurements and spatially explicit environmental
data [19]. The introduction of the SCORPAN theoretical model has proven to provide
the best approximation for the development of digital soil mapping (DSM), improving
the spatial representation of numerous soil properties. This theoretical model posits that
soil properties are the result of the interactions between seven factors or variables that
describe soil formation: S (previously measured soil information), C (climate), O (land
cover), R (topography), P (parent material), A (soil age), and N (spatial position) [18].
This approach has been frequently used to predict and map soil properties such as depth
gradients of soil organic carbon [9] and soil texture [20]. These soil maps are designed to
provide decision-makers with accurate and precise information, which is necessary in forest
plantation management to improve and enable site-specific management operations [21],
mainly in relation to precise fertilization treatments based on granular assessments of soil
nutrient deficiencies [22]. Nonetheless, it is also well recognized that the maps produced
using DSM techniques are not error-free [23].

Uncertainty in digital soil mapping can originate from modeling errors and measure-
ment inaccuracies associated with the input data [23]. Quantifying uncertainty is a crucial
step because it assesses the reliability of the prediction data, typically expressed within
a range of confidence intervals [24]. In the context of precision silviculture, possessing a
comprehensive understanding of the confidence intervals for predicted variables, such as
soil fertility, holds significant importance when making site-specific fertilization manage-
ment decisions [25]. This knowledge provides valuable advantages by allowing resources
to be directed towards areas based on the inherent variability in soil properties. However,
the majority of digital soil mapping predictions tend to focus solely on the mean of the
prediction distribution and often avoid estimating local uncertainty in soil predictions.
This is due to inherent challenges, particularly with machine learning models, which are
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the preferred and most common approach for DSM [26]. For instance, the Random For-
est (RF) method has gained widespread use in digital soil mapping, attributable to its
ensemble of regression trees that yield more robust estimations with less biased internal
error estimates [27]. Nevertheless, this approach only retains the mean of the prediction
observations while disregarding other valuable information [28]. Other statistical models,
such as the Bayesian Maximum Entropy (BME) model for spatial prediction, address the
integration of data with uncertainty into the modeling process, aiming to enhance their
predictive capabilities compared with traditional estimation methods [29]. However, this is
normally challenged by computational complexity, sample size limitations [30], uncertainty
in interpretability, and the complexity of parameter estimation [31].

The Quantile Regression Forest (QRF) [32] approach is a tree-based ensemble method
which has the advantage of allowing the measurement of prediction uncertainties for each
soil property as well as the depiction of probability distributions of dependent environ-
mental variables [28]. A QRF, akin to an RF, offers valuable information regarding both
the median and the distribution of the target variable. The principal difference lies in
the treatment of observations within each node and tree: while an RF retains only the
mean of the observations, thereby discarding additional data, a QRF preserves the val-
ues of all observations [32]. In recent years, QRFs have been gaining popularity in soil
investigations, providing accurate estimates of the SOM [23,33,34], clay content, and other
soil parameters [28,35], including in-depth 3D representations of the SOM, pH, and clay
content, among others [36]. While most studies have centered on comparing the QRF
method with other machine learning algorithms concerning their predictive prowess—for
example, for soil organic carbon [37] and soil organic matter [28,34]—with favorable results,
there remains a gap in terms of its use for management decisions in the soil domain. The
application of uncertainty for management is undoubtedly beneficial for decision making.
Still, recent research lacks practical examples on harnessing this uncertainty for the benefit
of forest managers.

Recognizing the significant gap in current research, this study introduces an innova-
tive approach to soil science by developing probabilistic maps to aid forest management
decisions. The ability to visualize a range of possible soil conditions across a given area
presents a substantial advancement over conventional methods, which typically rely on less
descriptive, average-based data. This probabilistic approach becomes essential for making
informed, data-driven decisions crucial for sustainable forest management. By focusing on
these maps, this study aims to enhance operational strategies and decision-making pro-
cesses in forestry. The purpose of this study therefore is to evaluate the spatial uncertainty
distribution for soil depth, texture, and organic matter, with the intention of applying these
findings to forest management operations at a 10 m spatial resolution. For this, we utilized
the Quantile Regression Forest (QRF) model approach. To do so, we investigated (1) the
uncertainty of soil property mapping products, (2) elaborating a 3D map for the texture and
SOM based on the SoD, and (3) practical management application examples that leverage
fine resolution and its associated prediction distribution.

2. Study Area

The study area was located at a specific site in central south Chile, in the Región del
Maule (35◦14′ S, 73◦20′ W). The diverse terrain of this region comprises the coastal Andes
ranges, the central valley, and the Andes foothills. Alfisol soils, found along the coast, are
described as highly fertile with high concentrations of aluminum (Al) and iron (Fe), and
rich in clay content [38]. Ultisols are present on the Andes’ coastal range and inceptisols
occur in the valley [39] (Figure 1). Ultisols have a kandic or argillic horizon and few basic
cations that have formed under forest vegetation in humid climates [40]. Inceptisols are
soils with minimal horizon development, with some evidence of clay minerals, metal
oxides, or humus accumulating in layers, but not enough to classify the soil into an order
defined by characteristic surfaces [41]. The parent material in the study area varies from
marine sediments at the coast, to metamorphic and granitic sediments in the valley. The
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climate is rainy and temperate, with the annual precipitation varying widely from 1219 mm
along the coast to 2835 mm along the Andes coastal range, showing dry periods in the
summer and wetter periods in the rest of the year. The elevation on the study area ranges
from sea level (~1 m) to 1280 m.a.s.l. A land-use map for the area is illustrated in the
Appendix A section (Figure A1).
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Figure 1. Map showing the study area distribution, with soil pit and auger information in red and
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3. Materials
3.1. LiDAR

Airborne LiDAR technology, also known as airborne laser scanning (ALS), was used
to collect data over 160,000 ha (Figure 1), spanning over a continuous region of forest
plantations. Data acquisition took place between February and October of 2020–2021
following the specifications shown in Table 1.

Table 1. Airborne laser scanning (ALS) data acquisition parameters.

Acquisition Parameter Value

Sensor Optech Galaxy Prime (Teledyne Optech, Vaughan, Ontario, Canada).
Utilized plane Tecnam P2006
Flying height 3000 m AGL

Average flying speed (knots) 115
Pulse repetition frequency (kHz) 700

Scan angle 26 deg
Returns recorded Up to 5

Overlap 60%
Average overall point density 29.2 points/m2

Average pulse density 20.8 pulses/m2
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3.2. Soil Pit and Auger Data

Within the ALS survey area, a soil profile legacy database collected by Forestal Arauco
was used in this study, comprising 654 soil pits and 1442 soil depth samples obtained
utilizing an auger in bore holes up to 4.1 m deep (auger length), with their spatial location
recorded using a Garmin Handheld GPSMAP 64 2.6′′ GPS (Garmin Ltd., Olathe, Kansas,
USA). Data for all soil profiles were collected just after harvesting between 1994 and 2018
and were distributed across Pinus radiata plantations.

Soil pits were 150 cm deep × 150 cm wide and their profile properties were evaluated
using the recommendations provided in [17]: (i) horizon nomenclature, including master
horizons and other modifiers, as well as horizon thickness (in cm); (ii) soil matrix color in
the moist state using the Munsell notation; (iii) texture class determined using the field
hand test; (iv) carbonates determined using the effervescence field test; and (v) stoniness
in vol. %.

Soil pit samples were analyzed in the laboratory to obtain sand, clay, and silt content
measurements, as well as SOM, determined using wet oxidation throughout the entire soil
pit profile and horizon thickness (cm). Soil depth information was based on 2096 observa-
tions, which included both soil pits and auger samples. Table 2 contains a summary of all
of the information for SoD, texture, and SOM.

Table 2. Soil information. Values shown represent the number of observations (N) and the mean,
standard deviation, and minimum and maximum values.

Soil Property N Mean Standard Deviation Min Max

SoD (cm) 2096 158.7 65.6 30 420
Silt% 654 26.1 9.25 6 71
Clay% 654 41.8 17.3 11 87
Sand% 654 32.1 12.9 1 64
SOM% 654 6.7 3.2 0.3 18.2

3.3. Climate

Long-term monthly temperature (maximum and minimum) and rainfall data from
1990 to 2020 were obtained at 500 m resolution from CR2 (Center for Climate and Resilience
Research) [42], available online. This dataset encompasses the continental region of Chile
on a consistent 0.05-degree latitude–longitude grid. It was developed using statistical
models that calibrate various climatic variables against rigorously controlled observational
data, including atmospheric variables from weather stations, topographical details, and
land surface temperature data derived from the MODIS satellite sensor.

3.4. Existing Soil Information

The Chilean Natural Resources Information Center (CIREN) provided us with vector
information on the soil morphological properties and parent material, available online [39],
including soil class data following the USDA Soil Classification System at order, suborder,
great-group, subgroup, family, and series levels.

3.5. Forest Cover

Landsat 8 OLI remote sensing imagery that covered the study area was acquired for
the period from 2013 to 2022, ensuring a maximum cloud cover of no more than 20%.
These images provided observations at 16-day intervals with a moderate spatial resolution
of 30 m. They served as proxies for land-cover representation, and further details are
discussed in Section 4.
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4. Methodology
4.1. Digital Elevation Model

The raw ALS data were processed using conventional routines to build a digital
elevation model (DEM), which included tiling, filtering, and ground classification at a 10 m
spatial resolution. For processing, the LAStools software package (version 211206) was
employed [43]. The lasground algorithm was used to classify the ground data (with default
parameters), and then blast2dem was used to create the DEM.

4.2. Modeling Soil Properties

The SCORPAN approach was used to model the SoD, SOM, and soil texture. The
input variables for the SCORPAN model encompassed all of the aforementioned soil
properties. For our research, we chose to produce a 10 m spatial resolution map for DSM.
This decision was primarily driven by the increasing demand for site-specific precision in
silviculture management and precision fertilization treatments within forest stands based
on a granular assessment of the soil nutrient deficiencies. According to [44], fast-growing
trees in plantation environments have a root lateral extension of 1.5 to 2.5 times the tree
height, ranging from 10 m and up, depending on their age, for which a 10 m resolution map
could account for individual tree interactions with chemical and physical soil properties
affecting growth. An overview of the approach is showed in Figure 2.
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First, a set of input variables (environmental covariates) related to soil-forming factors
were produced using the SCORPAN approach. Second, a variable selection method,
specifically Recursive Feature Elimination, was used to determine the best variables for
each soil attribute. Third, Quantile Regression Forest (QRF) [32] models were employed for
digital soil mapping. Data were split into training (80%) and testing (20%) datasets, and
their spatial distribution is illustrated in Figure 1. Models were assessed using coefficient
of determination (R2), root mean square error (RMSE), and mean absolute percent error
(MAPE) values. In the fourth step, we derived a percentile distribution, focusing on the
median—which offers more reliable predictions than the mean for soil attributes with
outliers or skewed distributions—and assessed the uncertainty of each predicted soil
attribute. In addition, by utilizing the entire range of the distribution of SOM, we informed
the creation of a probabilistic map tailored for precision management applications. Further
details are provided in Section 4.5.

For the soil depth data, an extra step was required due to the unbalanced distribution
of the data (60% of observations were above 180 cm). First, to prevent the regression
model from forecasting values predominantly over the class with the most data, the soil
depth information was pre-classified using an RF classification model into either ‘above
180 cm’ or ‘below 180 cm’. The model was then validated with a confusion matrix using
the testing dataset (above 180 cm only). The value of 180 was assigned for the SoD in
pixels so that the model could predict the class ‘above 180 cm’. Second, a QRF model was
developed for the subset of the data corresponding to soil depths below 180 cm. The final
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soil depth prediction was an ensemble of both classification and regression models, with
the regression output being applied to areas classified as less than 180 cm deep.

4.3. Input Environmental Covariates for DSM
4.3.1. Topographic Variables

Topographic attributes are important variables for soil formation [18] as they deter-
mine the pathways of surface water movement across a watershed and therefore affect
watershed hydrologic responses to rainfall, as well as soil properties such as the organic
matter decomposition rate and soil texture [45,46]. Primary topographic variables can be
computed directly from the DEM [47]. We applied the Automated Geoscientific Analysis
(SAGA) [48] approach to obtain nineteen primary topographic variables affecting soil
formation properties (Table 3). All of these variables were derived directly from the DEM
at a 10 m resolution.

Table 3. List of topographic input variables.

Code Description

DEM Digital elevation model
Aspect Aspect degree (%)
CNBL Channel network base level (m.a.s.l)
CND Channel network distance
CI Convergence index
DiffI Diffuse insolation
DirI Direct insolation
LS_factor Slope length and steepness factor
MRRTF Multiresolution Index of Ridge-Top Flatness

MRBVF Multiresolution Index of Valley-Bottom
Flatness

PC Plan curvature
ProfC Profile curvature
Slope Slope degree
TanC Tangential curvature
TSC Terrain surface convexity
TWI Topographic wetness index
TC Total catchment area
TIns Total insolation
ValDepth Valley depth

4.3.2. Forest Cover

Previous studies have successfully utilized satellite information and satellite indices as
proxies to represent the land cover. Examples include the use of GlobeLand30 data, acquired
from Landsat TM and ETM+ sensors [33], and NDVI data from Landsat 8 [49] to predict
soil organic carbon. According to [50], maximum-value vegetation indices can capture the
dynamics of green vegetation while reducing typical issues such as cloud contamination,
surface directional reflectance, atmospheric attenuation, and view and lighting geometry.
To reflect historical forest cover for the SCORPAN vegetation variables, two vegetation
indices—the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation
index (NDVI)—were computed using Landsat 8 OLI at a 30 m resolution using Google Earth
Engine. For this study, the EVI and NDVI were calculated from 2013 to 2022; to minimize
the effect of clouds or the influence of atmospheric constituents on these vegetation indices,
the maximum value per year was chosen to reflect the yearly NDVI and EVI. The final
NDVI and EVI values were calculated as the 10-year average maximum values and then
resampled to 10 m using the bilinear interpolation method.

4.3.3. Climate Variables

Climate variables are useful in forecasting soil properties and have been applied to
digital soil mapping [51]. Previous studies have used kriging with external drift (KED) in
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order to interpolate and downscale temperature data using elevation as an external drift,
improving the final forecast over kriging based solely on spatial information [52,53]. KED is
a type of interpolation technique that combines spatial information from the data as related
to an external drift defined by an auxiliary variable [54]. To verify that the climatic variables
were integrated with the other SCORPAN variables (topography, parental material, and
satellite vegetation indices), they were resampled to 10 m. For this, we applied the KED
approach using the association between each monthly climatic variable (rainfall, minimum
temperature, and maximum temperature described in the data) and the DEM as the external
drift. This process was implemented using 10-fold cross-validation with the covariance
function automatically chosen. The covariance function was selected automatically from
either a Spherical, Exponential, Gaussian, or Matérn function via minimizing the prediction
RMSE and coefficient of correlation.

These variables were then used to create 19 bioclimatic variables, calculated as a
function of the monthly minimum and maximum temperatures and precipitation (mm) and
elaborated with the KED approach (variables listed in Table A1), using the climate-based
models provided by the United States Geological Survey (USGS).

4.3.4. Parent Material and Other Soil Information

Parent material and lithology information are considered to be fundamental variables
for digital soil mapping [18]. Parent material has been shown to have a considerable
influence on soil properties such as texture, color, pH, and mineral composition [55]. The
soil class information and parent material, available in vector format, were rasterized to a
10 m resolution.

4.4. Variable Selection

According to [56], a large number of independent variables in machine learning models
can lead to poor prediction performance and overfitting. Recursive Feature Elimination
(RFE) is a feature selection method that tries to find the best feature subset based on the
learned model and classification accuracy by removing features that have the least effect on
training errors [57]. RFE is essentially a backward predictor selection method that selects
features by recursively considering smaller and smaller subsets of features, then builds a
model with the remaining attributes and calculates the model’s accuracy using internal
cross-validation [58]. This step is critical for avoiding overfitting issues caused by a high-
dimensional dataset with an excessive number of features [59]. The RFE pre-processing
method was used to extract a subset of relevant variables from the 44 covariates available.
The top variables were selected based on a measure of the percent increase in mean squared
error. This score indicates how much each predictor variable contributes to the accuracy of
the model. We used 5 folds and 5 repeats while running the RFE.

4.5. Quantile Regression Forest

As previously mentioned, a QRF not only estimates the conditional mean but also retains
information on other quantiles of the response variable, which can be used to generate the
prediction distribution. The QRF framework employs the power of Random Forests by building
multiple decision trees, which then aggregate the predicted quantiles from each tree, offering
a comprehensive distributional forecast rather than a single point estimate [28]. This method
proves especially valuable when the interest lies in understanding the relationship between a
set of predictor variables and specific percentiles of the response variable [32]. Hereafter, these
will be referred to as percentiles for clarity. For instance, a prediction at the 50th percentile
corresponds to the median of the dependent variable. Similarly, predictions at the 25th and 75th
percentiles provide estimates of the lower and upper quartiles, respectively, thus providing a
more detailed perspective on the range of potential outcomes. In the context of soil analysis,
this allows us to observe the variability in predictions of soil properties, thereby aiding in more
targeted soil management strategies.
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The QRF technique was used to develop a regression model for predicting the soil
texture, SOM, and SoD under 180 cm.

4.5.1. Uncertainty, Soil Property Predictions, and Forest Management Practical Example

For each soil property, the median (50th percentile) and standard deviation (SD)
(representing uncertainty) were determined. Sd is determined based on the entire prediction
distribution per pixel. Additionally, for the four selected sites across the study area (see
Figure 1), various percentiles were calculated to understand the conditional distribution
and variability in the response outcome. The percentiles selected for this purpose were the
10th, 25th, 50th, 75th, and 90th percentiles. These sites were selected for their variability in
terms of DEM at the study site, located at 227, 8, 942, and 817 m above sea level for sites 1,
2, 3, and 4, respectively, and covered different types of soil orders.

Subsequently, R2 and RMSE values were calculated using the testing dataset, based
on the median.

To incorporate predictive uncertainty and the entire distribution of soil properties for
forest management applications, we constructed a practical example. In this example, we
used predictions of SOM to identify sites with varying fertility levels. We established a
threshold of 5% SOM, directing the allocation of fertilizers to sites where fertility levels
were at or below this threshold. This 5% SOM threshold was selected arbitrarily to suit
the needs of our example; however, this value can be adjusted based on fertility research
that examines the relationship between SOM and forest yield, thereby establishing a more
appropriate threshold for fertilizer application. Using the QRF, we modeled the SOM
content across a range of quantiles, from the 1st to the 99th percentile (0.01 to 0.99). This
method allowed us to estimate the conditional distribution of SOM content given the
selected environmental variables (RFE). Predictions were generated for each pixel in the
raster dataset, with the model outputting the predicted SOM content at specified quantiles.
We specifically targeted the percentile that most closely approached the 5% SOM threshold.
The results were stored spatially, enabling us to visualize and assess areas likely to meet or
exceed this SOM content threshold. To represent the probability of having values equal to
or above the target threshold, we used the following equation:

P = 1 − argpmin | Qp(Y | X)− yt | (1)

where Y denotes the SOM content, X represents the set of the selected variables (post RFE
for SOM), Qp(Y|X) is the pth percentile of the conditional distribution of Y given X, yt is
the target SOM content (5%), and P is the probability of having pixel values above or equal
to the established SOM threshold.

We then set an 80% probability threshold to guide fertilizer application decisions. This
level offers a pragmatic balance between certainty and practicality in decision making. Setting
the threshold at 80% establishes a high level of confidence that the soil genuinely meets the
required SOM content before applying fertilizers. Additionally, an 80% threshold minimizes the
risk of under-fertilizing, which can occur if the threshold is set too high (e.g., 95%), potentially
leading to suboptimal forest yields and economic losses.

4.5.2. Three-Dimensional Soil Property Predictions

To obtain the prediction values at different depths (3D representation) for the SOM,
clay, silt, and sand content, we used depth information from soil pit chemical analyses at
different horizon thicknesses (in cm) as the dependent variables in the QRF model, and
the depth along with the value of the selected environmental covariates as independent
variables, as used in [36]. For this case, the average depth value assigned at the center of
the observed depth interval per soil-pit thickness was used. This model can be generalized
as follows:

Sa(x,y) = f(depth(x,y), topography(x,y), forest land cover(x,y), climate(x,y), parent material(x,y), soil(x,y)) (2)
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where Sa is the soil property of interest, depth is the depth at which this property was
measured, and topography, forest land cover, climate, parent material, and soil are the
selected environmental variables (code available on [60]).

These models were then used to predict the soil property over the spatial distribution
of the environmental variables and values of depth between 0 and 180, every 10 cm.
The prediction maps for the clay, silt, and sand content were used to classify soil texture
according to the USDA textural soil classification [61]. Here, the soil texture class is derived
based on the different proportions of sand, silt, and clay. For instance, an equal proportion
of sand, silt, and clay results in a loam soil class, while a higher proportion of clay (30–45%)
compared to sand (20–45%) and silt (20–45%) will result in a clay loam classification.

4.6. Software Implementation

R (version 4.3.3) was used for all simulations and validations for producing climatic vari-
ables, regression models, and classification models. The 10-fold cross-validation for downscaling
the temperature (max and min) and precipitation data using KED was performed using au-
toKrige.cv (Version: 1.1-9) [62] from the ‘automap’ package (Version 1.1-9) [63]. The biovars
function in the ‘dismo’ (Version 1.3-14) [64] package was used to obtain 19 bioclimatic variables
based on the monthly minimum and maximum temperature and precipitation (mm). The QRF
was implemented via the quantregForest R-package [65]. The RF classification model was im-
plemented using the caret package (Version 6.0-94) [66], as well as tuning the hyperparameters,
including the number of randomly selected predictors, the minimum node size, and the splitting
rule. Soil texture classification was implemented using the soiltexture package (Version: 1.5.3)
and the USDA.TT classification [67].

5. Results
5.1. Climate Variables

The cross-validation results demonstrated that KED downscaling provided accurate esti-
mates of the climatic variables. For all months, the RMSE difference between the original and
downscaled resolution was low, ranging from 0.04 to 0.62 mm for precipitation, from 0.04 to
0.09 ◦C for the minimum temperature, and from 0.08 to 0.12 ◦C for the maximum temperature.
Due to an increase in rainfall throughout the winter (May to August), there was a slight increase
in error for precipitation during this time period, coming to an average of 0.44 mm. For all
months and variables, an r value of 0.99 resulted in the cross-validation process.

5.2. Variable Selection

The RFE reduced the 44 available input variables to the 10 most important for every
soil property. Predominantly, these variables were generally of a topographic nature
(60%), followed by climatic variables (37%), and forest land-cover variables (3%). For the
prediction of all properties (SoD, SOM%, clay%, silt%, sand%), the DEM and total annual
precipitation (bioclimatic variable) were selected as the top variables. The channel network
base level (CNBL) was the second most important topographic variable, influencing every
soil property. Furthermore, the mean annual temperature was one of the top ten input
variables for the SoD and SOM, while temperature seasonality affected the SOM, clay,
silt, and sand content. Table 4 summarizes the 10 input variables selected for each soil
property prediction.

Table 4. Selected input variables for the SoD, SOM, clay content, silt content, and sand content
predictions. The first section of this table contains climatic variables, followed by topographic
variables, and, finally, remote sensing proxies of the forest and land cover. A more detailed description
of each variable is given in Table A1.

Input Variable SoD SOM% Clay% Silt% Sand%

Total precipitation (mm) ✓ ✓ ✓ ✓ ✓
Precipitation seasonality (%) ✓
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Table 4. Cont.

Input Variable SoD SOM% Clay% Silt% Sand%

Mean temperature (◦C) ✓ ✓
Mean diurnal range (◦C) ✓

Temperature seasonality (%) ✓ ✓ ✓ ✓
Precipitation of the wettest month (mm) ✓ ✓ ✓

Temperature annual range (◦C) ✓ ✓ ✓
Channel network distance ✓ ✓ ✓

DEM ✓ ✓ ✓ ✓ ✓
Channel network base level (m.a.s.l) ✓ ✓ ✓ ✓

Valley depth ✓ ✓ ✓ ✓
Aspect ✓

Slope length and steepness factor ✓ ✓
Terrain surface convexity ✓

Diffuse insolation ✓ ✓
Slope ✓

Multiresolution Index of Valley-Bottom
Flatness ✓ ✓ ✓

Multiresolution Index of Ridge-Top
Flatness ✓

Total insolation ✓
EVI ✓

NDVI ✓

5.3. Validation
5.3.1. Soil Depth Classification

The SoD classification model achieved an overall accuracy of 0.84, as evaluated using
a confusion matrix, with a 95% confidence interval ranging from 78.99% to 87.46%. The
matrix revealed 164 true positive cases of soil depths correctly predicted to be greater than
180 cm, and 100 true negative cases where soil depths were accurately identified as less than
or equal to 180 cm. There were 36 commission errors and 16 omission errors, indicating
instances of overestimation and underestimation, respectively (Table 5). Additionally,
the Kappa statistic, which measures the agreement between predictions and references
corrected for chance agreement, was 0.66.

Table 5. Confusion matrix for SoD classification.

Reference Prediction Depths over 180 cm Depths under 180 cm

Depth over 180 cm 164 36
Depth under 180 cm 16 100

5.3.2. Soil Attributes

The results of the soil attribute modeling using the QRF are presented in Table 6, which
includes both the training and testing sets for validating the accuracy of the predictions.
The most accurate predictions using the testing dataset were for SoD (below 180 cm), with
an R2 of 0.74 and an RMSE of 19.4. In contrast, the sand predictions were the least accurate,
exhibiting the lowest R2 at 0.55 and a MAPE of 42. Other variables such as SOM, clay,
and silt were modeled with R2 values ranging from 0.59 to 0.61. However, the MAPE for
SOM was 41.18, while for clay and silt, it fluctuated between 20.73 and 20.91. Predicted
versus observed plots for SOM, clay, sand, silt, and SoD (below 180 cm) are illustrated in
Appendix A.

The spatial representation of the SoD data is illustrated in Figure 3. This map combines
the regression output applied to areas classified as less than 180 cm deep in the classification
prediction map. Deep soils are located on the foothills of the Andes coastal range, whereas
shallow soils (less than 180 cm deep) are found in areas with a slope steepness greater than
35◦ and channel network areas.
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Table 6. Accuracy of the modeled soil properties.

Variable R2 RMSE MAPE

Using the testing dataset:
SoD 0.74 19.4 10.53

SOM% 0.61 2.03 41.18
Clay% 0.63 10.5 20.91
Silt% 0.59 6.26 20.73

Sand% 0.55 9.49 42
Using the training dataset:

SoD 0.86 10.4 7.6
SOM% 0.84 1.29 21.8
Clay% 0.78 8.75 16.9
Silt% 0.68 6.08 18.4

Sand% 0.73 8.21 40
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model (above and below 180 cm) and a regression model.

5.4. Mapping the Uncertainty and Soil Property Predictions

Figure 4 depicts the spatial representations of the SOM, clay, silt, and sand predictions.
In the upper soil layer, there is a noticeably high content of SOM across the study area,
with values peaking at 18.1%. Some pockets of land in the coastal range exhibit increased
uncertainty (Figure 4B). A significant portion of the study area has a high clay content,
reaching up to 79%, especially near the Andes foothills (in areas with ultisols) and within
some parts of the valley (alfisols). However, there is a higher uncertainty associated with
this soil property in the coast and along channel network pathways (Figure 4D). Silt is
primarily concentrated in the northern region of the Andes foothills, while sand is more
prevalent at higher altitudes. Across all soil properties, with the exception of silt, there is
greater uncertainty along the channel network located within the valley.
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Figure 4. The 50th percentile predictions for the (A) soil organic matter content, (C) clay%, (E) silt%,
and (G) sand% at the surface level (0 cm). Additionally, this figure displays the standard deviation of
these predictions for the (B) soil organic matter content, (D) clay%, (F) silt%, and (H) sand%.

Figure 1 displays four sites selected based on their variability within the study area.
The distribution of these four sites is detailed in Figure 5, presenting the 10th, 25th, 50th,
75th, and 90th percentiles. From this, we can observe the variability in soil properties.
Generally, sites 2 and 3 exhibit lower SOM levels compared to other areas. Meanwhile, sites
3 and 4 demonstrate more balanced concentrations of sand, silt, and clay.

In our practical example, we created a probabilistic map indicating areas with 5%
SOM content, as illustrated in Figure 6A. This analysis facilitated the development of a
probabilistic map based on the entire range of distribution for the SOM, which was used to
identify areas of high or low fertility for targeted fertilizer application. Figure 6B highlights
the designated zones for fertilization: regions with at least an 80% probability of surpassing
5% SOM content are colored green, while those with a 5% or lower probability are colored
purple and marked for fertilizer application.



Soil Syst. 2024, 8, 55 14 of 25Soil Syst. 2024, 8, x FOR PEER REVIEW 15 of 16 
 

 

 
Figure 5. Percentile distribution of SOM, clay, silt, and sand contents for the four sites depicted in 
Figure 1. 

In our practical example, we created a probabilistic map indicating areas with 5% 
SOM content, as illustrated in Figure 6A. This analysis facilitated the development of a 
probabilistic map based on the entire range of distribution for the SOM, which was used 
to identify areas of high or low fertility for targeted fertilizer application. Figure 6B high-
lights the designated zones for fertilization: regions with at least an 80% probability of 
surpassing 5% SOM content are colored green, while those with a 5% or lower probability 
are colored purple and marked for fertilizer application. 

Figure 5. Percentile distribution of SOM, clay, silt, and sand contents for the four sites depicted in
Figure 1.

Soil Syst. 2024, 8, x FOR PEER REVIEW 16 of 17 
 

 

 
Figure 6. Probability maps indicating 5% SOM content. In (A), the probability distribution ranges 
from 1 to 100% (represented in the figure as 0.01 to 1). In (B), the highlighted areas are those desig-
nated for fertilization based on the 5% threshold (low soil fertility). 

5.5. Three-Dimensional Soil Map 
The QRF provided a 3D representation of the SOM and texture class (as a combina-

tion of clay, silt, and sand) predictions across different soil depth layers. Figure 7 displays 
this 3D visualization of the soil properties at a sample site selected for its topographic 
relief variations. Figure 8 illustrates the entire depth variation of the SOM, clay, silt, and 
sand contents in the study area by soil order, which aids in better illustrating depth 
changes. In Figure 7, the predicted SoD is used as a base layer to represent the soil thick-
ness. The spatial information for the SOM demonstrates that as depth increases, the 
amount of organic content decreases, with the highest concentrations occurring only in 
the first 40 cm of soil depth. Figure 7B shows the soil texture classification based on dif-
ferent proportions of clay, silt, and sand. Within the study area, the soil texture class is 
predominantly clay (61.4%) and clay loam (28%). The observed soil classifications show 
only small variations at different depths. In Figure 8, the median values of clay, silt, and 
sand show minimal variation, consistent with the observations for the soil texture classes. 
Most notably, there is an increase in sand content beyond 70 cm in the inceptisol layer. 

Figure 6. Probability maps indicating 5% SOM content. In (A), the probability distribution ranges
from 1 to 100% (represented in the figure as 0.01 to 1). In (B), the highlighted areas are those
designated for fertilization based on the 5% threshold (low soil fertility).

5.5. Three-Dimensional Soil Map

The QRF provided a 3D representation of the SOM and texture class (as a combination
of clay, silt, and sand) predictions across different soil depth layers. Figure 7 displays this
3D visualization of the soil properties at a sample site selected for its topographic relief
variations. Figure 8 illustrates the entire depth variation of the SOM, clay, silt, and sand
contents in the study area by soil order, which aids in better illustrating depth changes.
In Figure 7, the predicted SoD is used as a base layer to represent the soil thickness. The
spatial information for the SOM demonstrates that as depth increases, the amount of
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organic content decreases, with the highest concentrations occurring only in the first 40 cm
of soil depth. Figure 7B shows the soil texture classification based on different proportions
of clay, silt, and sand. Within the study area, the soil texture class is predominantly clay
(61.4%) and clay loam (28%). The observed soil classifications show only small variations
at different depths. In Figure 8, the median values of clay, silt, and sand show minimal
variation, consistent with the observations for the soil texture classes. Most notably, there is
an increase in sand content beyond 70 cm in the inceptisol layer.
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Figure 7. Three-dimensional digital soil maps at various depths for (A) the soil texture (CI: clay;
SaCL: sandy clay; SiCILo: silty clay loam; Lo: loam; SiCL: silty clay; CILo: clay loam; SaCILo: sandy
clay loam, and SiLo: silty loam) and (B) the SOM%. The upper-right image shows the delineation of
this zoomed-in area within the study area.
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Figure 8. Soil organic matter (SOM), clay, silt, and sand contents at different depths per soil layer
across the entire study area, with continuous vertical lines representing the mean value every 10 cm,
the shaded red area representing the standard variation, and the percentage on the right representing
the number of pixels falling into the mentioned depth class.

6. Discussion

This study presents a method for obtaining spatial predictions and their associated
uncertainties for digital soil mapping. Additionally, it demonstrates how to integrate the
distributions of these predictions of soil properties into forest management operations.

Our results show that the soil properties were well represented spatially when using
the QRF. The chosen 10 m spatial resolution, selected to observe soil property changes
within the forest stand, provided accurate results when compared to other studies on SoD
prediction using a regression model (R2 = 0.74, MAPE = 10.53%, and RMSE = 19.4 cm).
Although SoD is a difficult soil property to predict, we obtained a significant improvement
by considering all of the SCORPAN input variables when compared to other studies using
only topographic variables [68], indicating an overall good performance in line with the
results presented in [69].

In the validation analysis, the SOM map showed reliable results, with R2 = 0.61,
MAPE = 41.18%, and RMSE = 2.03%. When compared to previous studies, we can observe
that the general level of validation accuracy for SOM predictions ranges between R2 = 0.45
at 10 m using topographic attributes only [70], R2 = 0.51 at 30 m [71], and R2 = 0.53 using a
QRF at 30 m resolution [34]. In our study, the observed standard deviation of the prediction
distribution ranged from 1.7% to 7.7%. In most of the valley and the Andes foothills,
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the variability hovered at around 17% of the mean. However, in the Andes, it rose to
approximately 50%. This trend can potentially be attributed to the fact that as topographic
heterogeneity increases, soil properties vary significantly [72].

Soil texture also showed accurate results given the successful validation of the clay,
silt, and sand contents. Clay had the higher accuracy, followed by silt and lastly by sand
(Table 5), with mean standard deviations of 29%, 33%, and 35%, respectively. Similar results
were reported by other studies [20,73,74], which account for their good prediction accuracy
based on the strength of the used input variables of the SCORPAN approach, emphasiz-
ing the importance of integrating key soil formation variables for reliable predictions of
soil texture.

Observing the spatial distribution of standard deviation values and the spread of prediction
distributions for the four selected sites depicted in Figure 1 and explained in Figure 5, it becomes
apparent that there is significant variability in the prediction distributions across all predicted
soil properties. This variability is particularly pronounced, as anticipated, on the foothills of the
Andes coastal range, where the topography is highly heterogeneous and maximum variation
occurs [75]. For example, the SOM ranges from 3.2% (25th percentile) to 12.2% (75th percentile).
Surprisingly, even in the valley, where the topographic relief is relatively consistent, a notably
variable prediction distribution of soil properties persists. Following the SOM example, it
varies from 7.9% to 13.2% in the 25th and 75th percentiles, respectively. Capturing the spatial
predictive distribution of soil properties is crucial to reducing uncertainty and enhancing the
quality of digital soil mapping (DSM) products. As Ref. [25] noted, one direct application of
soil prediction uncertainty is in optimizing soil sampling designs, with a focus on areas of high
uncertainty. Furthermore, the use of prediction variability and the entire distribution of soil
properties is also beneficial to managers in reducing uncertainty in forest growth responses
to fertilizer application, as illustrated in the practical management application example. This
phenomenon, where responses to fertilizer application are heightened in areas of low soil
fertility, has been substantiated by previous research [16,17]. Relying solely on the mean for
decision-supporting purposes, as exemplified in Figure 6, and using the same 5% SOM as a
threshold to identify areas for fertilization, would imply that in 50% of cases, values will exceed
the decided threshold. This translates to 50% of areas exhibiting a low response or no response
to fertilizer application. As demonstrated in the example, utilizing the entire distribution range
can ensure positive responses of forest growth to management applications, depending on the
level of probability chosen for decisions (80% in our example), thereby minimizing resource
allocation and maximizing the economic benefits.

As discussed in previous research [12], detecting the presence of shallow soils is
crucial for soil protection management in forested areas. It is vital to understand the forest
roots’ capacity to reach available nutrients and to enhance our knowledge of the plants’
available water content and the variation in nutrient availability at different soil depths for
tree root uptake. As shown in Figure 7, the 3D map demonstrates a significant variation
in SOM content at different depths. The decrease in SOM with increasing soil depths
has been mentioned several times in the literature [76,77]. This occurs because SOM is
produced near the surface due to superficial leaf decomposition in forested areas and
fine-root decomposition in grasslands. This shift in distribution is also linked to varying
microbial community structures at different soil depths, which influence the rate of organic
matter decomposition [78]—a reduction rate that can be visualized with the methodology
presented in this study. Although there is some variation in soil texture at different depths,
it is not significant. Similar results found in [79] were explained by the soil’s age since
most of the horizons were still forming, as may be the case in our study area. Furthermore,
particularly around the coast, the soil is classified as clay through several depth levels,
likely because they are on alfisols—classified by the USDA soil taxonomy as clay-enriched
with a relatively high natural fertility [61].

Regarding the SCORPAN variables selected for this research, DEM has emerged as
one of the top variables related to soil texture and depth. This correlation can primarily be
attributed to its association with soil erosion and redistribution, as well as its impact on the
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SOM accumulation cycle [75]. Previous research has found that elevation, the topographic
wetness index (TWI), plan curvature, the total catchment area, and the channel network base
level are the key topography characteristics most closely connected to soil organic carbon
concentration in flat-slope locations [80]. Furthermore, for hydrologic and geomorphic
purposes, the Multiresolution Index of Ridge-Top Flatness (MRRTF), Multiresolution Index
of Valley-Bottom Flatness (MRVBF), slope, and valley depth have shown strong links with
sediment deposits and influence deposit depth [81]. As observed in [82], the distance
to water channels provides essential information on sediment accumulation, altering
the SOM content, SoD, and soil texture, which are also reflected in this study. Besides
elevation, this variable has also been recognized as one of the most critical topographic
parameters for the digital soil mapping of SOM [80]. According to the literature, one
of the most important environmental variables influencing the rate of weathering and
organic decomposition, which cause new layers of soil to accumulate at depth, is the
mean annual temperature [83,84]. Furthermore, precipitation notably impacts hydrological
processes such as surface runoff and groundwater flow, which are vital for organic matter
decomposition rates and infiltration from the litter layer to mineral soil, as extensively
reported [45,46]. This notion is corroborated in this study, wherein these two climatic
variables are selected as some of the most significant predictors of among all of the predicted
soil properties.

The most significant advantage of the proposed methodology is that it enables the
prediction of accurate high-spatial-resolution maps of soil properties and their predictive
distributions, based on soil formation factors (SCORPAN). The application of QRFs in
DSM, as used in this study, demonstrates the utility of this methodology for the spatial
interpolation of key soil properties and its uncertainty within the forest stand, which has
been previously applied in SoilGrids250m [23]. As mentioned in previous research [28,35],
the QRF model is a promising alternative for observing the probabilistic distribution of soil
predictions, especially for precision silviculture tasks. Nonetheless, the primary advantage
of using a QRF for high-resolution soil properties lies in its ability to capture variable
distributions. This aspect is frequently overlooked in conventional soil prediction models
and management applications.

Similar to previous soil property mapping efforts [85,86], spatial soil information
has proven to be a valuable tool for enhancing our understanding of site productivity
variations within forested areas, especially when utilizing the spatial resolution chosen for
this study (10 m). This approach to digital soil property analysis, along with its associated
uncertainties, enhances fertilizer prescription capabilities by identifying areas with fertility
issues, thereby facilitating precision in fertilizer application during forest operations, as
demonstrated in the example provided. Moreover, granulometric information at a fine
spatial resolution using the QRF method, alongside SoD data, can be employed to improve
assessments of water-holding capacity and soil fertility ratings. These enhancements are
crucial for process-based models used in predicting forest growth, as well as for precision
planning in timber harvesting and site preparation to mitigate soil compaction risks. In-
tegrating predictive soil property distribution into decision management strategies can
further contribute to reductions in fertilization costs and increases in productivity. This
methodology holds promise for transferability, as it is applicable to various soil properties,
soil-related management practices, and diverse locations or countries. Future research
should use high-resolution soil property information and its predictive distribution com-
bined with ALS individual tree metrics to develop tree growth models in order to better
understand the effects of site productivity on growth.

7. Conclusions

Quantile Regression Forests have proven to be both accurate and reliable in predicting
soil properties and their distribution, especially in digital soil mapping applications. The
methodology showcases spatial precision, making it invaluable for site-specific precision in
silviculture management and precision fertilization treatments within forest stands. Incor-
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porating prediction distribution is vital, as it plays a crucial role in minimizing uncertainty
in decision-supporting applications within forest management. This is particularly true
for operations such as fertilizer application, road construction planning, and forest growth
modeling, especially in the context of site-specific management.
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Appendix A

Table A1. List of environmental input raster variables.

Code Category Description

biovar.1 Climate bio1 = Mean annual temperature (◦C)
biovar.2 Climate bio2 = Mean diurnal range (mean of max temp - min temp) (◦C)
biovar.3 Climate bio3 = Isothermality (bio2/bio7) (× 100) (%)
biovar.4 Climate bio4 = Temperature seasonality (standard deviation × 100) (%)
biovar.5 Climate bio5 = Max temperature of warmest month (◦C)
biovar.6 Climate bio6 = Min temperature of coldest month (◦C)
biovar.7 Climate bio7 = Temperature annual range (bio5-bio6) (◦C)
biovar.8 Climate bio8 = Mean temperature of the wettest quarter (◦C)
biovar.9 Climate bio9 = Mean temperature of driest quarter (◦C)
biovar.10 Climate bio10 = Mean temperature of warmest quarter (◦C)
biovar.11 Climate bio11 = Mean temperature of coldest quarter (◦C)
biovar.12 Climate bio12 = Total (annual) precipitation (mm)
biovar.13 Climate bio13 = Precipitation of wettest month (mm)
biovar.14 Climate bio14 = Precipitation of driest month (mm)
biovar.15 Climate bio15 = Precipitation seasonality (coefficient of variation) (%)
biovar.16 Climate bio16 = Precipitation of wettest quarter (mm)
biovar.17 Climate bio17 = Precipitation of driest quarter (mm)
biovar.18 Climate bio18 = Precipitation of warmest quarter (mm)
biovar.19 Climate bio19= Precipitation of coldest quarter (mm)
DEM Topography Digital elevation model
Aspect Topography Aspect Degree (%)
CNBL Topography Channel Network Base Level (m.a.s.l)
CND Topography Channel Network Distance
CI Topography Convergence Index
DiffI Topography Diffuse Insolation
DirI Topography Direct Insolation
LS_factor Topography Slope Length and Steepness Factor
MRRTF Topography Multiresolution Ridge Top Flatness
MRBVF Topography Multiresolution Index of Valley Bottom Flatness
PC Topography Plan curvature
ProfC Topography Profile curvature
Slope Topography Slope Degree (%)
TanC Topography Tangential curvature
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Table A1. Cont.

Code Category Description

TSC Topography Terrain Surface Convexity
TWI Topography Topographic Wetness Index
TC Topography Total catchment area
TIns Topography Total Insolation
ValDepth Topography Valley Depth
NDVI Vegetation Normalized Difference Vegetation index
EVI Vegetation Enhanced Vegetation Index

PRM Soil Morphology Parent rock material
SC Soil Morphology Soil ClassSoil Syst. 2024, 8, x FOR PEER REVIEW 23 of 24 

 

 

 
Figure A1. Land-use map within the study area. Source available online [87]. 
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Figure A2. Predicted versus observed values using the 50th percentile on the testing dataset. 
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