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Abstract: Data visualization plays a crucial role in gaining insights from high-dimensional datasets.
ISOMAP is a popular algorithm that maps high-dimensional data into a lower-dimensional space
while preserving the underlying geometric structure. However, ISOMAP can be computationally
expensive, especially for large datasets, due to the computation of the pairwise distances between
data points. The motivation behind this study is to improve efficiency by leveraging an approximate
method, which is based on random kitchen sinks (RKS). This approach provides a faster way to
compute the kernel matrix. Using RKS significantly reduces the computational complexity of ISOMAP
while still obtaining a meaningful low-dimensional representation of the data. We compare the
performance of the approximate ISOMAP approach using RKS with the traditional t-SNE algorithm.
The comparison involves computing the distance matrix using the original high-dimensional data
and the low-dimensional data computed from both t-SNE and ISOMAP. The quality of the low-
dimensional embeddings is measured using several metrics, including mean squared error (MSE),
mean absolute error (MAE), and explained variance score (EVS). Additionally, the runtime of each
algorithm is recorded to assess its computational efficiency. The comparison is conducted on a
set of protein sequences, used in many bioinformatics tasks. We use three different embedding
methods based on k-mers, minimizers, and position weight matrix (PWM) to capture various aspects
of the underlying structure and the relationships between the protein sequences. By comparing
different embeddings and by evaluating the effectiveness of the approximate ISOMAP approach
using RKS and comparing it against t-SNE, we provide insights on the efficacy of our proposed
approach. Our goal is to retain the quality of the low-dimensional embeddings while improving the
computational performance.

Keywords: t-SNE; ISOMAP; data visualization; COVID-19

1. Introduction

Data visualization is a fundamental tool for exploring and understanding complex
datasets [1,2]. High-dimensional data, which often arise in various fields such as bioinfor-
matics, genomics, and image processing, pose significant challenges for visualization [3–5].
ISOMAP is a nonlinear dimensionality reduction technique, a widely used algorithm, that
offers a solution by mapping high-dimensional data into a lower-dimensional space while
preserving the intrinsic geometric structure of the data. However, it can be computationally
and memory-intensive to calculate geodesic distances for huge datasets. When working
with extremely high-dimensional data, ISOMAP might still succumb to the curse of dimen-
sionality, similar to many other dimensionality reduction approaches [6]. To solve such
problems, we can use an approximate method to reduce the computational and memory
costs. For this purpose, we propose a random kitchen sinks (RKS) [7–9] approximation-
based distance computation method in this paper. By utilizing RKS in the ISOMAP al-
gorithm, we aim to significantly reduce the computational complexity of the traditional
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ISOMAP method while obtaining a meaningful low-dimensional data representation. This
approach has the potential to make ISOMAP more scalable and practical for analyzing
large datasets.

The motivation behind this research is to improve the efficiency of the ISOMAP algorithm
by leveraging an approximate method based on random kitchen sinks (RKS) [7,8]. RKS is
a technique that allows for faster computation of the kernel matrix, which can be used
to approximate the pairwise distances between data points. It leverages random features
to efficiently approximate the geodesic distances without explicitly computing them. For
each data point, ISOMAP identifies its k-nearest neighbors based on a distance metric
and constructs a nearest-neighbor graph. The local structure of the data is efficiently
captured by this graph, which joins nearby data points. The geodesic distances between the
data points in the closest neighbor graph are calculated [10]. This critical phase accounts
for the curvature and nonlinearity of the underlying manifold. The pairwise geodesic
distances are calculated [11], and then the data are projected onto a lower-dimensional
space while adhering as much as possible to the pairwise geodesic distances using classical
multidimensional scaling (MDS) [12].

RKS begins by generating a set of random features from a random distribution, like
a Gaussian distribution or a Rademacher distribution [9]. RKS uses a kernel approxima-
tion method to estimate the pairwise inner products between the mapped data points in
the high-dimensional space using these random features [7]. The base functions for the
mapping of data points are the random features. The main benefit of RKS is that it can
approximate geodesic distances well without explicitly creating the nearest neighbor graph
or calculating all pairwise geodesic distances [13]. When compared to more established
methods like ISOMAP, this can dramatically lower the computational complexity and
memory needs [14], especially for large datasets. RKS is particularly helpful because it
reduces the computational burden of calculating geodesic distances in the original high-
dimensional space.

To assess the performance of the approximate ISOMAP approach using RKS, we
compared it with the widely used t-SNE [15] algorithm. Both ISOMAP and t-SNE are
popular techniques for visualizing high-dimensional data, but they differ in their under-
lying principles and computational characteristics. By comparing the results of ISOMAP
with those of RKS and t-SNE, we gained insights into the strengths and limitations of each
method and their suitability for different types of datasets. To evaluate the quality of the
low-dimensional embeddings generated by ISOMAP with RKS and t-SNE, we employed
several metrics: mean squared error (MSE), mean absolute error (MAE), and explained
variance score (EVS). These metrics provide quantitative measures of the reconstruction
error, comparing the distance matrix D computed from the high-dimensional original
data with the approximate distance matrix Dapprox obtained from the low-dimensional
embeddings. Additionally, we measured the runtime of each algorithm to assess its compu-
tational efficiency.

The comparison and evaluation were performed on a set of protein sequences, which
are used in typical bioinformatics tasks such as characterizing SARS-CoV-2 variants, loca-
tion of infection, or host specificity. Protein sequences are fundamental to understanding
protein structure and function, and they are often represented as high-dimensional data.
In this study, we employed different embedding methods based on k-mers [16], minimiz-
ers [17], and position weight matrix (PWM) [18] to capture various aspects of the underlying
structure and relationships between the protein sequences. This allowed us to explore the
effectiveness of the approximate ISOMAP approach using RKS across different representa-
tions of the protein sequences. By evaluating the effectiveness of the approximate ISOMAP
approach using RKS and comparing it against t-SNE on a protein sequence dataset, this
research aims to provide insights into the use of the RKS-based method for approximating
ISOMAP. The evaluation focused on the quality of the low-dimensional embeddings and
their ability to accurately capture the important characteristics of the protein sequences.
The findings of this study contribute to the field of data visualization by helping with
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choosing the appropriate dimensionality reduction method for bioinformatics and other
domains dealing with high-dimensional data.

This paper makes the following key contributions to the field of data visualization
and dimensionality reduction:

1. Proposed Approximate ISOMAP using RKS: We developed an approximate ISOMAP
algorithm using random kitchen sinks (RKS) to improve the computational efficiency of
ISOMAP while preserving the quality of the low-dimensional embeddings.

2. Comparative Analysis with t-SNE: We conducted a comprehensive comparative
analysis between the approximate ISOMAP approach with RKS and the traditional
t-SNE algorithm. This comparison provides insights into the relative strengths and
weaknesses of these methods in terms of accuracy, computational efficiency, and ability
to capture the intrinsic structure of the data.

3. Evaluation on Protein Sequences: We evaluated the performance of the approximate
ISOMAP approach and t-SNE on a dataset of SARS-CoV-2 spike protein sequences.
This evaluation included different embedding methods based on k-mers, minimizers,
and position weight matrix (PWM), allowing for a comprehensive assessment of the
algorithms’ effectiveness on diverse representations of the protein sequences.

4. Assessment Metrics: We introduced and utilized evaluation metrics, including mean
squared error (MSE), mean absolute error (MAE), explained variance score (EVS),
and runtime, to measure the quality of the low-dimensional embeddings and compare
the performance of ISOMAP with that of RKS and t-SNE.

The remainder of this paper is organized as follows: In Section 2, we provide a
detailed background on ISOMAP, t-SNE, and the random kitchen sinks (RKS) technique.
Section 3 presents the methodology of the proposed approximate ISOMAP approach using
RKS. In Section 4, we describe the experimental setup, including the dataset and the
different embedding methods employed. Section 5 presents the results and analysis of
the comparative evaluation between approximate ISOMAP and t-SNE, including different
performance metrics. Finally, in Section 6, we discuss the findings, limitations, and potential
future directions of this research.

2. Related Work

In recent years, various dimensionality reduction techniques have been developed
to tackle the challenges posed by high-dimensional data visualization. In this section, we
review some of the relevant work in the field, focusing on ISOMAP, t-SNE, and related
methods. ISOMAP, introduced by [11], is a widely used algorithm for nonlinear dimen-
sionality reduction. It aims to preserve the geodesic distances between data points in
low-dimensional space. ISOMAP constructs a neighborhood graph based on pairwise
distances and then uses graph-based algorithms, such as the shortest path algorithm,
to compute the geodesic distances. While ISOMAP has been successful in preserving the
global structure of the data, its computational complexity grows quadratically with the
number of data points, making it inefficient for large-scale datasets.

To address the computational limitations of ISOMAP, several approximate methods
have been proposed. For example, authors in [19] introduced an approximation algorithm
that leverages graph sparsification techniques to reduce the computational complexity of
ISOMAP. They demonstrated that their approach achieves comparable performance to the
original ISOMAP algorithm while significantly reducing the computation time. Another
approach proposed by [20] utilizes landmark-based approximation, where a small set of
landmark points is selected to approximate the pairwise distances in the high-dimensional
space. By constructing a low-dimensional embedding based on the landmark distances,
the computational complexity of ISOMAP is effectively reduced.

While these approximate methods have produced promising results, they still suffer
from certain limitations, such as the loss of accuracy in preserving the global structure
or the requirement for additional parameter tuning. In this paper, we propose a novel
approach that leverages random kitchen sinks (RKS) to approximate the pairwise distances,
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aiming to improve the efficiency of ISOMAP while maintaining the quality of the low-
dimensional embeddings. Authors [21] proposed the approximate geodesic distance matrix,
which implies that ISOMAP can be solved by a kernel eigenvalue problem. In another
work [22], the authors proposed upgraded landmark-isometric mapping (UL-Isomap) but
their aim was to address the problems of landmark selection for hyperspectral imagery
(HSI) classification. Other authors proposed a hybrid approach, quantum kitchen sink
(QKS, in [23], which uses quantum circuits to nonlinearly transform classical inputs into
features. It is inspired by a technique known as random kitchen sinks, whereby random
nonlinear transformation can greatly simplify the optimization of machine learning (ML)
tasks [24]. However, QKS is more helpful for complex optimization problems that arise in
machine learning or simulating quantum systems rather than tasks like visualization.

t-SNE, introduced by van der Maaten and Hinton [15], is another popular dimen-
sionality reduction algorithm known for its ability to preserve the local structure of the
data. Unlike ISOMAP, which focuses on preserving global distances, t-SNE emphasizes the
preservation of pairwise similarities between nearby data points. It constructs a probability
distribution over pairs of high-dimensional data points and a similar distribution over pairs
of their low-dimensional counterparts. The algorithm then minimizes the Kullback–Leibler
divergence between the two distributions to obtain the low-dimensional embedding. t-SNE
has been widely adopted in various domains, including image analysis, natural language
processing, and bioinformatics. Many studies have explored the effectiveness of t-SNE in vi-
sualizing high-dimensional biological data, such as gene expression profiles [25], single-cell
RNA sequencing data [26], and protein structures [27]. t-SNE has demonstrated its ability
to reveal meaningful patterns and clusters in complex biological datasets. While t-SNE
is effective in preserving local similarities, it may struggle to capture global structures.
Additionally, t-SNE’s computational complexity scales quadratically with the number of
data points, making it challenging to apply to large-scale datasets.

3. Proposed Approach

In this section, we present the proposed approach for improving the efficiency of
the ISOMAP algorithm using random kitchen sinks (RKS) [8]. The RKS technique allows
for faster computation of the kernel matrix, which approximates the pairwise distances
between data points.

The isometric feature mapping (ISOMAP) algorithm is a classical dimensionality re-
duction technique that aims to preserve the global geometric structure of high-dimensional
data in a lower-dimensional space. The algorithm is based on the concept of geodesic
distances, which measure the shortest path between two points along the manifold on
which the data lay. In the original ISOMAP approach, the algorithm starts by construct-
ing a neighborhood graph, where each data point is connected to its nearest neighbors.
Then, ISOMAP computes the pairwise geodesic distances between all data points us-
ing graph-based algorithms such as Dijkstra’s algorithm. These pairwise distances are
used to construct a low-dimensional embedding of the data using techniques like multi-
dimensional scaling (MDS). MDS is responsible for finding a configuration of points in a
lower-dimensional space that best approximates the pairwise geodesic distances observed
in the high-dimensional space. By mapping the data points to a lower-dimensional space
while preserving their pairwise geodesic distances, ISOMAP can reveal the underlying
manifold structure of the data and enable effective visualization of its intrinsic geometry.

3.1. Random Kitchen Sinks (RKS)

The RKS algorithm is employed to compute the kernel matrix approximation. Given an
input data matrix X and the desired number of components ncomponents, the RKS algorithm
proceeds as given in Algorithm 1.

Remark 1. Note that we use the approximate distance matrix within the traditional ISOMAP
instead of the default distance matrix, which requires more computational time.
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Algorithm 1 Random Kitchen Sinks (RKS)

1: Input: X (input data matrix), ncomponents (number of components)
2: Output: Dall (kernel matrix approximation)
3: function PROCEDURE(X, ncomponents)

\* Initialize kernel matrix Dall with shape (n× n), where n is the number of data
points *\

4: Dall = INITIALIZEKERNELMATRIX(X.shape[0])
\* Initialize the projection matrix P with shape (d, ncomponents), where d is the

number of features in the input data *\
5: d = length(X[0,:]) . Column Length
6: P = INITIALIZEPROJECTIONMATRIX(d, ncomponents)
7: for i from 1:ncomponents) do

\* Generate a random vector r with the same number of elements as the input data
*\

8: r = GENERATERANDOMVECTOR(d)
\* Divide random vector r with normalize r and store it as the ith column of P *\

9: P[:, i] = r / NORM(r)
10: end for

\* Loop over the rows and columns of Dall *\
11: for i from 1:n do
12: for j from 1:n do

\* Calculate the kernel matrix element using the projection matrix P *\
13: Dall[i, j] = X[i]@P · X[j]@P . @→ operator for matrix multiplication
14: end for
15: end for
16: Return Dall
17: end function

The RKS algorithm initializes the kernel matrix Dall and the projection matrix P.
It then generates random vectors, normalizes them, and stores them as columns in P.
The algorithm computes each element of Dall by taking the dot product between the
projected data points X[i]@P and X[j]@P.

3.2. Approximate Isomap

To improve the efficiency of the ISOMAP algorithm, we utilize the RKS algorithm to
approximate the pairwise distances between data points. The following steps outline the
proposed approximate ISOMAP approach:

1. Set the desired number of components ncomponents and the number of nearest neigh-
bors nneighbors.

2. Compute the kernel matrix approximation D using the RKS algorithm: D = RKS(X,
ncomponents).

3. Perform ISOMAP on the approximated distances:

(a) Initialize the ISOMAP algorithm with the desired number of components and
the number of nearest neighbors: Isomap(ncomponents, nneighbors).

(b) Fit the ISOMAP model on D.

4. Compute the reconstruction error using several different metrics:

(a) Compute the distance matrix approximation Dapprox obtained from the ISOMAP
model

(b) Calculate the mean squared error (MSE) between the original distance matrix D
and the approximated distance matrix Dapprox: MSE = mean_squared_error(D,
Dapprox).

(c) Calculate the mean absolute error (MAE) between D and Dapprox:

MAE = mean_absolute_error(D, Dapprox)
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(d) Calculate the explained variance score (EVS) between D and Dapprox:
EVS = explained_variance_score(D, Dapprox).

5. Record the ending time and compute the running time.
6. Display the reconstruction error metrics and the running time.

The proposed approximate ISOMAP approach starts by recording the starting time.
The number of components ncomponents and the number of nearest neighbors nneighbors are
set. The RKS algorithm is then used to compute the kernel matrix approximation D based
on the input data matrix X and ncomponents. The ending time is recorded, and the running
time is computed.

Next, the ISOMAP algorithm is initialized with the desired number of components
and nearest neighbors. The ISOMAP model is fitted to the approximated distances D,
and the data are transformed using the fit_transform function. The ending time is recorded
again, and the running time is computed.

This proposed approach combines the efficiency of the RKS algorithm for approx-
imating the pairwise distances with the ISOMAP algorithm’s ability to preserve the in-
trinsic structure of the data. By utilizing the approximate ISOMAP approach, we aim to
achieve a computationally efficient yet effective dimensionality reduction technique for
high-dimensional datasets.

4. Experimental Setup

In this section, we provide details about the dataset used in our experiments and dis-
cuss the embedding methods used to convert biological sequences into fixed-dimensional
numerical representations. The experiments were conducted on a system with an Intel
Core i5 processor running at 2.40 GHz and equipped with 32 GB of memory. The system
operated on the Windows operating system. For hyperparameter tuning, we used 5-fold
cross-validation. Specifically, we used 5 nearest neighbors used for Spike7k, 6 for the Coro-
navirus Host, and 5 for the Protein Subcellular dataset. Moreover, we used the Euclidean
distance metric for calculating nearest neighbors.

4.1. Dataset Statistics

We used the following datasets for experimentation.

4.1.1. Spike7k Dataset

The Spike7k dataset consists of aligned spike protein sequences obtained from the GI-
SAID database (https://www.gisaid.org/, accessed on 15 July 2023). The dataset comprises
a total of 7000 sequences, which represent 22 different lineages of coronaviruses (class
labels). Each sequence in the dataset has a length of 1274 amino acids. The distribution of
lineages in the Spike7k dataset is presented in Table 1.

Table 1. Spike7k (SARS-CoV-2) dataset statistics for 22 variants. The character ‘-’ means that
information is not available. The fourth column shows the total number of mutations in spike (S)
region and full-length genome (Gen.) [28].

Lineage Region Labels No. Mutations/Gen. No. of Sequences

B.1.1.7 U.K. [29] Alpha 8/17 3369
B.1.617.2 India Delta 8/17 875
AY.4 India Delta - 593
B.1.2 USA - - 333
B.1 USA - - 292
B.1.177 Spain [30] - - 243
P.1 Brazil [31] Gamma 10/21 194
B.1.1 U.K. - 163
B.1.429 California Epsilon 3/5 107
B.1.526 New York [32] Iota 6/16 104

https://www.gisaid.org/
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Table 1. Cont.

Lineage Region Labels No. Mutations/Gen. No. of Sequences

AY.12 India Delta - 101
B.1.160 France - - 92
B.1.351 South Africa [29] Beta 9/21 81
B.1.427 California [33] Epsilon 3/5 65
B.1.1.214 Japan - - 64
B.1.1.519 USA - - 56
D.2 Australia - - 55
B.1.221 The Netherlands - - 52
B.1.177.21 Denmark - - 47
B.1.258 Germany - - 46
B.1.243 USA - - 36
R.1 Japan - - 32

Total - - - 7000

4.1.2. Coronavirus Host

The Coronavirus Host dataset consists of unaligned spike protein sequences along
with information about the genus/subgenus and infected host of the clades within the
Coronaviridae family. These data were extracted from ViPR [34] and GISAID. The dataset
comprises a total of 5558 spike sequences, corresponding to 21 unique hosts, including
Bats, Bovines, Cats, Cattle, Equine, Fish, Humans, Pangolins, Rats, Turtles, Weasels, Birds,
Camels, Canis, Dolphins, the Environment, Hedgehogs, Monkeys, Pythons, and Swines.
In this dataset, the classification tasks are based on the host names, which serve as the
class labels. The maximum, minimum, and average lengths of the sequences in this dataset
are 1584, 9, and 1272.36, respectively. Additional statistics for this dataset can be found in
Table 2.

Table 2. Dataset Statistics for Coronavirus Host data. The total number of sequences is 5558.

Host Name No. of Sequences Host Name No. of Sequences

Humans 1813 Rats 26
Environment 1034 Pangolins 21

Weasel 994 Hedgehog 15
Swines 558 Dolphin 7
Birds 374 Equine 5

Camels 297 Fish 2
Bats 153 Unknown 2
Cats 123 Python 2

Bovines 88 Monkey 2
Canis 40 Cattle 1
Turtle 1

4.1.3. Protein Subcellular

The Protein Subcellular dataset [35] comprises unaligned protein sequences annotated
with information on 11 distinct subcellular locations, which are used as class labels for
classification tasks. The dataset contains a total of 5959 sequences. The subcellular locations,
along with their respective counts, are presented in Table 3.

4.2. Baseline

As a baseline comparison, we used the standard t-distributed Stochastic Neighbor
Embedding (t-SNE) approach [15]. The t-SNE algorithm is a popular dimensionality
reduction technique used for visualizing high-dimensional data. The algorithm aims to
preserve the local structure of the data points in e low-dimensional space. In the original
t-SNE approach, the algorithm starts by computing pairwise similarities between data
points in the high-dimensional space. The similarities are typically calculated using a
Gaussian kernel function, where points that are close to each other have higher similarity
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values. Then, t-SNE constructs a probability distribution over pairs of high-dimensional
points and a similar probability distribution over pairs of low-dimensional points in a
lower-dimensional space. The algorithm iteratively minimizes the divergence between
these two probability distributions by adjusting the positions of the low-dimensional
points. During each iteration, t-SNE employs a gradient-based optimization technique to
update the positions of the low-dimensional points, aiming to better match the pairwise
similarities observed in high-dimensional space. By the end of the optimization process,
t-SNE generates a low-dimensional representation of the data where nearby points in the
high-dimensional space are still close to each other, allowing for effective visualization of
the data’s structure.

Table 3. Dataset statistics for Protein Subcellular data.

Subcellular Locations No. of Sequences

Cytoplasm 1411
Plasma Membrane 1238
Extracellular Space 843

Nucleus 837
Mitochondrion 510

Chloroplast 449
Endoplasmic Reticulum 198

Peroxisome 157
Golgi Apparatus 150

Lysosomal 103
Vacuole 63

Total 5959

4.3. Evaluation Metrics

To assess the quality of the low-dimensional embeddings obtained from the approxi-
mate ISOMAP approach, reconstruction error metrics were computed. The distance matrix
approximation Dapprox obtained from the ISOMAP model was compared with the origi-
nal distance matrix D using the mean squared error (MSE), mean absolute error (MAE),
and explained variance score (EVS). The ending time was recorded once more, and the
final running time was computed.

4.3.1. Mean Squared Error (MSE)

The MSE is defined as follows:

MSE =
1
N

N

∑
i=1

N

∑
j=1

(Dij − Dapprox(ij))
2 (1)

where N is the total number of data points, Dij is the pairwise distance between data
points i and j in the original high-dimensional space, and Dapprox(ij) is the pairwise distance
between the corresponding low-dimensional embeddings.

4.3.2. Mean Absolute Error (MAE)

The MAE is defined as follows:

MAE =
1
N

N

∑
i=1

N

∑
j=1
|Dij − Dapprox(ij)| (2)

where N is the total number of data points, Dij is the pairwise distance between data
points i and j in the original high-dimensional space, and Dapprox(ij) is the pairwise distance
between the corresponding low-dimensional embeddings.
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4.3.3. Explained Variance Score (EVS)

The EVS is defined as follows:

EVS = 1−
VAR(D− Dapprox)

Var(D)
(3)

where D is the distance matrix computed from the original high-dimensional data, Dapprox
is the distance matrix calculated from the low-dimensional embeddings, Var(D) is the
variance of the original distance matrix, and Var(D− Dapprox) is the variance of the dif-
ference between the original distance matrix and the distance matrix computed from the
low-dimensional embeddings.

4.4. Embedding Generation

To generate the numerical embeddings from the biological sequences, we used the
following methods.

4.4.1. Spike2Vec

The Spike2Vec method, as proposed in Ali et al. [36], operates on a protein sequence
and produces a spectrum on alphabet Σ, which represents 21 amino acids ACDEFGHIKLM-
NPQRSTVWXY . Specifically, the spectrum comprises a vector for all possible numbers
of k-mers, where each bin includes the count/frequency of each k-mer present within a
protein sequence. Following alphabetical order, the first bin is for the k-mer AAA, while
the last bin of the spectrum is for the k-mer YYY. The total number of bins (i.e., the length
of the spectrum) is defined by the following expression:

|Spectrum| = |Σ|k (4)

This spectrum captures the frequency of occurrence of k-mers within the sequence. In
our implementation, we set the value of k to 3, which was determined using a validation
set approach. This choice ensured that the spectrum effectively represents the patterns and
relationships of trimer subsequences in the protein sequence.

4.4.2. Min2Vec

The Min2Vec embedding method utilizes the concept of minimizers to represent
biological sequences in a more concise manner [17]. A minimizer is a modified version of
a k-mer, which is a substring of consecutive nucleotides/amino acids, and it is selected
as the lexicographically smallest substring (also called m-mer, where m < k) in both the
forward and backward directions of the k-mer. This approach helps reduce the complexity
of representing the sequence.

Formally, for a given k-mer, a minimizer (also known as an m-mer) is defined as a
substring of length m that is chosen from the k-mer. The selected substring is the lexi-
cographically smallest in both the forward and backward directions of the k-mer. Here,
the values of k and m are chosen empirically, and, for our experiments, we set k = 9
and m = 3. The choice of these values was determined using a standard validation set
approach [37].

Once the minimizers are computed for a given biological sequence, a frequency
vector/spectrum-based representation is generated. This representation counts the occur-
rence of each m-mer (similar to the k-mers spectrum described in Section 4.4.1) within the
sequence. The resulting frequency vector captures the distribution of these minimizers
and provides a compact representation of the sequence. The length of the m-mers-based
spectrum is as follows:

|Spectrum| = |Σ|k (5)
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4.4.3. PWM2Vec

The PWM2Vec [18] approach involves assigning weights to each k-mer within a protein
sequence. Specifically, given a sequence, PWM2Vec calculates a position weight matrix
(PWM) with dimensions |Σ| × k, where Σ represents the 21 amino acid alphabet, and k is
the chosen length of the k-mers. The PWM captures the frequency of each amino acid in
all k-mers within the sequence. Subsequently, PWM2Vec assigns weights to each k-mer
based on their corresponding count values in the PWM. These weights are then utilized as
input vectors for machine learning models. In our implementation, we set k to 9 using the
standard validation set approach [37].

4.5. Limitation

Since RKS begins by generating a set of random features from a random distribu-
tion, the selection of random features could be a challenging task. The distance matrix
generated on line 4 of Algorithm 1 can be expensive in terms of memory consumption
when the number of data points (i.e., biological sequences) is very large in the input data.
For computing reconstruction errors, we used MSE, MAE, and EVS. However, using a more
comprehensive list could help us extract more insights regarding the proposed method,
which we will explore in future extensions. Moreover, since we obtained the results for
datasets comprising only protein sequences, the generalizability of the proposed method
could not be fully tested. Hence, it is not clear how the proposed method will behave on
other biological datasets, e.g., nucleotides, short-read sequence datasets, etc.

5. Results and Discussion

The results for the approximate ISOMAP and the baseline t-SNE are reported in Table 4 for
different embedding methods and datasets. For Spike7k data, the PWM2Vec with ISOMAP
outperformed the other methods on all evaluation metrics (other than EVS) and embedding
methods including t-SNE. In the case of MSE, the Spike2Vec with ISOMAP showed a 98.7%
improvement in performance compared with the Spike2Vec with traditional t-SNE. A simi-
lar pattern was observed for MAE, EVS, and computational runtime. For the Coronavirus
Host dataset, we again observed that all embedding methods with ISOMAP significantly
outperformed the same embedding methods with traditional t-SNE (for all evaluation
metrics other than EVS). In the case of MSE, the Spike2Vec with ISOMAP achieved a
99.4% improvement in performance compared with the same Spike2Vec embedding with
traditional t-SNE. Similarly, in the case of the Protein Subcellular dataset, we again ob-
served that apart from EVS, all embedding methods with ISOMAP outperformed the same
embeddings with t-SNE. The Spike2Vec with ISOMAP achieved an 86.8% improvement
in performance compared with the same Spike2Vec with traditional t-SNE. Note that to
compute the performance gain, we used the following expression:

% improvement =
Valt−SNE − ValISOMAP

Valt−SNE
× 100 (6)

where Valt−SNE is the value (i.e., MSE, MAE, EVS, or runtime) computed from t-SNE, while
ValISOMAP is the value computed from ISOMAP.

Table 4. Results comparison for ISOMAP vs. t-SNE using different embedding methods and datasets.

Spike7k Coronavirus Host Protein Subcellular

MSE ↓ MAE ↓ EVS ↑ Runtime ↓ MSE ↓ MAE ↓ EVS ↑ Runtime ↓ MSE ↓ MAE ↓ EVS ↑ Runtime ↓

t-SNE

Spike2Vec 5389.34 53.19 −0.00 88.56 16,061.80 65.13 0.05 47.38 323.93 13.67 −0.48 82.08

Min2Vec 4539.75 46.14 −0.03 84.81 11,082.11 59.73 0.12 47.91 2062.37 36.78 −0.11 71.09

PWM2Vec 5925.47 44.48 −0.05 34.20 91,226.50 221.90 0.09 39.59 4733.79 43.00 −0.04 66.61

ISOMAP

Spike2Vec 66.25 7.17 −22,351.74 81.58 83.43 8.57 −11,597.13 46.56 42.46 6.35 −7032.88 45.79

Min2Vec 64.26 7.01 −19,921.98 80.32 82.11 8.36 −10,856.24 42.61 62.46 7.76 −7275.28 41.54

PWM2Vec 55.17 6.62 −8418.65 33.92 81.64 8.52 −6358.49 38.64 55.04 7.26 −6801.26 44.43
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Discussion

Since the approximate ISOMAP outperforms the traditional t-SNE in terms of recon-
struction error (which means that the ISOMAP might be a more suitable choice when the
preservation of global data structure is the priority), we think that the understanding of
protein sequences using our approach as an alternative to the t-SNE could help explore
the patterns/clusters in the original data. These patterns may be hidden/unexplored
while using the traditional methods. More specifically, if there is a new coronavirus variant
emerging in the given data (i.e., set of protein sequences), the traditional t-SNE method may
not highlight a separate cluster of the new variant, which is possible using the proposed
method due to its better performance compared with t-SNE.

Embedding methods like Spike2Vec and Min2Vec have sparse information, i.e., most
of the bins in the spectrum could have very small/zero numbers. These methods work
by transforming complex data into lower-dimensional representations. In this process,
some intricate details of the data might be lost or underrepresented, leading to sparse
representations. For example, in the context of Spike2Vec and Min2Vec, these methods
operate on spectral data, where each bin in the spectrum represents certain features of
the data. However, due to the nature of the data, many of these bins might end up with
very small or zero values. When using t-SNE on such sparse embeddings, several issues
can arise. t-SNE excels at capturing and preserving local and global patterns within
data. However, its effectiveness relies on the distribution of data points in the embedded
space. Sparse regions in the embeddings can pose challenges. Specifically, t-SNE might
not allocate enough attention to these sparse areas, potentially leading to the omission of
crucial patterns, outliers, or rare data instances. In essence, the sparsity in embeddings
can cause t-SNE to overlook important data characteristics, resulting in an incomplete
representation. In contrast, ISOMAP offers a different approach. Instead of focusing on the
values of data points, ISOMAP prioritizes the relationships and distances between data
points. It constructs the pairwise distances between data points and then maps these points
to a lower-dimensional space while preserving these distances as accurately as possible. By
maintaining the relative distances between data points, ISOMAP can capture the overall
structure and relationships within the data, even if certain regions are sparse. It does not
risk overlooking important patterns that might be masked by sparsity.

For the computational runtime results in Table 4, since the dimension of the embedding
is lowest for the PWM2Vec-based embeddings (i.e., it equals the number of k-mers within a
protein sequence), its runtime is the shortest among the three embedding methods. Since
the embedding dimensionalities for Spike2Vec and Min2Vec are similar, their computational
runtimes are closer to each other.

6. Conclusions

In this paper, we proposed a fast and efficient method for the visualization of high-
dimensional data. The proposed method is based on the idea of approximating the tradi-
tional ISOMAP method using random kitchen sinks (RKS). We compared the performance
of the approximate ISOMAP approach with RKS with that of the traditional t-SNE algo-
rithm and evaluated their effectiveness using three different protein sequence datasets.
Our findings, based on different evaluation metrics and embedding methods (including k-
mers, minimizers, and position weight matrix), demonstrate that the approximate ISOMAP
approach using RKS offers promising results for dimensionality reduction. By leverag-
ing RKS, we were able to reduce the computational complexity of ISOMAP while still
obtaining meaningful representations of biological sequences. The comparative analysis
with the traditional t-SNE method revealed that the approximate ISOMAP approach per-
formed favorably in terms of capturing the intrinsic structure of the data while providing a
faster runtime by approximating the geodesic distances’ computation. This suggests that
the RKS-based method is versatile and can be applied to various domains dealing with
high-dimensional data. The results of the proposed method can guide researchers and prac-
titioners in selecting the most suitable dimensionality reduction method for their specific
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datasets and applications. Future work can explore further enhancements to the approxi-
mate ISOMAP approach using other methods such as quantum kitchen sinks, Nystroem
kernel approximation, random Fourier features, etc. Optimizing the hyperparameters or
investigating their performance on other types of high-dimensional data could also be areas
of future investigation. RKS uses random features, and using some techniques to reduce
this randomness could be a potential extension of this work. Additionally, incorporating
other evaluation metrics or conducting user studies to assess the visual interpretability of
the low-dimensional embeddings can provide a more comprehensive understanding of the
proposed approach.
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