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Abstract: A new unimodal distribution family indexed via the mode and three other parameters is
derived from a mixture of a Gumbel distribution for the maximum and a Gumbel distribution for
the minimum. Properties of the proposed distribution are explored, including model identifiability
and flexibility in capturing heavy-tailed data that exhibit different directions of skewness over a
wide range. Both frequentist and Bayesian methods are developed to infer parameters in the new
distribution. Simulation studies are conducted to demonstrate satisfactory performance of both
methods. By fitting the proposed model to simulated data and data from an application in hydrology,
it is shown that the proposed flexible distribution is especially suitable for data containing extreme
values in either direction, with the mode being a location parameter of interest. Using the proposed
unimodal distribution, one can easily formulate a regression model concerning the mode of a response
given covariates. We apply this model to data from an application in criminology to reveal interesting
data features that are obscured by outliers.

Keywords: extreme values; mixture distribution; modal regression; unimodal distribution

1. Introduction

The mean, median, and mode are the three most commonly used measures of central
tendency of data. When data contain outliers that cause heavy tails or are potentially
skewed, the mode is a more sensible representation of the central location of data than the
mean or median. The timely review on mode estimation and its application by Chacón [1]
and references therein provide many examples in various fields of research where the mode
serves as a more informative representative value of data. Most existing methods devel-
oped to draw inference for the mode are semi-/non-parametric in nature, starting from
early works on direct estimation in the 1960s [2–4] to more recent works based on kernel
density estimation [5] and quantile-based methods [6,7]. Two main factors contribute to the
enduring preference for semi-/non-parametric methods for mode estimation, despite the
typically less straightforward implementation and lower efficiency compared to parametric
counterparts. First, parametric models often impose strict constraints on the relationship
between the mode and other location parameters, which may not hold in certain applica-
tions. Second, very few existing named distribution families that allow the inclusion of both
symmetric and asymmetric distributions in the same family can be parameterized so that
it is indexed by the mode as the location parameter along with other parameters, such as
shape or scale parameters. In this study, we alleviate concerns raised by both reasons that
discourage the use of parametric methods for mode estimation by formulating a flexible
distribution indexed via the (unique) mode and parameters controlling the shape and scale.

When it comes to modeling heavy-tailed data, the Gumbel distribution [8] is arguably
one of the most widely used models in many disciplines. Indeed, as a case of the gen-
eralized extreme value distribution [9], the Gumbel distribution for the maximum (or
minimum) is well-suited for modeling extremely large (or small) events that produce
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heavy-tailed data. For example, it is often used in hydrology to predict extreme rainfall
and flood frequency [10–12]. In econometrics, Gumbel distribution plays an important role
in modeling extreme movements of stock prices and large changes in interest rates [13,14].
The Gumbel distribution is indexed by the mode and a scale parameter, and thus is con-
venient for mode estimation. However, the Gumbel distribution for the maximum (or
minimum) is right-skewed (or left-skewed) with the skewness fixed at around 1.14 (or
−1.14), and the kurtosis fixed at 5.4 across the entire distribution family. Thus, it may be
too rigid for scenarios where the direction and extremeness of outliers presented in data
are initially unclear, or when the direction and level of skewness are unknown beforehand.
Constructions of more flexible distributions that overcome these limitations have been
proposed. In particular, Cooray [15] applied a logarithmic transformation on a random
variable following the odd Weibull distribution to obtain the so-called generalized Gumbel
distribution that includes the Gumbel distribution as a subfamily. But the mode of the
generalized Gumbel distribution is not indexed by a location parameter, or an explicit
function of other model parameters. Shin et al. [16] considered mixture distributions with
one of the components being the Gumbel distribution and the other component(s) being
Gumbel of the same skewness direction or a different distribution, such as the gamma
distribution. Besides the same drawback pointed out for the generalized Gumbel distri-
bution, it is difficult to formulate a unimodal distribution following their construction of
mixtures, and thus their proposed models are unsuitable when unimodality is a feature
required to make inferring the mode meaningful, such as in a regression setting, as in
modal regression [5,17,18].

With heavy-tailed data in mind and the mode as the location parameter of interest, we
construct a new unimodal distribution that does not impose stringent constraints on how
the mode relates to other central tendency measures, while allowing a range of kurtosis
wide enough to capture heavy tails at either direction, as well as different degrees and
directions of skewness. This new distribution, called the flexible Gumbel (FG) distribution,
is presented in Section 2, where we study properties of the distribution and discuss the
identifiability of the model. We present a frequentist method and a Bayesian method for
estimating parameters in the FG distribution in Section 3. The finite sample performance of
these methods is inspected in a simulation study in Section 4, followed by an application
of the FG distribution in hydrology in Section 5. Section 6 demonstrates fitting a modal
regression model based on the FG distribution to data from a criminology study. Section 7
highlights the contributions of our study and outlines future research directions.

2. The Flexible Gumbel Distribution

The probability density function (pdf) of the Gumbel distribution for the maximum is
given by

f (x; θ, σ) =
1
σ

exp
{
− x − θ

σ
− exp

(
− x − θ

σ

)}
, (1)

where θ is the mode and σ > 0 is a scale parameter. The pdf of the Gumbel distribution for
the minimum with mode θ and a scale parameter σ is given by

f (x; θ, σ) =
1
σ

exp
{

x − θ

σ
− exp

(
x − θ

σ

)}
. (2)

We define a unimodal distribution for a random variable Y via a mixture of the
two Gumbel distributions specified by (1) and (2) that share the same mode θ while
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allowing different scale parameters, σ1 and σ2, in the two components. We call the resultant
distribution the flexible Gumbel distribution FG for short with the pdf given by

f (y) = w × 1
σ1

exp
{
− x − θ

σ1
− exp

(
− x − θ

σ1

)}
+

(1 − w)× 1
σ2

exp
{

x − θ

σ2
− exp

(
x − θ

σ2

)}
,

(3)

where w ∈ [0, 1] is the mixing proportion parameter. Henceforth, we state that Y ∼
FG(θ, σ1, σ2, w) if Y follows the distribution specified by the pdf in (3).

For each component distribution of FG, the mean and median are both some simple
shift of the mode, with each shift solely determined by the scale parameter. Because the
two components in (3) share a common mode θ, the mode of Y is also θ, and thus the FG
distribution is convenient to use when one aims to infer the mode as a central tendency
measure, or to formulate parametric modal regression models [19–21]. One can easily show
that the mean of Y is E(Y) = w(θ + σ1γ) + (1 − w)(θ − σ2γ) = θ + {w(σ1 + σ2)− σ2}γ,
where γ ≈ 0.5772 is the Euler–Mascheroni constant. Thus, the discrepancy between
the mode and the mean of FG depends on three other parameters that control the scale
and shape of the distribution. The median of Y, denoted by m, is the solution to the
following equation,

w exp
{
− exp

(
−m − θ

σ1

)}
+ (1 − w)

[
1 − exp

{
− exp

(
m − θ

σ2

)}]
= 0.5.

Even though this equation cannot be solved for m explicitly to reveal the median
in closed form, it is clear that m − θ also depends on all three other parameters of FG.
In conclusion, the relationships between the three central tendency measures of FG are
more versatile than those under a Gumbel distribution for the maximum or a Gumbel
distribution for the minimum.

The variance of Y is V(Y) = {wσ2
1 + (1 − w)σ2

2}π2/6 + w(1 − w)(σ1 + σ2)
2γ2, which

does not depend on the mode parameter θ. Obviously, by setting w = 0 or 1, FG(θ, σ1, σ2, w)
reduces to one of the Gumbel components. Unlike a Gumbel distribution that only has
one direction of skewness at a fixed level (of ±1.14), an FG distribution can be left-skewed,
or right-skewed, or symmetric. More specifically, with the mode fixed at zero when
studying the skewness and kurtosis of FG, one can show (as outlined in Appendix A) that
the third central moment of Y is given by

ww̄(σ1 + σ2)
2γ
{

γ2(w̄ − w)(σ1 + σ2) + 0.5π2(σ1 − σ2)
}
+ 2ζ(3)

(
wσ3

1 − w̄σ3
2

)
, (4)

where w̄ = 1 − w, and ζ(3) ≈ 1.202 is Apéry’s constant. Although the direction of
skewness is not immediately clear from (4), one may consider a special case with w = 0.5
where (4) reduces to (σ1 − σ2){γπ2(σ1 + σ2)

2/8 + ζ(3)(σ2
1 + σ1σ2 + σ2

2 )}. Now one can
see that FG(θ, σ1, σ2, 0.5) is symmetric if and only if σ1 = σ2, and it is left-skewed (or
right-skewed) when σ1 is less (or greater) than σ2. The kurtosis of Y can also be derived
straightforwardly, with a more lengthy expression than (4) that we omit here, which may
not shed much light on its magnitude except that it varies as the scale parameters and the
mixing proportion vary, instead of fixing at 5.4 as for a Gumbel distribution. An R Shiny app
depicting the pdf of FG(θ, σ1, σ2, w) with user-specified parameter values is available here:
https://qingyang.shinyapps.io/gumbel_mixture/ (accessed on 6 March 2024), created
and maintained by the first author. Along with the density function curve, the Shiny app
provides skewness and kurtosis of the depicted FG density. From there, one can see that
the skewness can be much lower than −1.14 or higher than 1.14, and the kurtosis can be
much higher than 5.4, suggesting that inference based on FG can be more robust to outliers
than when a Gumbel distribution is assumed for data at hand, without imposing stringent
assumptions on the skewness of the underlying distribution.

https://qingyang.shinyapps.io/gumbel_mixture/
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The flexibility of a mixture distribution usually comes with concerns relating to iden-
tifiability [22–24]. In particular, there is the notorious issue of label switching when
fitting a finite mixture model [25]. Take the family of two-component normal mixture
(NM) distributions as an example, defined by {NM(µ1, σ1, µ2, σ2, w) : wN (µ1, σ2

1 ) + (1 −
w)N (µ1, σ2

2 ), for σ1, σ2 > 0 and w ∈ [0, 1]}. When fitting a dataset assuming a normal mix-
ture distribution, one cannot distinguish between, for instance, NM(1, 2, 3, 4, 0.2) and
NM(3, 4, 1, 2, 0.8), since the likelihood of the data is identical under these two mixture
distributions. As another example, for data from a normal distribution, a two-component
normal mixture with two identical normal components and an arbitrary mixing proportion
w ∈ [0, 1] leads to the same likelihood, and thus w cannot be identified. Teicher [23] showed
that imposing a lexicographical order for the normal components resolves the issue of
non-identifiability, which also excludes mixtures with two identical components in the
above normal mixture family. Unlike normal mixtures of which all components are in the
same family of normal distributions, the FG distribution results from mixing two compo-
nents from different families, i.e., a Gumbel distribution for the maximum and a Gumbel
distribution for the minimum, with weight w on the former component. By construction,
FG does not have the label-switching issue. And we show in Appendix B by invoking
Theorem 1 in Teicher [23] that the so-constructed mixture distribution is always identifiable
even when the true distribution is a (one-component) Gumbel distribution.

3. Statistical Inference
3.1. Frequentist Inference Method

Based on a random sample of size n from the FG distribution, y = {yi}n
i=1, maximum

likelihood estimators (MLEs) of all model parameters in Ω = (θ, σ1, σ2, w) can be obtained
via the expectation-maximization (EM) algorithm [26]. To apply the EM algorithm, we
introduce a latent variable Z that follows Bernoulli(w) such that the joint likelihood of
(Y, Z) is

fY,Z(y, z) = {w f1(y; θ, σ1)}z{(1 − w) f2(y; θ, σ2)}1−z, (5)

where f1(y; θ, σ1) is the pdf in (1) evaluated at y with the scale parameter σ = σ1, and
f2(y; θ, σ2) is the pdf in (2) evaluated at y with the scale parameter σ = σ2. A random
sample of size n from Bernoulli(w), z = {zi}n

i=1, is viewed as missing data, and {(yi, zi)}n
i=1

are viewed as the complete data in the EM algorithm. It can be shown ([27] Section 2.6.3a)
that integrating z out from (5) indeed gives the density of Y in (3). The log-likelihood based
on the density in (3) is usually not well-behaved as an objective function to be maximized
with respect to Ω. By considering the complete-data log-likelihood based on (5), one can
often maximize an objective function that is better-behaved as we demonstrate next. More
specifically, the complete-data log-likelihood is

ℓ(Ω; y, z) =
n

∑
i=1

{zi log(w f1(yi; θ, σ1)) + (1 − zi) log((1 − w) f2(yi; θ, σ2))}. (6)

Starting from an initial estimate of Ω (at the zero-th iteration), denoted by Ω(0), one
iterates two steps referred to as the E-step and the M-step until a convergence criterion is
met. In the E-step at the (t + 1)-th iteration, one computes the conditional expectation of
(6) given y while assuming the true parameter value to be Ω(t) = (θ(t), σ

(t)
1 , σ

(t)
2 , w(t)), that

is, E
Ω(t){ℓ(Ω; y, z)|y}. This conditional expectation can be shown to be

Q
(

Ω
∣∣∣Ω(t)

)
=

n

∑
i=1

{
T(t)

i log(w f1(yi; θ, σ1)) +
(

1 − T(t)
i

)
log((1 − w) f2(yi; θ, σ2))

}
, (7)

where

T(t)
i = E

Ω(t)(Z|Y = yi) =
w(t) f1(yi; θ(t), σ

(t)
1 )

w(t) f1(yi; θ(t), σ
(t)
1 ) + (1 − w(t)) f2(yi; θ(t), σ

(t)
2 )

. (8)



Stats 2024, 7 321

In the M-step at the (t + 1)-th iteration, one maximizes Q(Ω|Ω(t)) with respect to Ω to
obtain an updated estimate Ω(t+1) = (θ(t+1), σ

(t+1)
1 , σ

(t+1)
2 , w(t+1)), in which w(t+1) =

∑n
i=1 T(t)

i /n, and the other three updated estimates in Ω(t+1) are obtained numerically.
The EM algorithm avoids directly maximizing the log-likelihood based on (3) by (iter-

atively) maximizing the better-behaved Q(Ω|Ω(t)) in (7). To further improve the numerical
efficiency, we exploit the expectation-conditional maximization (ECM) algorithm [28],
which replaces the M-step with a sequence of simpler conditional maximizations referred
to as the CM-step. Essentially, within each M-step, we update w via w(t+1) = ∑n

i=1 T(t)
i /n,

then we update θ using w(t+1) along with (σ
(t)
1 , σ

(t)
2 ), followed by updating σ1 using w(t+1),

the recently updated θ, and σ
(t)
2 ; lastly, we update σ2 using w(t+1) and the recently updated

θ and σ1. There is no closed-form updating formula for the latter three updates, but each
of them can now be easily updated by most well-accepted one-dimensional optimization
algorithms, such as the Newton–Raphson method. To ensure convergence at the global
maximum, as recommended by Wu [29], one should implement the ECM algorithm several
rounds with different starting values Ω(0).

After obtaining the MLE of Ω, denoted by Ω̂, we propose to use the sandwich variance
estimator ([27] Chapter 7) to estimate the variance-covariance matrix of Ω̂. One may
also estimate the variance-covariance of Ω̂ based on the observed information matrix
as described in Louis [30] and Oakes [31]. The benefit of using the sandwich variance
estimator is its robustness to model misspecification. Finally, the EM and ECM algorithms
bear a strong resemblance to data augmentation [32] in the Bayesian framework, which we
turn to next for inferring Ω.

3.2. Bayesian Inference Method

In the Bayesian framework, we formulate hierarchical models starting with the
FG distribution,

Y|θ, σ1, σ2, w ∼ FG(θ, σ1, σ2, w),

followed by independent weakly informative or non-informative priors for elements in Ω,

θ ∼ N (0, 104),

σj ∼ inv-Gamma(1, 1), for j = 1, 2,

w ∼ Uniform(0, 1),

where inv-Gamma refers to the inverse Gamma distribution. We choose the above prior for
the scale parameters by following the prior selection for variance parameters suggested in
Gelman [33].

We employ the Metropolis-within-Gibbs sampler [34,35] to obtain an estimate of Ω

from the posterior distribution of Ω given observed data y. Similar to the EM/ECM
algorithm in Section 3.1, the latent variable Z is also introduced as a device to carry out
data augmentation. The iterative algorithm presented next is based on the following two
conditional distributions that can be easily proved,

zi|θ, σ1, σ2, w, z−i, y ∼ Bernoulli
(

w f1(yi; θ, σ1)

w f1(yi; θ, σ1) + (1 − w) f2(yi; θ, σ2)

)
,

w|θ, σ1, σ2, z, y ∼ Beta

(
1 +

n

∑
i=1

zi, n + 1 −
n

∑
i=1

zi

)
,

where z−i results from dropping zi from z, and the first result above is also the one from
which (8) is deduced.

The Metropolis-within-Gibbs sampler at the (t + 1)-th iteration involves four steps
outlined below.

• Step 1: For i = 1, . . . , n, draw z(t+1)
i from Bernoulli(T(t)

i ), where T(t)
i is given in (8).
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• Step 2: Draw w(t+1) from Beta
(

1 + ∑n
i=1 z(t+1)

i , n + 1 − ∑n
i=1 z(t+1)

i

)
.

• Step 3: Draw θ̃ from N (θ(t), τ0), and update θ(t) to θ(t+1) according to the following
decision rule,

θ(t+1) =


θ̃, with probability q = min

{
p(θ̃|w(t+1), σ

(t)
1 , σ

(t)
2 , y)

p(θ(t)|w(t+1), σ
(t)
1 , σ

(t)
2 , y)

, 1

}
,

θ(t), with probability 1 − q.

• Step 4: For j = 1, 2, draw σ̃j from N (σ
(t)
j , τj), and update σ

(t)
j to σ

(t+1)
j according to

the following decision rule, for k ̸= j,

σ
(t+1)
j =


σ̃j, with probability q = min

 p(σ̃j|θ(t+1), σ
(t)
k , w(t+1), y)

p(σ(t)
j |θ(t+1), σ

(t)
k , w(t+1), y)

, 1

,

σ
(t)
j , with probability 1 − q.

In Steps 3 and 4, p(·|·) refers to a conditional pdf generically, τ0, τ1, and τ2 are three
positive tuning parameters whose values should be chosen so that the acceptance rate at
each step is around 23% [36]. To draw samples from the joint posterior distribution, there
are numerous ways to design the Markov chain Monte Carlo (MCMC) sampler. Instead of
the Metropolis-within-Gibbs sampler we adopt here, one may use other existing MCMC
software, such as STAN [37], JAGS [38], and BUGS [39,40], the former two of which are
demonstrated in the GitHub repository (https://github.com/rh8liuqy/flexible_Gumbel,
accessed on 6 March 2024)). After obtaining enough high-quality samples from the joint
posterior distribution p(θ, σ1, σ2, w|y), Bayesian inference is straightforward, including
point estimation, interval estimation, and uncertainty assessment.

4. Simulation Study

Large-sample properties of MLEs and likelihood-based Bayesian inference under a
correct model for data have been well studied. To assess finite-sample performance of the
frequentist method and Bayesian method proposed in Section 3, we carried out a simulation
study with two specific aims: first, to compare inference results from the two methods;
second, to compare goodness of fit for data from distributions outside of the FG family
when one assumes an FG distribution and when one assumes a two-component normal
mixture distribution for the data.

In the first experiment, denoted as (E1) hereafter, we considered two FG distribu-
tions as true data-generating mechanisms, FG(θ = 1, σ1 = 1, σ2 = 1, w = 0.4) and
FG(θ = 0, σ1 = 1, σ2 = 5, w = 0.5). This design creates two FG distributions with the
second one more skewed and variable than the first. Based on a random sample of size
n = 50 from the first FG distribution, we estimated Ω by applying the ECM algorithm
and the Metropolis-within-Gibbs algorithm. Similarly, based on a random sample of
size n ∈ {100, 200}, we implemented the two algorithms to estimate Ω. The former
algorithm produced the MLE of Ω, and we used the median of the posterior distribution of
Ω at convergence of the latter algorithm as another point estimate of Ω. Table 1 presents
summary statistics of these estimates of Ω and estimates of the corresponding standard
deviation across 1000 Monte Carlo replicates under each simulation setting specified by the
design of an FG distribution and the level of n.

https://github.com/rh8liuqy/flexible_Gumbel
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Table 1. Frequentist and Bayesian inference results in experiment (E1) across 1000 Monte Carlo
replicates. Here, point.est stands for the average of 1000 point estimates for each parameter from each
method, ŝ.d. stands for the average of the corresponding 1000 estimated standard deviations, and s.d.
refers to the empirical standard deviation of the 1000 point estimates from each method. Numbers in
parentheses are 100× Monte Carlo standard errors associated with the averages of 1000 estimates of
the standard deviation associated with a point estimator.

Sample Size Parameter
Frequentist Bayesian

point.est ŝ.d. s.d. point.est ŝ.d. s.d.

θ 0.990 0.197 (0.40) 0.209 0.965 0.250 (0.18) 0.224

σ1 1.106 0.272 (0.77) 0.419 1.045 0.638 (2.30) 0.296

σ2 1.047 0.192 (0.49) 0.216 1.082 0.459 (2.12) 0.465
n = 50

w 0.411 0.190 (0.46) 0.207 0.435 0.207 (0.12) 0.187

θ 0.002 0.198 (0.20) 0.201 0.013 0.205 (0.15) 0.203

σ1 0.979 0.204 (0.41) 0.216 1.014 0.224 (0.27) 0.214

σ2 4.932 0.590 (0.56) 0.613 4.813 0.666 (0.44) 0.615
n = 100

w 0.495 0.091 (0.09) 0.090 0.484 0.090 (0.04) 0.088

θ 0.008 0.136 (0.08) 0.129 0.011 0.137 (0.07) 0.130

σ1 0.999 0.143 (0.21) 0.144 1.013 0.144 (0.10) 0.141

σ2 4.993 0.435 (0.32) 0.431 4.940 0.457 (0.20) 0.434
n = 200

w 0.500 0.064 (0.04) 0.063 0.495 0.063 (0.02) 0.062

According to Table 1, all parameter estimates in Ω are reasonably close to the true
values. When the sample size is as small as 50, estimates for Ω resulting from the frequentist
method are still similar to those from the Bayesian inference method, although estimates for
the standard deviations of these point estimators can be fairly different. We do not find such
discrepancy surprising because, for the frequentist method where we use the sandwich
variance estimator to infer the uncertainty of an MLE for Ω, the asymptotic properties asso-
ciated with MLEs that support the use of a sandwich variance estimator may not take effect
yet at the current sample size; and, for the Bayesian method, the quantification of standard
deviation can be sensitive to the choice of priors when n is small. These are confirmed by
the diminishing discrepancy between the two sets of standard deviation estimates when
n = 100, 200. A closer inspection of the reported empirical mean of estimates for Ω along
with their empirical standard error suggests that, when n = 100, the Bayesian method may
slightly underestimate σ2, the larger of the two scale parameters of FG. We believe that
this is due to the inverse gamma prior imposed on the scale parameters that is sharply
peaked near zero, and thus the posterior median of the larger scale parameter tends to
be pulled downwards when the sample size is not large. As the sample size increases
to 200, this trend of underestimation appears to diminish. The empirical means of the
standard deviation estimates from both methods are close to the corresponding empirical
standard deviations, which indicate that the variability of a point estimator is accurately
estimated when n is not small, whether it is based on the sandwich variance estimator in
the frequentist framework, or based on the posterior sampling in the Bayesian framework.
In summary, the methods proposed in Section 3 under both frameworks provide reliable
inference for Ω along with accurate uncertainty assessment of the point estimators when
data arise from an FG distribution.

Among all existing mixture distributions, normal mixtures probably have the longest
history and are most referenced in the literature. In another experiment, we compared the
model fitting of normal mixture with that of FG when data arise from three heavy-tailed
distributions: (E2) Laplace with the location parameter equal to zero and the scale parameter
equal to 2; (E3) a mixture of two Gumbel distributions for the maximum, with a common
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mode at zero, scale parameters in the two components equal to 2 and 6, respectively, and the
mixing proportion equal to 0.5; (E4) a Student-t distribution with degrees of freedom equal
to 5. From each of the three distributions in (E2)–(E4), we generated a random sample
of size n = 200, following which we fit a two-component normal mixture model via the
EM algorithm implemented using the R package mixtools (version: 2.0.0), and also fit an
FG model via the two algorithms described in Section 3. This model fitting exercise was
repeated for 1000 Monte Carlo replicates under each of (E2)–(E4).

We used an empirical version of the Kullback–Leibler divergence as the metric to
assess the quality of modeling fitting. We denote the true density function as p(·), and let
p̂(·) be a generic estimated density resulting from one of the three considered model fitting
strategies. Under each setting in (E2)–(E4), a random sample of size 50,000, (x1, . . . , x50,000),
was generated from the true distribution, and an empirical version of the Kullback–Leibler
divergence from p̂(·) to p(·) is given by DKL = (1/50, 000)∑50,000

i=1 log(p(xi)/ p̂(xi)). Figure 1
shows the boxplots of DKL across 1000 Monte Carlo replicates corresponding to each model
fitting scheme under (E2)–(E4).
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Figure 1. Boxplots of the empirical Kullback–Leibler divergence from an estimated density to the true
density under each of the true-model settings in (E2)–(E4). Under each setting, the three considered
model fitting strategies are, from left to right in the figure, (i) using the ECM algorithm to fit an
FG distribution (FG ECM), (ii) using the Bayesian method to fit an FG distribution (FG Bayes), and
(iii) using the EM algorithm to fit a normal mixture distribution (Normal Mixture Distribution EM).

Judging from Figure 1, the FG distribution clearly outperforms the normal mixture
when fitting data from any of the three heavy-tailed distributions in (E2)–(E4), and results
from the frequentist method are comparable with those from the Bayesian method for fitting
an FG model. When implementing the ECM algorithm for fitting the FG model and the EM
algorithm for fitting the normal mixture, we set a maximum number of iterations at 1000.
Our ECM algorithm always converged in the simulation, i.e., converged to a stationary
point within 1000 iterations. However, the EM algorithm for fitting a normal mixture
often had trouble achieving that, with more difficulty when data come from a heavier-
tailed distribution. More specifically, under (E4), which has the highest kurtosis (equal
to 9) among the three settings, the EM algorithm failed to converge in 59.9% of all Monte
Carlo replicates; under (E2), which has the second highest kurtosis (equal to 6), it failed to
converge in 6.7% of the replicates. Results associated with the normal mixture from these
failing replicates were not included when producing the boxplots in Figure 1. In conclusion,
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the FG distribution is more suitable for symmetric or asymmetric heavy-tailed data than
the normal mixture distribution.

5. An Application in Hydrology

Daily maximum water elevation changes of a water body, such as ocean, lake, and wet-
land, are of interest in hydrologic research. These changes may be close to zero on most
days but can be extremely large or small under extreme weather. From the National Water
Information System (https://waterdata.usgs.gov/), we downloaded water elevation data
for Lake Murray near Columbia, South Carolina, United States, recorded from 18 September
2020 to 18 September 2021. The water elevation change of a given day was calculated by
contrasting the maximum elevation and the minimum elevation on that day, returning
a positive (negative) value if the maximum record of the day comes after (before) the
minimum record on the same day. We fit the FG distribution to the resultant data with
n = 366 records using the frequentist method and the Bayesian method, with results
presented in Table 2. The two inference methods produced very similar estimates for
most parameters, although small differences were observed. For example, one would
estimate the mode of daily maximum water elevation change to be −0.795 feet based
on the frequentist method, but estimate it to be −0.485 feet using the Bayesian method.
The discrepancy between these two mode estimates is minimal considering that the daily
maximum water elevation changes range from −38 feet to 49.4 feet within this one year.
Taking into account the uncertainty in these point estimates, we do not interpret any of
these differences as statistically significant because a parameter estimate from one method
always falls in the interval estimate for the same parameter from the other method accord-
ing to Table 2. Using parameter estimates in Table 2 in the aforementioned R Shiny app,
we obtained an estimated skewness of −0.102 and an estimated kurtosis of 6.384 based
on the frequentist inference results, whereas the Bayes inference yielded an estimated
skewness of 0.058 and an estimated kurtosis of 6.074. Combining these two sets of results,
we concluded that the underlying distribution of daily maximum water elevation change
may be nearly symmetrical, with outliers on both tails that cause tails heavier than that of a
Gumbel distribution.

Table 2. Frequentist and Bayesian inferences about daily maximum water elevation changes of
Lake Murray, South Carolina, United States. Besides parameter estimates (under point.est) and the
estimated standard deviations of these parameter estimates (under ŝ.d.), 95% confidence intervals of
the parameters from the frequentist method, and 95% credible intervals from the Bayesian method
are also provided (under lower 95 and upper 95).

Parameter
Frequentist Bayesian

point.est ŝ.d. Lower 95 Upper 95 point.est ŝ.d. Lower 95 Upper 95

θ −0.795 0.796 −2.355 0.764 −0.485 0.695 −1.670 0.979
σ1 5.186 0.541 4.124 6.247 5.400 0.655 4.520 6.910
σ2 6.237 1.735 2.836 9.638 5.733 1.036 4.390 8.030
w 0.698 0.169 0.367 1.029 0.629 0.141 0.327 0.846

Figure 2 presents the estimated density functions from these two methods, in contrast
with the estimated density curve resulting from fitting the data to a two-component normal
mixture, and a kernel density estimate using a Gaussian kernel with the bandwidth selected
according to the method proposed by Sheather and Jones [41]. The last estimate is fully
nonparametric and served as a benchmark against which the other three density estimates
were assessed graphically. The kernel density estimate is more flexible at describing
varying tail behaviors, but such flexibility comes at the cost of statistical efficiency and
interpretability. With the wiggly tails evident in Figure 2 for this estimate, we suspected
a certain level of overfitting of the kernel density estimate. This often happens to kernel-
based estimation of a function around a region where data are scarce, with a bandwidth

https://waterdata.usgs.gov/
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not large enough for the region. Between the two FG density estimates, the difference is
almost negligible. They both track the kernel density estimate closely over a wide range of
the support around the mode. The mode of the estimated normal mixture density is close
to the other three mode estimates, but the tails are much lighter than those of the other
three estimated densities.
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Figure 2. Four density estimates based on daily maximum water elevation changes in Lake Murray,
including the kernel density estimate (solid line), the estimated FG density from the ECM algorithm
(dotted line), the estimated FG density from the Bayesian method (dashed line), and the estimated
normal mixture density (dash-dotted line).

Besides comparing the three parametric density estimates pictorially, we also used
the Monte-Carlo-based one-sample Kolmogorov–Smirnov test to assess the goodness of fit.
The p-values from this test are 0.223, 0.312, and 0.106 for the frequentist FG density estimate,
the Bayesian FG density estimate, and the estimated normal mixture density, respectively.
Although none of the p-values are low enough to indicate a lack of fit (at significance
level 0.05, for example), the p-value associated with the normal mixture is much lower
than those for FG. Hence, between the two null hypotheses, with one assuming an FG
distribution and the other claiming a normal mixture for this dataset, we find even weaker
evidence to reject the former than data evidence against the latter. It is also worth noting
that the Kolmogorov–Smirnov test is known to have low power to detect deviations from a
posited distribution that occurs in the tails [42]. This may explain the above-0.05 p-value
for the normal mixture fit of the data even though the tail of this posited distribution
may be too thin for the current data. Finally, as suggested by a referee, we computed
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) after
fitting the FG distribution and the normal mixture distribution to the data. When assuming
an FG distribution, we obtained an AIC/BIC of 2506.028/2521.638 from the frequentist
method, and 2506.299/2521.909 from the Bayesian method. When assuming a mixture
normal, we found the values of AIC and BIC to be 2499.821 and 2519.334, respectively.
Even though the fitted normal mixture distribution produces a lower AIC/BIC than the
fitted FG distribution, we argue that these metrics focus more on the overall goodness of
fit, and can be more forgiving when it comes to a relatively poor fit for certain feature of a
distribution, such as the tail behavior.
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We used STAN to implement the Bayesian inference for the Lake Murray data. The
code can be found here: https://github.com/rh8liuqy/flexible_Gumbel/blob/main/FG_
MLR.stan, accessed on 6 March 2024), where the JAGS code for fitting the FG distribution
is also provided. The posterior output is given in Appendix C. The output provided there
indicates that our MCMC chain has converged (see the Rhat statistics).

6. An Application in Criminology

With the location parameter θ signified in the FG distribution as the mode, it is straight-
forward to formulate a modal regression model that explores the relationship between the
response variable and predictors. To demonstrate the formulation of a modal regression
model based on the FG distribution, we analyzed a dataset from Agresti et al. [43] in the
area of criminology. This dataset contains the percentage of college education, poverty
percentage, metropolitan rate, and murder rate for the 50 states in the United States and
the District of Columbia from the year 2003. The poverty percentage is the percentage of
the residents with income below the poverty level; the metropolitan rate is defined as the
percentage of the population living in the metropolitan area; and the murder rate is the
annual number of murders per 100,000 people in the population.

We fit the following modal regression model to investigate the association between
the murder rate (Y) and the aforementioned demographic variables,

Y | β, σ1, σ2 ∼ FG(β0 + β1 × college + β2 × poverty + β3 × metropolitan , σ1, σ2, w),

where β = [β0, β1, β2, β3]
⊤ includes all regression coefficients. For the prior elicitation in

Bayesian inference, we assume that β0, . . . , β3
i.i.d∼ N (0, 104) and use the same priors for σ1,

σ2, and w as those in Section 3.2. As a more conventional regression analysis to compare
with our modal regression, we also fit the mean regression model assuming mean-zero
normal model error to the data.

Table 3 shows the inference results from the modal regression model, and Table 4
presents the inference results from the mean regression model. At 5% significance level,
both frequentist and Bayesian modal regression analyses confirm that there exists a negative
association between the percentage of college education and the murder rate, as well as
a positive association between the metropolitan rate and the murder rate. In contrast,
according to the inferred mean regression model, there is a positive association between the
percentage of college education and the murder rate. Such claimed positive association is
intuitively difficult to justify and contradicts many published results in criminology [44,45].

Table 3. Frequentist and Bayesian modal regression models based on the FG distribution fitted to
the crime data. Besides parameter estimates (under point.est) and the estimated standard deviations
of these parameter estimates (under ŝ.d.), 95% confidence intervals of the parameters from the
frequentist method, and 95% credible intervals from the Bayesian method are also provided (under
lower 95 and upper 95).

Parameter
Frequentist Bayesian

point.est ŝ.d. Lower 95 Upper 95 point.est ŝ.d. Lower 95 Upper 95

β1 −0.166 0.072 −0.306 −0.026 −0.162 0.079 −0.312 −0.003
β2 0.216 0.110 −0.000 0.432 0.232 0.120 −0.007 0.479
β3 0.067 0.013 0.042 0.093 0.067 0.014 0.039 0.095
σ1 1.600 0.180 1.247 1.954 1.690 0.214 1.206 2.686
σ2 51.882 45.034 −36.384 140.148 19.3 19.300 0.187 133.047

https://github.com/rh8liuqy/flexible_Gumbel/blob/main/FG_MLR.stan
https://github.com/rh8liuqy/flexible_Gumbel/blob/main/FG_MLR.stan
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Table 4. Mean regression model based on the normal distribution fitted to the crime data. Be-
sides parameter estimates (under point.est) and the estimated standard deviations of these parameter
estimates (under ŝ.d.), 95% confidence intervals of the parameters are also provided (under lower 95
and upper 95).

Parameter point.est ŝ.d. Lower 95 Upper 95

β1 0.467 0.161 0.142 0.792
β2 1.140 0.224 0.689 1.591
β3 0.068 0.034 0.000 0.136

The scatter plot of the data in Figure 3 can shed some light on why one reaches such a
drastically different conclusion on a covariate effect when mean regression is considered in
place of modal regression. As shown in Figure 3, there exists an obvious outlier, the District
of Columbia (D.C.), in panels of the first row of the scatter plot matrix, for instance. D.C.
not only exhibited the highest murder rate but also the highest percentage of college-
educated individuals. These dual characteristics position D.C., as an outlier within the
dataset. Mean regression reacts to this one extreme outlier by inflating the covariate effect
associated with the percentage of college education in the inferred mean regression function.
Thanks to the heavy-tailed feature of the FG distribution, modal regression based on this
distribution is robust to outliers; it strives to capture data features suggested by the majority
of the data and is not distracted by the extreme outlier when inferring covariate effects in
this application.

Lastly, to compare their overall goodness of fit for the current data, we computed AIC
and BIC following fitting each regression model. Adopting the frequentist and Bayesian
methods, the modal regression analysis yields AIC/BIC equal to 239.394/252.917 and
238.710/252.233, respectively. The mean regression analysis leads to AIC and BIC equal
to 303.154 and 312.813, respectively. Appendix C contains the convergence diagnosis for
the Bayesian inferential method applied to this dataset, from which we see no concerns
about convergence.
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Figure 3. Scatter plot matrix of the crime data, where D.C. stands out as an extreme outlier with the
highest murder rate and the highest percentage of college education.
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7. Discussion

The mode had been an overlooked location parameter in statistical inference until
recently when the statistics community witnessed a revived interest in modal regres-
sion among statisticians [1,5,46–50]. Historically, statistical inference for the mode has
been mostly developed under the nonparametric framework for reasons we point out in
Section 1. Existing semiparametric methods for modal regression only introduce parametric
ingredients in the regression function, i.e., the conditional mode of the response, with the
mode-zero error distribution left in a nonparametric form [18,51–57]. The few recently pro-
posed parametric modal regression models all impose stringent parametric assumptions on
the error distribution [19–21]. Our proposed flexible Gumbel distribution greatly alleviates
concerns contributing to data scientists’ reluctance to adopt a parametric framework when
drawing inferences for the mode. This new distribution is a heterogeneous mixture in
the sense that the two components in the mixture belong to different Gumbel distribution
families, which is a feature that shields it from the non-identifiability issue most traditional
mixture distributions face, such as the normal mixtures. The proposed distribution is
indexed by the mode along with shape and scale parameters, and thus is convenient to
use to draw inferences for the mode while remaining flexible. It is also especially suitable
for modeling heavy-tailed data, whether the heaviness in tails is due to extremely large or
extremely small observations, or both. These are virtues of FG that cannot be achieved by
the popular normal mixture and many other existing mixture distributions.

We develop the numerically efficient and stable ECM algorithm for frequentist infer-
ence for the FG distribution, and a reliable Bayesian inference method that can be easily
implemented using free software, including STAN, JAGS, and BUGS. Compared with the
more widely adopted mean regression framework, the modal regression model based on
FG we entertained in Section 6 shows great potential in revealing meaningful covariate
effects potentially masked by extreme outliers. With these advances made in this study, we
open up new directions for parametric modal regression and semiparametric modal regres-
sion with a fully parametric yet flexible error distribution, and potentially nonparametric
ingredients incorporated in the regression function.
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Appendix A. Derivation of the Third Central Moment of FG in (4)

For any finite mixture distribution, its higher-order central moments can be expressed
using the binomial formula (See Equation (1.22) in [58]). The FG distribution is a mixture
distribution with two components: a right-skewed Gumbel distribution and a left-skewed

https://github.com/rh8liuqy/flexible_Gumbel
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Gumbel distribution. Let Y ∼ FG(θ = 0, σ1, σ2, w), Y1 ∼ right-skewed Gumbel(θ = 0, σ1),
and Y2 ∼ left-skewed Gumbel(θ = 0, σ2). Its j-th finite moment can be expressed as

E
{(

Y − µy
)j
}
= wE

{(
Y1 − µ1 + µ1 − µy

)j
}
+ w̄E

{(
Y2 − µ2 + µ2 − µy

)j
}

=
j

∑
k=0

wE
{(

j
k

)
(Y1 − µ1)

k(µ1 − µy
)j−k

}
+ w̄E

{(
j
k

)
(Y2 − µ2)

k(µ2 − µy
)j−k

}
,

(A1)

where µy, µ1, and µ2 are the expectations of Y, Y1, and Y2, respectively. Applying (A1) for
j = 3, one obtains the expression in (4).

Appendix B. Proof of Identifiability of FG in (3)

In our context of two-component mixture distributions of which the cumulative
distribution functions are of the form wF1(x) + w̄F2(x), Theorem 1 in Teicher [22] states
that a mixture distribution is identifiable if and only if there exists y1 in the support of F1(y)
and y2 in the support of F2(y) such that∣∣∣∣ F1(y1) F2(y1)

F1(y2) F2(y2)

∣∣∣∣ ̸= 0;

that is, the above determinant does not vanish for some (y1, y2). In what follows, we prove
that the FG distribution is identifiable by showing the existence of (y1, y2) that makes the
above determinant non-zero.

Proof. Recall that the cumulative distribution functions of right-skewed and left-skewed
Gumbel distributions are given by

F1(y) = exp
{
− exp

(
−y − θ

σ1

)}
,

and

F2(y) = 1 − exp
{
− exp

(
y − θ

σ2

)}
,

respectively.
By setting y1 = θ, we have∣∣∣∣ F1(y1) F2(y1)

F1(y2) F2(y2)

∣∣∣∣ = ∣∣∣∣ e−1 1 − e−1

F1(y2) F2(y2)

∣∣∣∣ = e−1F2(y2)− (1 − e−1)F1(y2). (A2)

We next show by contradiction that there exists y2 ∈ R such that (A2) is not equal
to zero.

Suppose (A2) is equal to zero for all y2 ∈ R; that is,

F2(y2) = (e − 1)F1(y2), for all y2 ∈ R.

Taking the limit of both sides of the above equation as y2 → +∞ gives

lim
y2→+∞

F2(y2) = (e − 1)× lim
y2→+∞

F1(y2),

which is clearly false since limy2→+∞ F2(y2) = limy2→+∞ F1(y2) = 1. Hence, there exists
y2 ∈ R such that (A2) is not equal to zero. Denote by y∗2 such a value, or one of such values
if such y2 is not unique.

Now that we have found (y1, y2) = (θ, y∗2) such that the aforementioned determinant
does not vanish, the FG distribution is identifiable via Theorem 1 in Teicher [22].
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Appendix C. Convergence Diagnosis of MCMC
## hydrology example - Section~5

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
w1 0.61 0 0.14 0.31 0.51 0.63 0.72 0.83 149860.5 1
theta -0.42 0 0.70 -1.62 -0.93 -0.48 0.04 1.04 162508.9 1
sigma1 5.54 0 0.65 4.67 5.11 5.40 5.81 7.25 159083.7 1
sigma2 5.95 0 1.04 4.58 5.20 5.73 6.49 8.49 175171.4 1
## criminology example - Section~6

variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 alpha 0.496 0.530 2.72 2.68 -4.00 4.89 1.00 102742. 41503.
2 beta[1] -0.160 -0.162 0.0785 0.0769 -0.286 -0.0292 1.00 35063. 13152.
3 beta[2] 0.235 0.232 0.124 0.120 0.0374 0.441 1.00 2074. 1702.
4 beta[3] 0.0669 0.0669 0.0144 0.0140 0.0434 0.0904 1.00 9603. 9166.
5 scale1 1.95 1.69 2.36 0.214 1.40 2.64 1.01 588. 189.
6 scale2 53.6 38.6 74.2 19.3 1.80 133. 1.01 583. 194.
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