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Abstract: The intestinal microbiota is closely related to liver diseases via the intestinal barrier and
bile secretion to the gut. Impairment of the barrier can translocate microbes or their components
to the liver where they can contribute to liver damage and fibrosis. The components of the barrier
are discussed in this review along with the other elements of the so-called gut–liver axis. This
bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However,
the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not
been extensively studied, and controversial data have been published. Therefore, we reviewed
data regarding the integrity and function of the intestinal barrier and the changes of the intestinal
microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection.
Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection
with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that
may influence the outcome of liver disease. Profound alterations of the microbioma with significant
reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic
bacteria were found.
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1. Introduction

A connection between the intestine and the liver was already postulated approximately
two thousand years ago when the Greek-Roman doctor Galen suggested a connection
between the gut and the liver [1].

In modern medicine, the clustering of microorganisms living in the same environment
has been defined as microbiota, while the term microbiome applies to the collective genomes
of the microbes [2,3].Microbiota are composed of bacteria, archaea, protozoans, fungi, and
viruses [4]. Interestingly, every human being has their unique composition of gut microbiota
properly defined as the “microbial fingerprint” [5].

The bacterial component of the microbiota is classified into 12 different phyla and
93.5% of the total belongs to Proteobacteria, the Gram positive Firmicutes, Actinobacteria, and
the Gram negative Bacteroidetes. Bacteroides and Prevotella are the main genera of Bacteriodetes.
Clostridium, Blautia, Enterococcus, Faecalibacterium, Eubacterium, Roseburium, Ruminococcus,
Streptococcus, and Lactobacillus are the most prevalent genera of Firmicutes. Actinobacteria
include Bifidobacteria, Atopobium, and Collinsella, while Proteobacteria are mainly composed
of Enterobacteriaceae such as Escherichia and Klebsiella. Akkermansia muciniphila is the only
species of Verrucomicrobia found in the human gut [6–8]. Archaea are predominated by
Methanobrevibacter species. Viruses and bacteriophages are also colonizing the gut in con-
siderable quantities [9].

Firmicutes and Actinobacteria predominate among luminal bacteria populations, while
Proteobacteria are abundant among mucosal populations [10]. Early in the life of humans,
there is a restricted diversity of the microbiota which is mostly composed of Actinobacteria
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and Proteobacteria. Diversity and variability are increasing with age and the species of
Bacteroides, Clostridium, and Escherichia coli predominate in the intestinal flora in individuals
over 65 years of age [11–13]. The gut microbiome is also variable among different ethnic
groups [14–16] and between rural and urbanized populations of the same ethnicity [15–18].
Microbiota also differ between countries and continents [14,15,19].

Fungal species are also found in the gut including Candida, Saccharomyces, Aspergillus,
Penicillium, Rhodotorula, Trametes, Pleospora, Sclerotinia, Bullera, and Galactomyces [20].

The human intestinal microbiota is now considered as a significant superorganism [21],
colonized by approximately one-hundred trillion bacteria comprising nearly 40,000 types
of microbes [22–25] most of which cannot be cultured, and 200–300 fungal species [26–28].
Microbial cells in the body are 10- to 100-fold higher than human cells [29,30]. In all, the mi-
crobiota weights approximately 1–2 kg in the adult, while the genetic material exceeds that
of the human by about 100 times indicating its significance in human homeostasis [31,32].

There are several pathways of communication between microbes and the human
host. This is achieved through different microbial components and products such as
lipopolysaccharides (LPS), bacterial DNA, flagellin, short-chain fatty acids (SCFAs), tryp-
tophan (Trp), and secondary bile acids (BAs) [33]. All these are recognized by pattern
recognition receptors, mainly the Toll-like receptors (TLRs) family.

These pathways have been recently studied in connection with alcoholic or metabolic
liver disease, but viral hepatitis and its consequences have not studied in depth. The
purpose of this review, therefore, is to present the current data on the interplay between
the intestinal microflora and chronic viral disease and the therapeutic implications of the
manipulation of the gut microbiota.

2. The Gut–Liver Axis

The gut–liver axis is the mutual interaction between the gut microbiota and the liver.
The portal vein transports gut produced components directly to the liver, and the liver
provides the intestine with bile components including a wealth of antibodies [34]. A critical
element of this mutual communication is the intestinal permeability. Bacterial products
cross the intestinal barrier and modify the gut-associated lymphatic tissue (GALT) to release
cytokines and chemokines along with other bacterial metabolites such as trimethylamine,
and ethanol. A second barrier, the gut–vascular barrier (GVB), is the molecular sieve of
components entering the portal-venous circulation to directly reach the liver [35–37].

The intestinal mucosal barrier is a complex functional structure consisting of three
elements (a) the physical element comprised of several types of cells sealed by the tight
intercellular junctions, (b) the gut-associated lymphoid tissue comprised of several immune
cells in concert with the Peyer’s cells and mesenteric lymph nodes, and (c) the mucus layer
secreted by the goblet cells that also contains immunoglobulin A (IgA) and antimicrobial
products [38,39]. The function of the intestinal barrier is to maintain the tolerance to
commensal organisms and food antigens and to mount a protective immune reaction
to microbial pathogens and/or to microbial components defined as pathogen-associated
molecular patterns (PAMPs) [40].

2.1. Physical Elements of the Intestinal Barrier

The intestinal barrier is a single layer of cells comprised of enterocytes, goblet cells,
Tuft cells and enterochromaffin cells [41]. A physical barrier is provided by the cellular
monolayer and the tight junctions, and an electrical barrier is operational as the negatively
charged brush border repels the negative charge of the microbiota. In addition, many
hydrophilic molecules are denied passage by the hydrophobic nature of cell membranes of
intestinal cells. The integrity of the epithelial barrier is further accomplished by an intercel-
lular seal comprised—from the apex of the cell to the base—of tight junctions (TJs, zonula
occludens), the adherens junction (AJ, zonula adherens), and the desmosome (macula
adherens) [41,42]. TJs consist of more than 50 proteins. Membrane-associated scaffolding
proteins such as zonula occludens 1, 2, and 3 anchor TJ to the actin cytoskeleton [43,44].
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They include tight junction-associated MARVEL proteins (TAMPs), claudins, and junctional
adhesion molecules (JAMs) [43,45]. The function of TAMPs, such as occludin, is not com-
pletely clarified as TJs are formed even in the absence of occludin [45]. More than 27 claudin
family members have been described [46]. JAMs, on the other hand, are related to signaling
pathways of cell polarity and regulate permeability via non-selective pathways [47–49].

As mentioned before, there is a second physical barrier, the gut–vascular barrier
that also contains TJs and AJs. This barrier prevents bacterial and antigen translocation
from entering the portal circulation and reaching the liver due to the presence of the
plasmalemma vesicle-associated protein-1. Its function is dependent on the Wnt/β-catenin
signaling pathway. Salmonella typhimurium can cross this barrier by interfering with Wnt/β-
catenin that controls AJ functionality via E-cadherin/β-catenin [50,51]. It should be noted
that Hepatitis B virus also affects the Wnt/β-catenin signaling [52].

2.2. Control of the Microbiota by the Gut-Associated Lymphoid Tissue

Several immune cells contribute to the intestinal barrier. Dendritic cells, various sub-
groups of lymphoid cells, and macrophages protect from pathogens and provide the
necessary tolerance to ingested food antigens and commensal bacteria [53]. Immune cells
are located either in the lamina propria or within the epithelium. Intraepithelial cells
include αβ and γδ T lymphocytes and mononuclear phagocytes [54–56]. Intraepithelial
lymphocytes are cytolytic and are activated by epithelial cell cytokines [57]. Intraepithelial
phagocytes are critical for tolerance development. Their luminar protrusions sense bacterial
and food components and present their peptides into the lamina propria dendritic cells [58].
Immunocytes of the lamina propria are the next line of protection. CD4+ T lymphocytes, in-
nate immunity associated NKT cells, and mucosal associated invariant T cells (MAIT cells)
are highly specialized for particular antigens. NKT cells recognize lipids [59], while MAIT
cells recognize metabolites of vitamin B2 [60,61]. CD4+ T cells are mostly Th17 cells that
are induced after adhesion of filamentous bacteria to the intestinal epithelium [62,63], and
T regulatory cells [64]. The production of IL-22 by Th17 cells improves the integrity of the
tight junctions. Conversely, production of IL-17 is pro-inflammatory and pro-fibrotic [65].
Interactions between the host and the microbiota are mediated by soluble factors called
postbiotics [66,67]. Intestinal microbes produce during the degradation of dietary fibers
short chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, which are the
main postbiotics. SCFAs are consumed by other butyrate-producing microorganisms, such
as Roseburia, Faecalibacterium, and Eubacterium [68]. SCFAs directly strengthen tight junc-
tions [69,70]. They also stimulate mucin production and intestinal motility [66]. SCFAs
also sensitize intestinal epithelial cells (IEC) to bacterial products [71]. They also regulate
immunity in the GALT as they inhibit macrophage and dendritic cell activation and shape
the T helper cell repertoire [72–74] controlling the differentiation of T regulatory cells [75].
Bifidobacteria are examples of protective bacteria that produce SCFAs leading to decreased
production of TNF-a, IL-1b, and IL-6 by macrophages while reinforcing production of
IL-10 [76,77]. Conversely, bacteria of the Enterobacteriaceae family such as Klebsiella, Es-
cherichia coli, Proteus, and Enterobacter produce ethanol and promote liver damage [78]. They
also release large amounts of lipopolysaccharide (LPS) in the intestinal lumen that favor
the production of pro-inflammatory cytokines [79], and increase intestinal permeability
and the translocation of bacteria [80].

Commensal bacteria also strengthen the barrier through their interaction with Toll-like
receptor (TLRs) [81] and the production of mediators that can affect the binding pro-
teins [82,83]. Isoforms of protein kinase C are phosphorylated after activation of TLR2
leading to up-regulated expression of zona occludens and the sealing of tight junctions [82].
On the other hand, the expression of occludin is down-regulated after activation of TLR4
increasing intestinal permeability [83]. Escherichia coli and Clostridia difficile are examples
of bacteria that can affect the binding proteins and open the paracellular routes [84]. Hu-
mans express ten TLRs [85] responding to viral and bacterial proteins or endogenous
ligands without infection [86]. Kupffer cells, the main cells responding to TLRs ligands,
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express all TLRs except TLR5 [87]. Hepatocytes, biliary endothelial cells, hepatic stellate
cells (HSCs), and sinusoidal epithelial cells also express TLRs, but only HSCs express all
nine TLRs [88,89]. The production of inflammatory cytokines, chemokines, and reactive
oxygen species by the Kupffer cells after TLRs activation, lead to liver damage [90] and the
activation of both the innate and adaptive immune immunity [91,92]. Ligands bind to all
TLRs except TLR3 and activate a signal pathway operated by the myeloid differentiation
factor 88 (MyD88) [93,94] that in turn activates nuclear factor-kappa B (NF-κB) and pro-
motes the transcription of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 [85].
More specifically, activation of TLR4 and TLR9 releases IL-12 and pro-inflammatory cy-
tokines [95], while TLR4 activation may also induce the release of IL-23 that favors the
survival of pro-inflammatory Th 17 lymphocytes [96]. On the other hand, activation of
TLR2 releases the anti-inflammatory IL-10 and IL-13 [97]. LPS from Gram-negative bacteria
activates TLR4 [85,98], while unmethylated CpG bacterial and viral sequences activate
TLR9 [99]. TLR2 is activated by ligands of the HCV virus [86,100,101]. Endotoxin-mediated
activation of TLR4, TLR9, and macrophage TLR2 activation by endotoxin is the primary
driver of the development of liver fibrosis [102–105]. TLR4 signaling induces fibrosis by
reducing the BMP and activin membrane-bound inhibitor homologue (BAMBI) which is a
decoy receptor for TGF-β in hepatic stellate cells [106]. TLRs activation also increase the
expression of the major histocompatibility complex on antigen presenting cells [107].

Intestinal epithelial cells (IECs) are also involved in intestinal immunity as they are
exposed to a wealth of antigens acting as sensors of the microbiome through the pattern
recognition receptor families such as the nucleotide-binding oligomerization domain-like
receptors (NODs), TLRs, and the aryl hydrocarbon receptor (AhR). IECs, unlike immune
cells, produce through TLR4 and AhR signaling interleukin-10 (IL-10), leading to tolerance
to commensal bacteria. Commensal stimulation of IECs also promotes tolerance of den-
dritic cells and macrophages through the production of transforming growth factor beta
(TGF-β), IL-10, and retinoic acid (RA) [40,108]. Interestingly, only limited species such as
Peptostreptococcus russellii and Lactobacillus produce AhR ligands [109]. Lactobacilli species
can convert Trp into indole-3-aldehyde, a ligand for AhR leading to the production of
IL-22 [110].

Detailed description of the interaction of HCV, HBV, and the TRLs have been pub-
lished [111,112].

2.3. Stratification of the Microbiota by Mucus

The mucus separates the microbiota from the intestinal cells and inhibits an excessive
inflammatory reaction. Very few species, such as the filamentous bacteria, present in early
life [113], can cross the mucus directly interacting with the epithelial cells [62]. All other
bacteria indirectly interact with the host through their metabolic products [66,114,115].
Intestinal mucus has two layers: the almost sterile inner layer attached to the epithelium,
and the outer layer colonized by bacteria. Mucus is thicker in the terminal ileum and
large bowel [116,117]. Secreted mucins (MUCs), such as MUC2 and transmembrane MUCs,
comprise the inner and outer mucous layers [118]. Bacteria can attach to mucus through the
mucin–immunoglobulin A interactions [119]. The composition of the mucus is determined
by the diversity of microbiota [120] because goblet cells sense the presence of different
bacterial products. This is probably due to the capacity of the so-called sentinel goblet cells
to act as sensors for the presence of different bacterial products and to modify MUC2 mucin
secretion after activation of the Nlrp6 inflammasome [121]. It should be noted that several
bacteria, such as Akkermansia municiphila, can degrade mucins and use them as a source of
nutrients [122].

The intestinal mucus layers increase their defenses by antibacterial lectins, such as
the regenerating islet-derived protein IIIγ (REG3G), which are secreted by the Paneth
cells to fight bacteria present in the mucosal lining [123–125]. In addition, plasma cells
can secrete immunoglobulins A (sIgAs) which is transported to the lumen and neutralize
microbial pathogens [126]. IgA may be used by commensal microbes, such as Bacteroides
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fragilis, to facilitate mucus attachment [127]. Additionally, sIgAs neutralize bacterial toxins
as well [128,129]. The large diversity of antimicrobial peptides inhibits bacteria to develop
resistance to these proteins [130].

Apart from intestinal inflammation, the most important driver of dysregulated barrier
permeability is intestinal dysbiosis [131,132]. The major unsolved problem with dysbiosis is
whether it is the cause or the effect of the disease. The main promoter of dysbiosis is the use
of antibiotics leading to their association with several autoimmune diseases [133–136]. Dys-
biosis may result from either a reduction of beneficial microorganisms or the predominance
of pathogens and the alteration of the total microbial diversity [137]. Intestinal dysbiosis
usually leads to tight junctions weakening and increased translocation of microbes or
microbial elements such as LPS, DNA, and β-glucan from fungi. They are collectively
designated as microbial-associated molecular patterns (MAMPs) or pathogen-associated
molecular patterns (PAMPs). MAPS and PAMPS can activate Kupffer and hepatic stellate
cells that ultimately lead to liver damage and fibrosis [106,138–140].

The communication between the gut and the liver is achieved through the biliary
tract and the portal vein. Liver produced mediators such as bile acids influence the gut
microbiota and intestinal permeability, while intestinal products are involved in bile acid
synthesis and glucose and lipid metabolism in the liver [141,142]. Translocation of gut
bacteria or bacterial components to the liver, mesenteric lymph nodes, and other extra-
intestinal sites is the result of tight junction abnormalities [106,143,144]. Lactate, which is
produced by bacterial carbohydrate fermentation, reduces barrier permeability before its
own fermentation to butyrate by intestinal flora [145]. Harmful bacterial products, such as
LPS and unmethylated CpG, are then delivered to the liver and activate TLRs as mentioned
before [85].

An important mechanism in the bidirectional communication between the liver and the
intestine is the enterohepatic circulation of bile acids (BAs) [146]. Primary Bas, such as cholic
acid (CA) and chenodeoxycholic acid (CDCA), are involved in enterohepatic circulation
after their secretion by the hepatocytes. They are transported to the intestinal lumen as
glycine or taurine conjugates [147]. In the lumen, the bacterial enzyme bile salt hydrolase
(BSH) acts on BSH is produced by both Gram-positive and Gram-negative bacteria in the
gut such as Bacteroides, Clostridium, Lactobacillus, Bifidobacterium, and Listeria [148]. Luminal
bile acids are re-absorbed in the terminal ileum by the apical sodium-dependent bile acid
transporter (ASBT) or passively dross the epithelium in the colon [36]. Secondary BAs may
increase intestinal permeability affecting the stability of cellular membranes [149]. Gut
bacteria also control the synthesis of BAs in the liver through the farnesoid X receptor (FXR)
and G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) [150]. FXR is
a transcriptional nuclear receptor mostly expressed in the liver, ileum, and kidneys. It is
involved in lipid and glucose metabolism [151,152]. BAs bind to FXR of the enterocytes,
inducing the transcription the fibroblast growth factor 19 (FGF19). FGF19 is consequently
transported to the liver via the portal vein and binds to FGF receptor 4 on hepatocytes. This
binding inhibits the enzyme cholesterol 7α-monooxygenase (CYP7A1) and reduces the de
novo BA synthesis in hepatocytes [153–155]. In addition, binding of BA to FXR induces
the production of antimicrobial peptides, such as angiogenin 1 and RNase family member
4, which restrict gut microbial overgrowth and intestinal barrier dysfunction [156,157].
FXR engagement can therefore preserve the epithelial barrier [158] and repair damage
of the gut vascular barrier [159]. Additionally, BAs binding to TGR5 on the enterocyte
membrane mediates host energy expenditure [160,161] and glucose homeostasis [162].
Figure 1 graphically depicts the complex interrelations as described above.
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3. HBV Infection and Intestinal Microbiota

There are approximately 296 million people with chronic HBV infection worldwide,
while 887,000 people die each year from complications of chronic HBV infection [163,164].

3.1. HBV and Intestinal Dysbiosis

HBV infection may be associated with intestinal dysbiosis [165] as demonstrated
from animal experiments and clinical data. Thus, the ratio of Bacteroidetes and Firmicutes
was stable in control mice, but it was significantly different in mice with HBV infection.
Interestingly, differences were observed in Lactobacillus and Bifidobacterium between acute
or chronic HBV infection [166]. In another experiment, decreased Blautia and Clostridium
in HBV-infected mice were negatively correlated and increased Butyricicoccus, and Pre-
votellaceae were positively correlated with HBsAg and HBeAg levels. On the contrary,
Akkermansia, which is considered a gut barrier protector, was reduced in HBV mice and
was negatively correlated with HBV DNA in both serum and the liver [167].

Extensive changes in the gut microbiota composition have been reported in patients
with chronic HBV infection [168,169]. Decreased genera of bacteria that metabolize bile
acids have been described in association with changes in serum and fecal bile acids in
chronic hepatitis B (CHB) patients with moderate/advanced fibrosis. Bacteroides and Ru-
minococcus were significantly lower in CHB patients compared to healthy controls. It was
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proposed that CHB fibrosis was in fact a modifier of the intestinal microbiota. Fibrosis lim-
ited the conversion of primary to secondary bile acids, activating the FXR and subsequently
the FGF19 [170,171].

Microbiota changes already occur in early stage CHB patients. Operational taxo-
nomic units (OTUs) belonging to Actinomyces, Clostridium, Lachnospiraceae, and Megamonas
increased, while several OTUs decreased, including those belonging to Alistipes, Asaccha-
robacter, Bacteroides, and Butyricimonas [168]. The gut microbiota is also variable according
to viral load. HBV patients with a low viral load have high diversity and taxa associated
with fatty acid and lipid metabolism predominate [172]. LPS produced by Gram-negative
intestinal bacteria was related to liver inflammation and cirrhosis. LPS levels were an
independent predictor towards end-stage liver disease in patients with HBV infection [173].
Controversial results on the composition of microbiota have been reported. There was no
difference in the intestinal microbiome between chronic HBV patients with normal ALT
and normal volunteers. Megasphaera showed positive correlations, and Acidaminococcus
exhibited a negative correlation with high ALT levels [174]. However, in another report,
abundance of Lactobacillus, Clostridium, and Bifidobacterium were reduced in CHB patients
with normal ALT compared to healthy controls [171]. In acute on chronic liver failure
associated with HBV infection, the microbiota was enriched with Moraxellaceae, Sulfurovum,
Comamonas, and Burkholderiaceae, but Actinobacteria, Deinococcus-Thermus, Alphaproteobac-
teria, Xanthomonadaceae, and Enterobacteriaceae were significantly reduced. Moreover, an
increase of Prevotellaceae was a predictor of mortality [175].

In recent extensive studies, patients with all stages of HBV–related liver disease
were examined and compared to healthy people. Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, Verrucomicrobia, Cyanobacteria, and Fusobacteria accounted for almost 100%
of the total sequences. Decreased Firmicutes and increased Bacteroidetes were found in
all disease groups (Chronic Hepatitis, cirrhosis, Hepatocellular carcinoma) compared to
healthy controls. Bifidobacterium and butyrate-producing bacteria families such as Clostridia
and Ruminococcus were also decreased in all disease groups [176], but no difference was
observed among patients with resolved HBV infection [176,177]. These findings may have
pathogenetic implications as Bacteroidetes are Gram-negative bacteria which produce LPS,
while Firmicutes are Gram-positive bacteria without LPS synthesis. Therefore, the higher
Bacteroidetes/Firmicutes ratio means increased burden of LPS to the liver cells and increased
liver damage [178]. On the other hand, the Enterobacteriaceae family bacteria comprising
many pathogenic bacteria such as Klebsiella, Escherichia coli, Proteus, and Enterobacter were
increased in all HBV groups [176,179]. The Enterobacteriaceae family were also increased in
liver cirrhosis and were positively correlated to Child–Pugh (CP) score [180,181]. In detail,
a negative correlation was found between the CP score and Bacteroidetes, while a positive
correlation was demonstrated between CP score and Enterobacteriaceae or Veillonella [182].
Apart from increased LPS secretion, the Enterobacteriaceae produce endogenous ethanol that
may be detrimental to the liver [79]. In addition, high Enterobacteriaceae release endotoxin
that may cause inhibition of enterocyte protein synthesis leading to increased intestinal
barrier permeability with further bacterial translocation to the liver [183]. In fact, two studies
reported on barrier permeability in CHB patients. In the first, serum zonulin and copeptin
were reduced in CHB patients and were negatively correlated with serum HBV DNA [184].
This was in disagreement with another study where serum zonulin was higher in HBV-
related HCC, but no difference was observed in patients with CHB, cirrhosis or healthy
controls [185].

A repeatedly confirmed finding of gut dysbiosis during progression of chronic HBV
is the decrease of SCFAs-producing bacteria, such as Lachnospiraceae and Ruminococcaceae
and their replacement by LPS-producing bacteria such as Enterobacteriaceae, Haemophilus,
and Enterococcus [165,186]. The microbiota of HBV carriers contains more SCFA producers
and less pro-inflammatory bacteria than patients with CHB, cirrhosis, and acute-on-chronic
liver failure or hepatocellular carcinoma [187,188]. Another consistent finding of dysbiosis
in HBV patients is that Bifidobacteria decrease with the increase of Enterobacteriaceae as the
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disease progresses. The ratio of Bifidobacteria/Enterobacteriaceae is reduced as disease severity
progresses from CHB to cirrhosis and HCC [168,176,183,189].

Microbiota changes are difficult to be studied in human acute HBV. Results from
animal studies have shown that the ratio of Firmicutes/Bacteroides increased early in the
disease at day 14, and decreased in late disease at day 49 [166].

The above controversial reports indicate that interpretation and comparisons of results
should be done with great caution as many studies are performed in populations with par-
ticular diet habits which influence the composition of the intestinal microbiome. Moreover,
most studies are cross-sectional with samples representing an individual time point, and
only a few were performed at different periods of HBV infection [165,187,190].

Detailed descriptions of the microbiome in the different stages of HBV infection have
been recently published [191–194].

3.2. Microbiota and Immune Responses in HBV

Microbiota affects the immune response in HBV. Apart from the effects that LPS has
on the immunological response through the activation of TLR4, an additional pathway is
implicated in the immune response of patients with HBV. The unmethylated CpG DNA-
TLR9 pathway can activate TLR9 that produces protective cytokines, such as Interferons.
Unmethylated CpG DNAs is mainly produced by Lactobacilli, Bifidobacteria, Proteobacteria,
and Bacteroidetes [195]. As mentioned above, Lactobacillus and Bifidobacteria are reduced in
the gut microbiota of chronic HBV patients. Therefore, beneficial cytokines are reduced
and the immune effects are defective in HBV [196,197].

Gut microbiota is implicated in the clearance of the HBV infection. When the gut
microbiota is deregulated by antibiotics, the intestinal barrier function is probably im-
paired and the ability of immunity to clear HBV may be compromised [198]. Thus, adult
mice with an intact intestinal microbiota clear HBV after 6 weeks of infection, while in-
fection is not cleared in young mice or after antibiotic use [199,200]. Young mice with a
TLR4 mutation achieved prompt HBV clearance. It therefore seems that a TLR4-dependent
pathway of tolerance is operative in young animals and prevents HBV clearance. Devel-
opment of intestinal microbiota stimulated the immune mechanisms and HBV clearance
was feasible [201]. Additionally, impairment of intestinal microbiota was shown to affect
the systemic adaptive immunity leading to delayed HBV antigen clearance. Gene analysis
of Peyer’s patches (PPs) demonstrated that adaptive immunity was downregulated in
intestinal microbiota-deficient mice, while the depletion of PPs led to higher HBsAg levels
in serum [202]. Dysbiosis in mice and the resulting endotoxemia induced IL-10 production
by the Kupffer cells and increased Kupffer cell-mediated T cell suppression. The immediate
result was the protracted persistence of HBV infection [203]. However, in a mouse model
of CHB, intestinal bacteria reduction by antibiotics had no effect on HBV replication in
immune tolerant mice [204].

The immune response in HBV infection is also regulated by metabolic products pro-
duced by intestinal microbes, such as tryptophan, which interferes with the immune re-
sponse of HBV through its metabolic product kynurenine [205]. Indoleamine-2,3-dioxygenase
(IDO) is an enzyme induced by interferon that catalyzes tryptophan into kynurenine [206]
acting as a suppressor of intracellular pathogens and as an immune regulator [207].
Inducible IDO was shown to suppress HBV replication in HepG2 cells with the HBV
genome [208]. The effect of IDO in HBV clearance was investigated in HBV infected pa-
tients. In acute hepatitis patients who finally cleared the virus, IDO activity was high at the
peak of ALT. In patients with hepatic flare, on the other hand, IDO activity remained low
irrespective of ALT levels indicating that IDO is an anti-HBV factor only during the early
phase of HBV infection [209].

Integrated studies of microbiome and metabolome showed an extensive shift of in-
testinal microbiota and metabolites in chronic HBV patients attributed to either disease
evolution and/or antiviral treatment. Peripheral mononuclear cells incubated with bacte-
rial extracts (BE) from non-cirrhotic patients promoted the expansion of Th17 lymphocytes,
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while BE from cirrhotics reduced Th1 cell count [210]. This is a particularly important
findings that may explain some of the findings during liver fibrogenesis. Th17 immunity is
an important factor in all stages of fibrogenesis in chronic HBV patients [211] including
hepatic stellate cell activation [212,213], increased TGF-β production [214], the secretion of
matrix metalloproteases (MMPs), and collagen synthesis [212,214].

3.3. Microbiota and HBV Treatment

Based on the above findings, it was only logical to suggest that manipulation of the
microbiome might be beneficial for the evolution of HBV. Fecal microbiota transplantation
(FMT) was tested, but the data are still restricted [215,216]. In an interesting experiment, the
gut microbiome in BALB/c mice was abolished by antibiotics and replaced with FMT from
naïve mice to investigate the effect of FMT on the immune response to HBV infection. HBV
clearance differed considerably depending on the origin of FMT. The fecal microbiota from
C57BL/6 but not from BALB/c mice induced tolerance and prolonged HBV infection [217].

Gut microbiota changes, induced via FMT, resulted in promising results in HBeAg-
positive patients. A study on HBeAg-positive CHB patients under treatment with oral
antivirals showed that FMT induces HBeAg clearance in some cases who had failed to clear
HBeAg despite long-term antiviral treatment. The problem with this study is that only
five patients were studied in the FMT group [218]. In a similarly designed recent larger
study of 14 patients in the FMT arm, 16.7% of patients cleared and none in the antiviral
only arm. It should be noted, however, that all patients retained the HBsAg in either arm.
However, after six months, serum HBV DNA was reduced in the FMT arm but not in the
controls [219].

An informative review on all aspects of FMT has been recently published [215].
The effects of oral antiviral treatment on gut microbiota have also been examined in

HBV. In a persistent HBV mouse model, Akkermansia was significantly reduced in HBV-
infected mice, while Entecavir therapy restored levels back to those of the normal controls.
Akkermansia levels showed a negative correlation with HBV DNA levels in serum and
liver [167]. On the contrary, Akkermansia was increased in patients with CHB and liver
cirrhosis [176]. Therefore, additional studies are required on the actual role of Akkermansia
in HBV. In the treatment of naïve patients, E. hallii group and Blautia were greatly reduced
and were restored to normal levels after 5 years of entecavir treatment. Turicibacter with
4-hydroxyretinoic acid were negatively associated with AST [210,220].

The manipulation of intestinal microbiota with probiotics (Clostridium and Bifidobac-
terium) was tested in the treatment of minimal hepatic encephalopathy (MHE) in patients
with HBV cirrhosis. Probiotics improved serum ALT and AST and albumin levels. Ab-
solute fecal bacterial load of genera Fecal Clostridia and Bifidobacteria were increased, and
Enterobacteriaceae were decreased. More importantly probiotics improved psychometric
tests and cognition. Ammonia levels were reduced possibly due to the observed improve-
ment of the intestinal microflora [221]. A recent study administered a mixture of lactulose,
Clostridium butyricum, and Bifidobacterium longum infantis in a population of patients with
HBV-related cirrhosis. The clinical response was insignificant, but intestinal dysbiosis and
the metabolome of the patients improved compared to patients treated with placebo [222].
Obviously, more extensive studies are required, particularly when the above expressed
reservations are considered.

4. HCV Infection and Intestinal Microbiota

Globally, approximately 58.5 million people are infected with HCV worldwide, while
1.75 million new cases are identified each year. Hepatocellular carcinoma (HCV-related)
causes approximately 150,000 deaths and more than 350,000 deaths are HCV-related other
complications. These figures are probably an underestimation of the real problem [223].

Gut microbiota has been connected to the various stages of HCV infection. A common
finding of all studies performed so far is the lower bacterial diversity in HCV patients
compared to healthy controls [180,224–226]. Diversity abnormalities are proportional to
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the stage of the disease [225]. Two hypotheses have been proposed that can explain how
HCV infection can interfere with the gut–liver axis and the progression to fibrosis and
cirrhosis. The first is that the gut microbiota is indirectly affected as a result of the liver
damage. This is not compatible with changes in microbiota observed in early disease.
The second hypothesis proposes a direct effect of HCV infection on B-lymphocytes and
the consequent reduction of IgA production [224,227]. Reduced IgA secretion favors the
abundance of Prevotella. Prevotella contains enzymes that may degrade mucin and increases
the intestinal permeability leading to higher bacterial translocation [8]. A further indication
of an impaired intestinal barrier in HCV-infected patients is also the finding of increased
serum LPS levels [225,228].

Impairment of BAs metabolism is an additional explanation for the reduced microbial
diversity in HCV. BAs profiles are different in chronic HCV compared with normal people.
Fecal deoxycholic acid (DCA) was decreased and lithocholic or ursodeoxycholic acid pre-
dominated. The decrease in fecal DCA reduction was associated with Clostridiales reduction,
while impaired synthesis of cholic acid (CA) was associated with a reduction in the tran-
scription of CYP8B1, a key enzyme in CA synthesis [229]. This BAs disturbance results from
overgrowth of pro-inflammatory bacteria, such as Porphyromonadaceae, Enterobacteriaceae,
and reduction of Firmicutes the main producers of secondary bile acids [180,230–232].

The lower bacterial diversity is also associated with a reduction of the SCFAs pro-
ducing Clostridiales, Lachnospiraceae, Ruminococcaceae, and an increase in Streptococcus and
Lactobacillus, Prevotella and Faecaliberium [227,230]. SCFAs are critical for the differentiation
of bowel regulatory T (Treg) cells that are the main suppressors of inflammation [233,234]
as mentioned before. Apart from Clostridiales, the phylum of Firmicutes is also decreased
in patients with chronic CHC. By contrast, the phylum of Bacterioidetes, the family of En-
terobacteriaceae, Viridans streptococci, and the genera Bacteroides, Blautia, and Collinsella, are
increased [216,235]. A recent study also demonstrated a decreased diversity and found
that Lactic acid bacteria, and Lactobacillus acidophilus were higher in early stage of fibrosis
compared to patients with advanced fibrosis [236].

Low diversity is already evident even in patients with normal transaminases and min-
imal disease with a transient increase in Bacteroides and Enterobacteriaceae. Metagenomics
have shown an increase in the urease gene encoded by viridans streptococci that may account
for the hyperammonemia present in the later stages of the disease [232]. Similarly, bacterial
translocation due to intestinal barrier dysfunction was reported in the absence of fibrosis,
indicating that impairment of the gut barrier occurs even at the early stages of chronic
HCV [173,237].

In contrast to all other reports, a recent study showed an increased microbiota diversity
in patients with HCV infection compared to healthy individuals. A higher abundance of
Prevotella, Collinsella, Faecalibacterium, Megasphera, Mitsuokella multacida, and Ruminococ-
caceae, and a lower abundance of Bacteroides, Alistipes, Streptococcus, and Enterobacteriaceae
was observed. Possible explanations for the discrepancy may be the stages of disease ana-
lyzed, the effect of HCV genotypes, and, most importantly, the demographic characteristics
of the study groups [238].

An important finding was recently reported. The use of Proton pump inhibitors
(PPIs) was related to significant alterations of the microbiota in patients with chronic HCV
infection which were more pronounced in patients with liver cirrhosis. Streptococcus species,
Enterobacter species, and Haemophilus species were significantly increased in patients with
PPI use irrespective of the stage of liver disease [239].

Detailed descriptions of microbiota alterations in the different stages of progressive
severity have been recently published [240,241].

Effect of HCV Treatment on Intestinal Microbiota

The initial treatment of HCV infection with interferon showed that the microbes before
and after treatment were not different [242].
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The use of effective direct acting antivirals (DAAS) in the HCV elimination prompted
a series of studies of the potential effects of treatment on intestinal bacteria. The use of
DAAs in patients with chronic HCV infection could only rectify the intestinal bacterial
abnormalities only in with initial degrees of fibrosis [243]. A later study verified these
results. Bacterial diversity was restored in patients without cirrhosis after sustained viral
response (SVR) within 24 weeks after the end of treatment. No diversity improvement was
found in SVR patients with cirrhosis. The abundances of Collinsella and Bifidobacter genera
were increased between baseline and SVR only in non-cirrhotic patients [244]. However,
in patients with genotypes 1,2,3 4 treated with glecaprevir/pibrentasvir, no significant
differences in microbiota diversity, or microbial pattern were found before and after treat-
ment at week 12 [245]. The same negative results were also very recently reported [246].
Two further reports also produced negative results. No significant alterations in the overall
composition of gut microbiome or alpha diversity were observed after viral eradication.
Some differences in abundance of certain bacteria, such as Coriobacteriaceae, Peptostreptococ-
caceae, Staphylococcaceae, and Morganellaceae, were identified but the overall compositions
was not different after HCV eradication [247]. The diversity of the gut microbiota did not
significantly alter before and after DAAs, even though the relative abundances of Faecal-
ibacterium and Bacillus increased after eradication [248]. The reason for this discrepancy is
not clear but the question is open to more detailed and larger studies.

The impact of DAAs on intestinal microbiota when cirrhosis is present also remains
controversial as both favorable and negative studies have appeared and will be presented
in the relevant section below [230,242].

Sustained viral response (SVR) seems to be a decisive factor, as alleviation of in-
testinal dysbiosis and microbial translocation were observed in responders but not in
non-responders. Viral elimination increased the abundance of SCFAs-producing bacteria
such as Blautia and Bifidobacterium [249]. However, successful response to DAAs eradication
did not affect the intestinal barrier function. It is therefore likely that bacterial transloca-
tion is connected to abnormal composition of gut microbiota rather than to gut barrier
dysfunction after DAAs therapy [230,249]. These reports are not consistent with findings
demonstrating that microbial translocation markers, such as the lipopolysaccharide binding
protein (LBP), were reduced after HCV elimination [250].

An interesting approach for restoration of gut dysbiosis is the use of Bacteriophages.
In reality, phages are viruses that attack and eliminate bacteria [251]. The gut dysbiosis
observed in HCV could potentially be corrected by using bacteriophages that target the
chronic HCV associated bacteria [252], but this remains to be tested.

The current evidence on the effects of the gut microbiota in the evolution of HCV
infection and the impact of DAAs elimination has been recently reviewed [31].

5. Other Hepatitis Viruses (A, D, and E)

Very limited information is available for these viruses, regarding mostly patients with
acute hepatitis E (HEV) infection. The gut microbiota of these patients was enriched in
Proteobacteria, and Enterobacteriaceae compared to normal controls. The presence of Gamma
proteobacteria was positively related to ALT and total bilirubin levels and may be used as
a predictor of the acute infection [253]. Significant changes were observed between acute
uncomplicated HEV and HEV-associated acute liver failure (HEV-ALF). The HEV-ALF sub-
group of patients had higher levels of Gamma proteobacteria, Proteobacteria, Xanthomonadceae,
and Stenotrophomonas, and decreased abundance of Firmicutes, Streptococcus, and Lactobacil-
lus, when compared with the acute HEV group. The relative abundances of Lactobacillaceae
and Gammaproteobacteria were positively correlated with Th lymphocytes, and degree of
hepatic encephalopathy. Survival was associated with higher levels of Lactobacillus mucosae
compared to deceased patients [254]. The administration of the probiotic bacterium Ente-
rococcus faecium in pigs led to the reduction of enteric HEV viruses and accelerated viral
clearance. However, no human trials have been performed [255].
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The sporadic nature of acute Hepatitis A (HAV) prevented an extensive investigation
of the intestinal microbiota. A Japanese study of an HAV outbreak among HIV positive
patients showed significant microbe abnormalities and persistence of dysbiosis persisted
for a long time after recovery [256].

No data about gut microbiota changes during hepatitis D virus (HDV) infection exist
as of yet. This is almost impossible to be clarified since HDV infection always co-exists
with HBV, meaning separate data are difficult to obtain [257].

6. Cirrhosis and Intestinal Microbiota

Chronic liver disease is associated with several abnormalities of the intestinal mi-
crobiome leading to reduced commensal diversity, expansion of pathogenic species and
disruption of the intestinal defensive barriers [40]. Interestingly, microbial abnormalities in
cirrhosis are independent of etiology [169,258,259]. Therefore, they are also applicable in
viral cirrhosis as well.

Microbiome alterations were reported in alcohol-associated and hepatitis-associated
cirrhosis [180]. Increased levels of Veillonella, Megasphaera, Dialister, Atopobium, and Pre-
votella genera were described in the duodenum of patients with cirrhosis. Interestingly,
Neisseria and Gemella genera could differentiate between HBV and PBC cirrhosis [260]. The
role of intestinal microbiota in non-alcoholic liver disease is possibly the most extensively
investigated, but analysis is beyond the scope of the present review [261,262].

Reduced diversity, increased abundance of pathogenic species, such as Staphylococ-
caceae and Enterobacteriaceae, and decreased colonization by beneficial commensals such
as Lachnospiraceae and Ruminococcaceae are all characteristics of cirrhosis. Enterobacteriaceae
increase with progression of liver disease and decompensation [169,180,263].

Gut barrier disruption is well recognized in cirrhosis. It is due to reduced expression
of the tight-junction proteins occludin and claudin [264]. In addition, the impairment of
antimicrobial host defense, as demonstrated in experimental cirrhosis, allows for bacterial
invasion of the inner mucous layer of the gut and increased bacterial translocation [265].

BAs are important regulators of the intestinal microbiome. Abnormalities in either the
quantity or the composition of BAs in the intestinal lumen as observed in cirrhosis, will lead
to a reduction of beneficial bacteria and an increase in pathogenic bacteria [153,266,267].
De novo suppression of BAs may be obtained by activation of the intestinal FXR-FGF19
pathway. As a consequence, the levels of Firmicutes and Actinomycetes with BSH activity
will increase in association with up-regulated excretion of BAs from feces to protect from
liver injury and fibrosis that otherwise would result from the toxicity of hepatic bile
acids [268,269].

6.1. Involvement of Microbiota in the Pathogenesis of Cirrhosis

Portal hypertension, inflammation, and oxidative stress damage the gut barrier and
participate in the complications of cirrhosis The degree of the barrier damage and bacterial
translocation parallels the severity of cirrhosis and the appearance of ascites [34,270]. A
damaged barrier in cirrhosis is associated with restricted secretion of antibacterial peptides
such as α- Defensins by Paneth cells [271]. LPS overproduction by gut microbes activate
Paneth cells to secrete angiogenic molecules that promote mesenteric angiogenesis and
the development of portal hypertension [272]. LPS overproduction may also participate
in the progression of liver fibrosis through interaction with the TLR4. Bacterial transloca-
tion promotes liver fibrosis and inflammation via activation of hepatic stellate cells and
Kupffer cells [37,102]. LPS also activates the pattern-recognition receptor (PRR) mostly on
macrophages, leading to the activation of quiescent HSC into myofibroblasts [273–276] and
progression of fibrosis.

An additional pathway through which microbiota are engaged in the pathogenesis
of cirrhosis is the activation of inflammasomes, the protein complexes found in most cells
including Kupffer cells, hepatocytes, and HSCs [277,278]. They release pro-inflammatory cy-
tokines such as IL-1β and IL-18 and promote inflammation and fibrosis in the liver [279,280].
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TLRs and inflammasomes have different routes of activation [277], but their role is com-
plementary in the communication between the gut microbiota and the systemic immune
response [86]. Interestingly, TLRs may counteract the inflammatory activity of inflamma-
somes. Thus, chronic stimulation of the TLRs by LPS induces IL-10 production restricting
inflammasome activation [281]. Moreover, the activation of TLR2 or TLR4 can upregulate
the autophagy of hepatocytes that leads to the degradation of inflammasomes attenuating
inflammation [282]. It should be noted that the interplay between intestinal microbiota
portal hypertension and fibrosis resembles a mutual relationship, similar to that between
the chicken and the egg, as they affect each other [283].

6.2. Microbiota and HE

The gut microbiota is a critical mediator in the interrelation between the liver and the
brain. Gut dysbiosis influences the cognitive behavior of cirrhotic patients mediated by the
gut–liver–brain axis [284–286]. The already described change of reduction of beneficial and
overgrowth of pathogenic bacteria in cirrhosis is augmented as hepatic encephalopathy (HE)
appears indicating a bidirectional relation between gut microbiota and the nervous systems
of the body including the enteric nervous system, the autonomic nervous system, and the
neuroendocrine and neuro-immunity systems of the central nervous system [287]. This
microbial alteration further compromises the production of SCFAs in concert with increased
barrier permeability and bacterial translocation [287,288]. Derangements of bile acids are
also implicated in the pathogenesis of HE and the role of microbiota. Alterations in intestinal
microbiota are associated with a reduced conversion of primary to secondary fecal BAs [259].
It has been shown that the serum conjugated BAs are increased in cirrhosis. During HE,
there is a further increase in serum and brain BAs that can act as detergents increasing the
permeability of blood–brain barrier and brain damage [289]. Enterobacteriaceae and fecal
CDCA were correlated with the degree of HE, while Ruminococcaceae positively correlated
with DCA. DCA is an effective bactericidal for gut microbes, and a lower DCA/CA ratio
improves the cognitive function in HE [290].

Patients with acute HE were found to have decreased Bacteroidetes and an increase in
the relative abundance of Firmicutes, Proteobacteria, Actinobacteria, and Veillonella parvula
increased [291]. Streptococcus salivarius was also increased even in minimal HE with sleep
disturbances and had a positive correlation with ammonia levels [292,293]. A positive
correlation between cognitive impairment and the overgrowth of Alcaligeneceae and Por-
phyromonadaceae has been demonstrated. This is particularly important as Alcaligenaceae
produce ammonia by decomposing urea [294,295]. Other Gram-negative bacteria con-
taining urease such as Streptococcus salivarius and Proteobacteria also metabolize urea to
ammonia and are implicated in the pathogenesis of HE [296].

The extensive variety of microbial species and their dependence on exogenous factors
not related to cirrhosis itself may cause difficulties in comparisons among different studies.
An example is the presence of minimal HE. Microbiota results may differ in various studies
depending on the methods used for the diagnosis of minimal HE. Thus, the abundances of
Enterococcus and Streptococcus were higher in minimal HE diagnosed by the psychometric
encephalopathy score, while Prevotella, Eggerthela, and Alistipes species were higher when
minimal HE was diagnosed by the inhibitory control test [297]. Only Lactobacillaceae esti-
mations were not dependent on the method used for minimal HE diagnosis [298,299]. A
way to partly overcome this problem in clinical studies is the use of gut dysbiosis indices.
One such index is the Cirrhosis Dysbiosis Ratio, which is the ratio of the abundance of
Lachnospiraceae, Ruminococcaceae, Veillonellaceae, and Clostridiales Incertae sedis XIV over this
of Bacteroidaceae and Enterobacteriaceae [263]. Another index is the Gut Dysbiosis Index [168]
where a high index corresponds with severe dysbiosis.
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6.3. HBV Cirrhosis

The prevalence of HBV-related cirrhosis is lower in Europe and the Americas, com-
pared to Africa and Asia while HCV-related cirrhosis has very heterogeneous prevalence
Globally, 42% of patient with cirrhosis had HBV infection and 21% HCV infection [300].

Specific intestinal microbiota alterations were described in HBV patients with cir-
rhosis. Prevalent phyla were Firmicutes (57%), Bacteroidetes (28.6%), with less abundant
Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia, adding up to almost 93%
of the total sequences. Bacteroidetes were increased and Firmicutes were reduced HBV cir-
rhosis compared to the healthy individuals [194,301,302]. Patients with HBV cirrhosis had
lower levels of beneficial bacterial taxa, such as Dialister and Alistipes, and higher levels
of pathogenic species within Actinobacteria [165]. The lower Firmicutes/Bacteroidetes ratio
may be pathogenetically associated with the progression of cirrhosis and inflammation.
The Bifidobacteria/Enterobacteriaceae was decreased significantly in patients with decom-
pensated HBV cirrhosis [183,303] while a reduced Megamonas genus level and increased
Veillonella genus were risk factors for HBV-related liver cirrhosis [304]. In accordance with
this scenario, Akkermansia, which is a protector of the intestinal barrier [305], was reduced
in fecal samples of HBV cirrhosis with or without HCC [306,307].

Differences also exist between compensated and decompensated cirrhosis. Pathogenic
bacteria, such as especially Alcaligenaceae, Porphyromonadaceae, Veillonellaceae, and Enterobac-
teriaceae, significantly increased in the decompensation stage [194,215]. Interestingly, there
are differences in the composition of gut microbiota when diabetes mellitus co-exists with
HBV cirrhosis (LCDM). Lactobacillus, Roseburia, and Veillonella increased in the LCDM com-
pared to HBV cirrhosis. Moreover, Escherichia/Shigella, Veillonella, and Lactobacillus showed
a positive correlation with liver damage and fasting blood glucose [308]. HBV patients
with decompensated cirrhosis have increased sIgAs content in blood and stool compared
to asymptomatic HBV groups and controls. This is consistent with increased bacterial mi-
gration. Enterobacteriaceae were positively correlated with sIgAs [183]. Zonulin, a regulator
of tight junctions and a marker of intestinal permeability [309] was significantly increased
in HBV cirrhosis and HCC patients, correlating with the stages of cirrhosis [185]. However,
in HBV-associated HCC patients, unexpected up-regulation of anti-inflammatory bacteria,
such as Prevotella and down-regulation of pro-inflammatory bacteria, like Escherichia, were
reported in comparison to non-hepatitis- related HCC [179].

6.4. HBV-Related HCC

It is clearly established that the gut microbiome may influence the induction and
progression of HCC by interfering with immune and metabolic pathways related to HCC.
Data, both experimental [310] and clinical, mostly exists for non-viral HCC [311–315].
Recent findings have demonstrated that this is also true for HBV related HCC. Overgrowth
of pathogenic bacteria of Gram-negative species and a significant increase in the fecal count
of Escherichia coli are characteristic in HBV-related HCC [316]. Butyrate-producing bacteria,
such as Ruminococcus, Oscillibacter, Faecalibacterium, Clostridium IV, and Coprococcus, were
limited, while the LPS-producing bacteria Klebsiella and Haemophilus were augmented
compared to cirrhosis patients [188,307].

Increased Prevotella abundance was also described in HBV-HCC compared to non-viral
HCC [179]. Finally, changes in BA metabolism may contribute to the pathogenesis of HCC.
Modifications of BAs metabolism by intestinal microbiota have already been described in
HBV infection. Therefore, their implication in HBV-HCC induction is highly probable [317].

6.5. HCV Cirrhosis

As in HBV related cirrhosis, a reduced microbial diversity was reported in HCV
cirrhotics compared to healthy individuals. Thus, higher levels of Prevotella and Faecal-
ibacterium and lower levels of Acinetobacter, Veillonella, and Phascolarctobacterium were
observed in the intestinal microbioma of Egyptian patients. Moreover, the ratio Pre-
votella/Bifidobacterium was proposed as a marker of fibrosis development [224]. Detailed
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descriptions of the diversity of microbial species in HCV cirrhosis have been recently
presented. Thus, higher levels were found for Veillonella, Lactobacillus, Streptococcus, Allopre-
votella, Bifidobacterium, Escherichia/Shigella, Haemophilus, Micrococcus, and Weissella species.
On the other hands Bilophila, Clostridium, Mitsuokella, and Vampirovibrio species were sig-
nificantly decreased. Interestingly, the beneficial Akkermansia series were also significantly
increased [225,240,318].

Table 1 graphically depicts the main microbiome changes in chronic viral liver disease.
It should be stressed however, that there are many discrepancies as the results are dependent
on a variety of external factors.

Table 1. Main Microbiome alterations in chronic viral liver disease. See text for details. Bidirectional
light arrows indicate controversial results. Upward arrows indicate increase. Downward arrows
indicate decrease.
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The effect of treatment on gut microbiota has been examined in HCV-related cirrhosis.
Treatment with pegylated interferon and ribavirin did not improve the composition of
intestinal microbiota, even in those achieving SVR [242]. The effects of treatment with
direct acting antivirals (DAAs) are controversial. DAAs administration modified the
composition of the gut microbiota and reduced dysbiosis after achievement of SVR. The
levels of pathogenic Enterobacteriaceae, Enterococcus, and Staphylococcus were decreased
after treatment. However, intestinal barrier permeability was not affected [230]. A recent
study reported that modifications of the gut microbiota after DAAs treatment was only
observed in the absence of cirrhosis. No significant differences were observed in cirrhotic
patients [244]. Recently, a small longitudinal study of patients with HCV-related cirrhosis
and clinically significant portal hypertension was reported. Treatment with DAAs modi-
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fied significantly the gut microbiome only in those with a significant reduction of portal
pressure [319].

Fecal microbiota transplant may also improve gut dysbiosis and the intestinal mi-
crobiota in minimal HE as shown in two small studies that included a number of HCV
patients [320,321]. Contrary to expectations, lactulose administration in cirrhotic patients
did not affect intestinal microbiota. The study population included cirrhotic patients of
mixed etiology, half of them patients with HBV and HCV cirrhosis. Phyla such as Tener-
icutes, Cyanobacteria, Spirochaetes, Elusimicrobia, and Lentisphaerae were lower in cirrhosis
and did not change after lactulose [322]. This was not the case in a study of minimal HE
patients, with half of them being HCV-related [323].This is also in disagreement with a more
recent study of patients with viral cirrhosis, where administration of lactulose improved
the cognitive abilities of cirrhotic patients and alleviated microbiota dysbiosis in minimal
HE. In addition, lactulose responders had significantly different Actinobacteria, Bacteroidetes,
Firmicutes, and Proteobacteria, compared to non-responders [324].

Table 2 summarizes the results of therapeutic modulations in the microbiota of chronic
viral liver disease.

Table 2. Therapeutic Manipulation of the microbioma in chronic viral liver disease. Upward arrows
indicate increase. Downward arrows indicate decrease.

Treatment HBV Cirrhosis HCV Cirrhosis Hepatic
Encephalopathy Reference

Lactulose
Improvement but all
phyla increased in
non-responders

No change Bifidibacteria ↑
Bact. Translocation ↓ [322–324]

Rifaximin
Improvement
Eurobacteriaceae ↑
Veillonellaceae ↓

[325]

Probiotics

Diversity,dysbiosis ↓
No cange in cognition
Enterobacteriaceae ↓
Clostridiales ↑
Clostridia ↑
Bifidobacteria ↑
Firmicutes ↓
Streptoccoceae ↓
Clostridia ↓
Lactobacilli ↑

[221,326–328]

Synbiotics Improvement
Lactobacilli ↑ [329]

Fecal Transplant

Dysbiosis ↓
Diversity ↑
Ruminobacteria ↑
Bifidobacteria ↑
Streptococcus ↓
Veillonella ↓
HBeAg clearance ↑

Impoved cognition
Bifidobacteria ↑ [218,219,321,328]

Entecavir

E.Hallii ↑
Blautia ↑
Ruminococcus ↑
Akkermansia ↑

[167,210]
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Table 2. Cont.

Treatment HBV Cirrhosis HCV Cirrhosis Hepatic
Encephalopathy Reference

DAAs

Enterobacteriaceae ↓
Staphylococcus ↓
Dysbiosis ↓
Diversity increased
only after reduction of
Portal Hypertension
No change
Dysbiosis ↓
Collinsella
Bifidobacterium
Only in non-cirrhotics
No difference before
and after SVR
No change in diversity
Faecalibacterium ↑
Bacillus ↑

[230,242,244,245,247,248,319]

7. Conclusions

Gut microbiota is in constant communication with the liver microenvironment, affect-
ing both hepatocytes and sinusoidal cells through the gut–liver axis. As in other chronic
liver diseases, all the components of this communication are seriously affected in HBV and
HCV infections. Intestinal barrier abnormalities lead to increased translocation of bacteria
or their components that activate both innate and adaptive immunity in the intestinal lam-
ina propria with subsequent activation of TLRs and various signaling pathways. A constant
finding is the reduction of microbial diversity. Beneficial bacteria are reduced, and potential
pathogens are increased. Thus, decreased Firmicutes and increased Bacteroidetes are found
in all viral disease groups compared to healthy controls. Moreover, Bifidobacterium and
SCFAs-producing bacteria families, such as Clostridia and Ruminococcus, also decreased in
all disease groups. The changes are usually more pronounced as viral hepatitis progresses
to cirrhosis and hepatocellular carcinoma. Based on these microbial alterations, specific
treatments are tested. Fecal microbiota transplantation is tried with satisfactory results,
mostly as an adjunct therapy in antiviral treatment of HBV and HCV or in patients with
cirrhosis and hepatic encephalopathy. The same groups of patients are also treated with
various combinations of probiotics with promising results. Attempts to strengthen the
intestinal barrier by drugs or modulation of TLRs responses have not yet been tried in viral
liver disease.
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