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Abstract: A computational and theoretical investigation of acoustical and vibrational properties of
rigid thin fiberglass material was carried out for different boundary conditions. Fiberglass materials
could be applied in industries varying from the aircraft and automotive sectors to the built envi-
ronment and construction sectors. Plate vibration and acoustic radiation were applied to predict
the deflection of the thin fiberglass material and sound radiation efficiency at different locations on
its surface, while a study-controlled equation of motion known as the Kirchhoff thin plate theory
was applied for a COMSOL simulation of the thin material to determine the deflection of the plate
and to obtain stress distribution, velocity contour, displacement, and acoustic pressure at the first
resonance of the material. The results of this paper show that thin fiberglass material could be
applied to sandwich building elements to form panels for reducing airborne noise and to lessen the
sound transmission of structural borne noise, to cover noise barriers to make them more sustainable
and weather resistant, to dampen the vibration of machines, and to reduce the structural vibration
of buildings.
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1. Introduction

The sound and vibration analysis of rigid thin structures that are made of isotropic
and homogeneous materials is a vital part of understanding noise and vibration control
mechanisms for the development of barriers, for attenuating noise in the aerospace sector
and in the investigation of solid–liquid interactions, including the development of double
leaf partitions for the building sector. When an acoustic wave disturbs a building structure,
some of the sound wave is reflected back into the same medium, another portion of
sound wave is propagated within the structure, and the remaining part of the sound
wave is conveyed through the building material to the opposite side of the material. In
room acoustic applications, the sound energy reflected from room walls develops along
a reverberant acoustic area in the source room so that it sets the building surfaces into
vibration. The shaking in shared partitions between adjacent rooms radiates acoustic energy
immediately into the other room. The vibration in the other surfaces of the source room
transmits through all the walls of the receiving room, which generates structure-borne
noise and radiates the noise into the receiver room.

Noise and vibration control materials could be developed as structures that are formed
from unique plate-like structures. The vibrational investigation of permeable and non-
permeable acoustic materials is a recognized and established side of the mechanics of
engineering materials. Earlier investigations on the plate theory [1–3] explored the vi-
bration of thin structures. The vibration of porous materials could be explained uti-
lizing two coupled methods [4], which are established on the stress–strain relations of
Biot’s theory [5,6]; they initiate longitudinal waves (“fast” wave and “slow” wave) and
a shear wave. The breadth of the material was considered to be less than the sound
wavelength in order that the interfaces between the slow and flexural waves inside the
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materials could take place. The amplitude of the fast wave was ignored in their work.
Galerkin’s variational methods were utilized in porous materials [7,8], assuming the clas-
sical set of trial functions attained from the linear mixture of trigonometric function and
hyperbolic function. The effects of fluid loading on the vibration of a porous plate-like
structure and on the emitted acoustic power were studied, applying an additional compo-
nent into permeable structure equations, responding to the extra exterior energy disturbing
the plate [9]. Earlier investigations on lower frequency trembling [10] verified the real-
ity of a lower resonance frequency for the absorption coefficient of porous materials for
constrained porous materials, including a cavity between the porous material and a solid
structure. Many previous works have made progress in determining sound radiation from
rigid thin structures, including plates, and they have expanded on the prediction of the
acoustic radiation efficiency of the materials [11–14] and acoustic dissipation from the
rectangular structures with boundaries elastically constrained alongside displacement and
revolution [15,16]. These methods that were applied to determine acoustic radiation from
structures varied from the basic ones based on modal terms to advanced predictions of the
gauged plate impedance, and a novel method was developed to determine the radiation
impedance matrix [17]. The Rayleigh–Ritz model incorporated with the variational method
could be utilized to predict the acoustic radiation from thin structures that were submerged
into light or heavy liquids [18–21].

A recent study has been performed on composite recycled glass bead panels sand-
wiched between two fiberglass composite sheets to evaluate the appropriateness for built
environment and construction industry applications, particularly for loud built-up situ-
ations where they could be used as physical structural parts that could propose sound
attenuation, or they could be utilized to reduce outdoor sound as noise screeners [22].
The classical plate theory and Rayleigh integral with the elemental radiator method were
applied to analyze the acoustic radiation behavior of constrained thin functionally graded
plates; it was found that the different values of the damping values could not significantly
impact the acoustic radiation efficiency [23]. A mathematical model combining the classical
forced plate theory with the combination of Green’s function was presented to analyze the
stress of thin plates and their vibration modes at different eigenfrequencies [24]. A simple
first order shear deformation theory based on the Ritz method was investigated to evaluate
the free vibration of composite cantilever plates with different length to thickness ratios
and to determine the material constants of degraded composite cantilever plates using
natural frequencies [25].

To the author’s best knowledge, computational and theoretical vibro-acoustical prop-
erties of fiberglass plates are investigated for the first time in this paper. The aim of this
paper is to carry out a computational and theoretical exploration of the sound and me-
chanical properties for rigid slim materials that are produced using recycled fiberglass.
The theory of plate vibration was applied to predict the deflection of the thin fiberglass
material. The sound radiation was applied to determine the sound radiation efficiency at
different locations on the plate surface. A study-controlled equation of motion known as
the Kirchhoff thin plate theory was utilized for a COMSOL simulation of the thin material
to determine the deflection of the plate. Computational and theoretical deflections of
the fiberglass plate were obtained at different positions on the thin structure’s surface,
applying the plate theory for fully constrained (CCCC) boundary conditions, for fully free
(FFFF) boundary conditions, and, moreover, for partially clamped and partially free (CCFF)
boundary conditions. Computational simulations obtained using COMSOL were compared
to predicted theoretical results using a MATLAB code. Computational visualization of the
stress distribution, velocity, displacement, and acoustic pressure of the plate were obtained
for the fundamental frequency of the fiberglass plate. In addition to that, acoustic radiation
efficiency, which is the main vibroacoustic indicator for thin fiberglass structures, was
theoretically determined for two boundary situations.
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2. Theory of the Vibrational Behavior of Waves in Rigid Thin Materials
2.1. Deflection of Rigid Thin Materials

When rigid structures are excited by some manner of stress, it is possible to observe
different waves propagating through their structure. Sound waves traveling in rigid
structures have the capability to store energy in compression as well as in shear. The rigid
materials that store acoustic energy as potential and kinetic energy could be utilized for
noise and vibration control applications to permit sound wave transmission through their
mediums. Kinetic energy is kept inside any part of the material that has mass in motion,
while potential energy is deposited into the material components that have undergone
elastic buckling.

When a homogeneous rigid material is exposed to an oblique time-dependent force,
then the oblique displacement of the structure is controlled by the fourth-order differential
equation. The deflection of the structure derives utterly from inertial forcing for free load
conditions. A plate-like structure that has a breadth h and dimension a along the x-axis × b
and along the y-axis is chosen for computational and theoretical investigation. The material
displacement that is generated by bending waves is in the direction of the z-axis and is a
function of time. The geometry of the material is shown in Figure 1.
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The bending acoustic wave formula for rigid structures is conferred in the
equation below.

D
(

∂2

∂x2 +
∂2

∂y2

)2

Ws + ρsh
..

Ws = F(x, y, t) (1)

where Ws is the transverse deflection of the thin material,
..

Ws is the thin material deflection,
D = Eh3/

(
12 − 12v2) is the bending rigidity, ∂2

∂x2 +
∂2

∂y2 is the coordinate system, ρs is the
solid density, E is the elastic modules for thin material, v is the material Poisson ratio, and
F(x,y,t) is the time-dependent force applied on the surface of the material.

The thin material deflection Ws for harmonic wave motion is expressed in
Equation (2).

Ws(x, y) = ∑∞
m=0 ∑∞

n=0 AmnXm(x)Yn(y) (2)

where Xm is the function in the x-axis and Yn is the function in the y-axis direction. These
beam functions were selected to satisfy different boundary conditions at the edges of
the plate. An appropriate trigonometric function for the vibrating beams was used for
Xm and Yn different boundary conditions. Amn is the unknown coefficients; m and n are
the modes, which are equal to 0, 1, 2, 3 . . .∞.
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The trigonometric beam functions are used to expand the material deflection for
clamped rigid material. These functions are given by Equations (3) and (4).

Xm(x) = Bm1 cosh
( amx

a

)
+ Bm2 cos

( amx
a

)
+ Bm3sinh

( amx
a

)
+ Bm4 sin

( amx
a

)
(3)

Yn(y) = Cn1 cosh
(

bny
b

)
+ Cn2 cos

(
bny

b

)
+ Cn3sinh

(
bny

b

)
+ Cn4 sin

(
bny

b

)
(4)

where am is the frequency parameter responding to the mth normal modes of characteristic
equation and bn is the frequency parameter responding to the nth normal modes of char-
acteristic equation. Bm1, Bm2, Bm3, Bm4 and Cn1, Cn2, Cn3, Cn4 could be predicted from the
boundary conditions at the boundaries of the material in the x and y directions, respectively.
These constants could be applied to any boundary conditions, including fixed, simply
supported, and fully constrained sides.

A rigid thin fiberglass material with dimensions 0.50 m × 0.50 m with a uniform
thickness of 2.5 mm was agitated using a point force F(x,y,t) at the center of the material,
at x0 = 0.25 m, and y0 = 0.25 m from the center of the material. The reactions to the
force applied on the material were determined at x1 = 0.25 m and y1 = 0.25 m, and at
x2 = 0.05 m and y2 = 0.05 m. A point force with a magnitude of 1 N was applied to agitate
the thin material. The acoustical response of the material was predicted in the 0–500 Hz
frequency range using a MATLAB code. The properties of the rigid thin material used for
numerical analysis in the MATLAB code are shown in Table 1.

Table 1. Characteristics of rigid material.

Length
(cm)

Width
(cm)

Depth
(mm)

Solid Density
(kg/m3)

Elastic Modulus
(GPa)

Loss
Factor

Poisson
Ratio

50 50 2.5 1600 7.489 0.03 0.2

Normal characteristic modes (m, n) up to 20 were used for determining the deflec-
tion of the thin plate. The vibration responses of a rigid thin fiberglass plate for three
boundary conditions (fully clamped “CCCC”, fully free “FFFF”, and partially clamped
and partially free “CCFF”) detected at x1 = 0.25 m and y1 = 0.25 m on the plate surface are
compared in Figure 2. For the fully clamped boundary condition (“CCCC”), first resonance
frequency was observed at 37 Hz with a magnitude of 3.12 × 10−3 m, while for partially
clamped/partially free boundary condition (“CCFF”), first resonance frequency was seen at
5 Hz with a magnitude of 2.701 × 10−3 m. For the fully free boundary condition (“FFFF”),
first resonance frequency was observed at 23 Hz with a magnitude of 6.27 × 10−3 m. Fully
clamping the plate at four edges shifted the fundamental resonance frequency to a higher
frequency. Even though some differences between the three boundary conditions were
seen at lower frequencies, there was a good agreement between predicted plate deflections
at higher frequencies. The plate deflection curves obtained at the center of the material
were to some extent similar to exponentially decaying sinusoidal wave signals. As can be
observed in Figure 2, the amplitude of structural deflection at low frequencies was higher
than at higher frequencies.
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Figure 2. Comparison of deflection of fiberglass material for three boundary conditions: clamped at
four edges (CCCC), four edges are free (FFFF), and clamped at two opposite edges and free at the
other two opposite edges (CCFF) at x1 = 0.25 m and y1 = 0.25 m on the plate surface. The results are
given in the frequency domain. “C” means clamped edge and “F” means free edge.

Furthermore, the plate deflections for three boundary conditions were determined
at x2 = 0.05 m and y2 = 0.05 m on the surface of the material; they are compared in
Figure 3. For the fully clamped boundary condition (“CCCC”), the fundamental resonance
frequency was seen at 37 Hz with a magnitude of 4.46 × 10−5 m, while for the partially
clamped/partially free boundary condition (“CCFF”), the first resonance frequency was
observed at 5 Hz with a magnitude of 7.62 × 10−6 m. For the fully free boundary condi-
tion (“FFFF”), the first resonance frequency was observed at 23 Hz with a magnitude of
6.27 × 10−3 m, and for the fully free boundary condition “FFFF”, it was seen at 23 Hz
with a magnitude of 5.37 × 10−3 m. At the edges of the materials, x2 = 0.05 m and
y2 = 0.05 m, the amplitude of deflections varied at lower resonance frequencies, while at
higher resonance frequencies, it was mostly constant.

2.2. Acoustic Radiation Efficiency from Rigid Thin Materials

Acoustic radiation from rigid thin materials is related to their acoustic impedances.
The vibrational behavior of rigid materials could be expressed in terms of its acoustic
radiation efficiency. The dimensions and character of the exciting structure perform a
valuable part in order to predict the acoustic transmission efficiency for thin material.
Sound radiation efficiency is defined in terms of structural energy converted into sound
energy. The magnitude of vibrating material will affect sound radiation efficiency of thin
rigid materials. This could be determined by applying numerical approaches, as shown in
Equation (5).

η =
W

ZabV2 (5)

where Z is the characteristic impedance of air, V is the mean square velocity, and W
is the acoustic power expressing plate acoustic energy spreading into the surrounding
environment due to the motion of the structure.
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Figure 3. Comparison of the deflection of fiberglass material for three boundary conditions: clamped
at four edges (CCCC), four edges are free (FFFF), and clamped at two opposite edges and free at the
other two opposite edges (CCFF). The response is calculated at x2 = 0.05 m and y2 = 0.05 m on the
plate surface and given in the frequency domain.

Sound radiation efficiencies of rigid thin material corresponding to Figure 2 were
determined at x1 = 0.25 m and y1 = 0.25 m on the material surface for three boundary
conditions and compared in Figure 4. The sound radiation dips observed were associated
with the dips of the plate deflection seen at the same frequencies in Figure 2. For the fully
free boundary condition (FFFF), radiation efficiency was higher than the radiation efficiency
of the other two boundary conditions, while the lowest sound radiation efficiency was
observed for the fully clamped boundary condition.

In addition, the acoustic radiation efficiency of the plate that corresponded to Figure 3
was determined at x2 = 0.05 m and y2 = 0.05 m on the plate surface for three boundary
conditions. A comparison of the radiation efficiency is given in frequency domain in
Figure 5. The radiation efficiency of the fiberglass material was determined in terms of the
acoustic power and velocity of the fiberglass material. The radiation efficiency was reduced
at lower frequencies because of larger wavelengths, while it approached unity at higher
frequencies because of smaller wavelengths of acoustic waves.
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3. COMSOL Simulation of Fiberglass Materials

COMSOL multiphysics, which is a finite element method, was used to divide the
continuous model into small finite modules, which were solved and then combined. The
physical field of the COMSOL simulation was determined by applying the “Structural
mechanics” module. A rectangular material of length of 50 cm and width of 50 cm with
a 2.5 mm thickness was modeled as a two-dimensional system using the tetrahedra fine
mesh of 22,432 element values. The tetrahedra fine mesh of thin rigid material is shown in
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Figure 6. Solid mechanics was selected for the physics interface for the general modeling
of the material. The rigid thin material could be represented by the mathematical model,
assuming that the in-plane stresses and strains varied linearly throughout the material
thickness. Isotropic symmetry was selected as a linear elastic solid model that had the same
properties in all directions.
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Figure 6. The tetrahedra fine mesh of thin rigid material.

A point load was applied to the middle of the material to excite the material, and
its harmonic response was computed around its linearization point. Frequency domain
analysis was used to study the response to a harmonic steady state excitation for a frequency
range up to 500 Hz. Quadratic Lagrange was applied to the displacement field as geometry
shape functions.

The study of controlled equation of motion (often referred to as the Kirchhoff thin
plate theory) was used for the COMSOL simulation of thin material for a uniform depth of
h, considering the simulations of the materials used were isotropic. The partial differential
equation for acoustic waves is given by the following equation.

D∇2∇2w + ρh
∂2w
∂t2 = −q(x, y, t) (6)

where D is the flexural rigidity, ρ is the material density, w is the material deflection, and q
is the distribution load per unit area.

The response of point load applied to the center of the material (x0 = 0.25 m and
y0 = 0.25 m) were obtained at the middle of the material (x1 = 0.25 m and y1 = 0.25 m) and
at another location on the surface of the material (x2 = 0.05 m and y2 = 0.05 m). The plate
deflection obtained at two positions on the thin plate surface for the fully clamped (CCCC)
boundary condition is given in the frequency domain in Figure 7. At the middle of the
material, the highest deflection was observed at the fundamental resonance frequency of
the plate at 35 Hz. The amplitude of plate deflection was reduced at higher harmonics.
At x2 = 0.05 m and y2 = 0.05 m, the amplitudes of the first and second resonance frequencies
were reduced significantly, while the amplitudes of the plate deflection were similar at
resonance frequencies. It was clearly shown that the natural frequencies of thin plate-like
structures at any point on the material surfaces would not change (except for amplitude).
Stress distribution, velocity, and displacement alongside the acoustic pressure radiated from
the material corresponding to the first resonance frequency at 35 Hz is given in Figure 8.
The highest stress from the plate was seen in the middle of the four sides of the material,
while the maximum displacement was seen in the middle of the material. Acoustic pressure
visualization clearly showed the amount of sound energy from the surface of the material
released to the outer surface.
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Similarly, the vibration response of the fiberglass material was obtained for the par-
tially clamped and partially free boundary condition (CCFF) at two locations, as shown
in Figure 9. At x1 = 0.25 m and y1 = 0.25 m, a higher amplitude of the plate deflection
was observed at a fundamental natural frequency of the fiberglass plate at 23 Hz, while
the amplitude decreased at higher resonance frequencies. At x2 = 0.05 m and y2 = 0.05 m,
the amplitudes of the fundamental and second resonance frequencies were significantly
reduced. When a rigid material was stimulated at the center of its surface, the maximum
deformation was observed at the center of the material, while its amplitude reduced with
increasing distance outward towards the edge of the material. However, there were no
changes to the resonance frequencies of the plate. Simulations of stress, velocity, displace-
ment, and acoustic pressure corresponding to the first resonance frequency at 23 Hz are
given in Figure 10. The maximum displacement and velocity were observed in the middle
of the fiberglass material between two free edges, while the highest stress was observed
along the clamped two edges of the material. Simulation of acoustic pressure clearly
showed that the maximum amount of sound energy was radiated along the clamped two
edges of the fiberglass materials.
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4. Comparison of Computational Simulations and Analytical Results of
Vibrated Materials

Computational simulations obtained using COMSOL were compared to analytical
results predicted by means of a MATLAB code in this section. The results were obtained at
the center of the fiberglass plate for two boundary conditions, as shown in Figure 11. Com-
putational plate deflection obtained with COMSOL was in good agreement and followed
the same deflection pattern as the predicted plate deflection for the fully clamped boundary
condition (CCCC). For the partially clamped and partially free boundary condition (CCFF),
computational and predicted plate deflections were similar at lower frequencies (apart
from some discrepancies between 130 Hz and 500 Hz). Furthermore, computational and
predicted plate deflections at another location on the plate surface at x2 = 0.05 m and
y2 = 0.05 m were obtained and compared in Figure 12. Computational and predicted plate
deflections were similar for the fully clamped boundary condition (CCCC) throughout
the frequency range, but there were some discrepancies between them for the partially
clamped and partially free boundary condition (CCFF).
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Figure 11. Comparison of computational and predicted deflection of fiberglass material for two
boundary conditions: clamped at four edges (CCCC) and clamped at two opposite edges and free
at the other two opposite edges (CCFF). The response is obtained at the center of the materials,
x1 = 0.25 m and y1 = 0.25 m, on the plate surface and given in the frequency domain.
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Figure 12. Comparison of computational and predicted deflection of fiberglass material for two
boundary conditions: clamped at four edges (CCCC) and clamped at two opposite edges and free at
the other two opposite edges (CCFF). The response is obtained at x2 = 0.05 m and y2 = 0.05 m on the
plate surface and given in the frequency domain.

5. Conclusions

Computational and theoretical investigations of the vibrational and acoustical proper-
ties of rigid thin material were carried out. Theoretical deflection of the plate was obtained
for three different boundary conditions at two locations on the surface of the material, while
computational plate deflections were only obtained for two boundary conditions. It was
observed that, for the fully clamped boundary condition, the amplitude of predicted plate
deflection at the center of the material decreased with increasing resonance frequencies and
maximum amplitude was obtained at the fundamental frequency of the plate, while the
amplitude of the plate deflections obtained at a location closer to the edge of the material
was almost at the same amplitude at the resonance frequencies. Overall, computational re-
sults were in good agreement with predicted plate deflections determined at two locations
on the plate surface for two boundary conditions.
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Sound radiation efficiency was theoretically determined for three boundary conditions
at two locations on the surface of the fiberglass plate. The results clearly confirmed that
the radiation efficiencies obtained in Figures 4 and 5 corresponded to the plate deflections
obtained in Figures 2 and 3. Theoretical radiation efficiencies suggested that the fiberglass
material had a good radiation efficiency throughout the frequency range, especially for the
fully free boundary condition.

Computational and theoretical results showed that rigid thin fiberglass material could
be applied to isolate the vibration of machines and the mechanical vibration of structures.
They could be used to cover outdoor noise barriers to extend the lifespan of the barriers
by protecting them from rain, cold weather, and direct sunlight. In addition, they could
be applied to construct panels that are produced by sandwiching structures between
fiberglass sheets to decrease airborne noise and also to reduce the transmission of structural
borne noise.
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