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Abstract: There is a growing interest in the production of biofuels and biochemicals from renewable
biomass. Biomass in the form of woody and agricultural residues, municipal solid waste and
other organic refuse is becoming popular as a feedstock for biofuel and biochemical production
through thermochemical and biological routes. Methanol, a widely used industrial chemical, also
has clean fuel properties due to its high-octane number, low flammability, low emissions and high
engine performance. This paper performs a comprehensive review of different thermochemical
and biological processes able to sustainably convert waste biomass to methanol. This article also
evaluates the techno-economic assessment and lifecycle analysis of different processes used for
methanol production. The article discusses the effects of process parameters and biomass properties
on methanol production and utilization. Finally, the article concludes with recommendations on
the eco-friendly aspects of methanol for use as a clean fuel and chemical derived from renewable
organic bioresources.
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1. Introduction

Methanol production has wide applications for electricity generation and hydrogen
transportation. In addition, methanol has many applications including dimethyl carbonate
and dimethyl ether production [1]. Recently, methanol production from syngas through
catalytic Fischer-Tropsch synthesis, which is not fully carbon-neutral, has raised environ-
mental concerns. Production of methanol from biomass generates many benefits such
as sustainability and commercial viability [2]. Green methanol can be generated from
different bio-based resources and clean technologies including gasification, reforming,
stripper-off gas and power-to-liquid (Figure 1). On the other hand, biomethanol refers to
green methanol produced from bio-based sources through bioprocesses with the involve-
ment of microorganisms and enzymes. As shown in Figure 1, e-methanol represents green
methanol which is produced from CO2 capture as a byproduct of the electrolysis process
to generate hydrogen. AlNouss et al. [3] developed the gasification of palm wastes for
methanol production and investigated a techno-economic and environmental analysis. The
focus of the study is CO2 capture by deploying CaO to maximize methanol production and
profit. It is widely acknowledged that fuels derived from biomass resources can reduce
CO2 emissions and partially replace fossil fuels. Regarding the economic aspect, the project
life, methanol and dimethyl ether prices affected the economic feasibility of the biomass
conversion process [4]. In consideration of the current energy consumption trends, efficient
utilization of biomass resources has increased in both the industrial and academic sectors.
Galusnyak et al. [5] examined a new membrane process design from secondary biomass for
biomethanol production. As the results show, the utilization of exhausted olive pomace as
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a biomass source would enhance the detailed distribution of the global warming potential
impact category.
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Figure 1. Main pathways for methanol production. (Adapted from Pio et al. [6]).

Commonly, methanol, one of the ‘mega’ industrial platform chemicals, is produced
from different feedstocks such as natural gas or coal. From Figure 2, the current worldwide
methanol production capacity is 198 Mt/year, which is mostly employed for producing
formaldehyde and plastics. Methanol is mainly produced from syngas (H2 and CO) via
steam reforming of natural gas as well as coal gasification. The coal-to-methanol process
significantly increases the energy consumption and CO2 emission to co-produce syngas
and hydrogen [7]. The naval industry is also another fast-growing sector to consume
methanol. Methanol production is predicted to follow the increasing trend up to 2050 since
green methanol is attracting great interest as a sustainable energy carrier [6]. Chen et al. [8]
proposed a novel hybrid process of coal gasification and coking to produce methanol. They
investigated the effect of the coke gasification reaction and carbon tax on the integrated
process economy. According to a detailed techno-economic analysis, the internal rate of
return for coal gasification is 22.5% with more economic benefits in comparison with the
coal-to-methanol process.

The conventional synthesis of methanol is based on the reforming of fossil sources,
which has raised environmental issues due to greenhouse gas emissions. Hence, it is
important to generate methanol from biomass feedstocks and thermochemical processes.
Kasmuri et al. [9] investigated the production of methanol from renewable sources via a
thermochemical reaction. The dynamic control system was employed to maintain a high
yield of methanol production in pyrolysis. In this article, an effort has been made to summa-
rize the literature concerning the sustainable production of methanol as a renewable energy
carrier. Different applications of methanol are thoroughly discussed together with the
different processes that are available for methanol production. The production processes
of biomass-derived methanol (referred to as biomethanol or green methanol) and their
opportunities and challenges are thoroughly discussed. Recently, the concept of integrating
thermochemical and biological processes has been gaining interest. This integration is
important to ensure the effective utilization of resources, mitigation of emissions, recycling
of wastes, proper recovery of byproducts and a reducing in the energy input [10]. These as-
pects are critical to ensure a circular economy and a closed-loop biorefinery platform where
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the raw materials, products, byproducts and effluents (solid and liquid) are responsibly
managed to reduce the carbon footprint and waste generation.
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2. Potential of Methanol as a Renewable Energy Carrier
2.1. Industrial Applications of Methanol

Methanol has a variety of industrial applications in chemical industries, such as
supplementing fuel oil, acting as an antifreeze agent in pipelines, and being used as fuel
cells. Moreover, methanol is the simplest organic liquid hydrogen carrier and acts as
an energy storage system for a variety of portable power applications. In terms of the
transportation sector, Table 1 makes a comparison of biodiesel and gasoline (hydrocarbon
fuel) in terms of energy density and average octane numbers. Methanol shows a wide
range of downstream applications such as the substrate for producing biodiesel through
transesterification and organic solvents. As shown in Figure 3 methanol can be suggested
as a promising substrate in various sectors such as the generation of fuel, chemicals and
light olefins.

Table 1. Summary of energy density and octane number for different alcohols. Reference:
Kasmuri et al. [11] and Kim et al. [12].

Fuel Energy Density (MJ/L) Octane Rating

Methanol (CH3OH) 16 98.65/108.7

Ethanol (C2H5OH) 20 99.5/108.6

Propanol (C3H7OH) 24 108/118

Butanol (C4H10O) 30 97/103

Dimethyl ether (C2H6O) 18.9 -

C8H18 (2,2,4-Trimethylpentane) 33 85–96/90–105
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2.2. Techno-Economic Analysis of Methanol Production

The current study reviewed the techno-economic assessment and lifecycle analysis
of methanol production as a clean fuel using biomass as a renewable resource. It also
discusses different thermochemical and biological processes to convert waste biomass to
methanol. Table 2 shows a list of some reported thermochemical and biological processes
for methanol production.

Table 2. Some reported thermochemical and biological processes of methanol production.

Approach Concluding Remarks Future Prospects Reference

Production of bio-methanol as
potential renewable energy

Methanol can be produced from
additional reactions of decomposed
biomass material. Improvement in

the electrolysis process and
renewable electricity favors

methanol synthesis.

In gasification and methanol
synthesis the separation of gas and

solid needs to be considered to
reduce the environmental impacts.

[14]

Methanol fuel production

Methanol production and
techno-economic viability are

influenced by feedstock
characteristics, initial investment,

and plant location.

Dimethyl ether alongside methanol
has a huge potential to be a new

generation of fuel source owing to
its low calorific value, low density,

and low viscosity.

[15]

Methanol production from
different renewable sources

and thermo-economic analysis

The thermo-economic analysis
considering different scenarios
confirm that the best economic

results are obtained with
hydroelectric source.

Considering future methanol
selling prices of 500 Є/ton, the
economic performances can be

further improved via the European
financial incentives for

biofuel production.

[16]

Sustainable production and
application of methanol

The main advantage of
biomass-derived methanol is the
eco-friendly aspects of methanol

production as a clean fuel.

Biomethanol is a future bioproduct
for value-added industries due to

its diverse applications.
This study

In developing countries, producing green methanol as a new renewable energy source
by using biomass feedstock leads to economic savings. As stated by Zhang et al. [17]
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methanol production via steam gasification of lignocellulosic biomass and biochar seems
to be the most efficient raw material to produce methanol. The outcome of the techno-
economic analysis (TEA) revealed that the internal rate of return obtained in the biochar
scenario is higher than using pine biomass at the same plant scales. The authors concluded
that methanol produced from waste biomass is unfortunately not commercially competitive
with the traditional methods of producing methanol. The detailed distribution of total
product costs affected by feedstock at different scales is displayed in Figure 4.
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Choe et al. [18] investigated the production of methanol by considering different land-
fill gas management pathways. TEA was performed to find out the most reliable process
for methanol production from an economic perspective. It was proved that the operating
expenditure reduction, particularly hydrogen cost and unit electricity price reduction, must
be determined to be economically feasible. Table 3 represents current studies about techno-
economic assessment for sustainable methanol production. Ramachandran et al. [19] con-
ducted a TEA on the hybrid steam reforming reaction, which involved the co-utilization
of glycerol and natural gas to generate synthesis gas under reforming conditions. The
resulting compressed synthesis gas was subsequently converted into green methanol, and
the capital cost investment was assessed considering the overall equipment expenses. The
study concludes that green methanol is not economically competitive with conventional
methanol unless specific measures or corrections are implemented.

Table 3. Literature survey of sustainable production of methanol from different biomass wastes.

Technique Plant Size Feedstock End Product Production Cost Reference

Biomass
torrefaction

coupled with
gasification

Processing rate
of 66.4 tons/h Bagasse Electricity and /or

methanol production

The annual production
cost was estimated at USD

140 M/y
[20]

Sugarcane
biorefineries with

fossil fuel
co-combustion

Processing rate
of 421,000 t/y Lignocellulose

Methanol production
of 82,700 t/y and

electricity production
of 3.5 GWH/y

272.6 USD M/y [21]
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Table 3. Cont.

Technique Plant Size Feedstock End Product Production Cost Reference

Tri-reforming of
CH4 integrated
with solid oxide

fuel cell

Annual cost of
USD 277,742 /y Methane Methanol production 5.4 USD M/y [22]

Synthetic methanol
production from

H2 and CO2

243 MT/day H2
and 1978 Mt/day

CO2

CO2 and H2
feedstocks

Methanol production
is 1190 Mt/day

The minimum fuel selling
price of methanol was

between USD 0.61/kg and
USD 0.64/kg

[23]

2.3. Lifecycle Assessment of Methanol

Biofuels are alternatives to fossil fuels and their environmental impacts over the entire
production chain are evaluated by lifecycle assessment (LCA). The main objective is to
analyze existing LCA studies and highlight key methodological approaches to critically
evaluate existing biomass to biofuel pathways. Morales et al. [24] also investigated a
consequential LCA of biofuel generation in Denmark considering two cases. The authors
concluded that seaweed production was recognized as the most energy-sensitive process-
ing part and the system has the potential for technological development. Mu et al. [25]
evaluated a well-to-wheel LCA on algal biofuel production to identify key parameters that
determine nutrient use. The authors revealed that most synthetic fertilizer inputs are even-
tually discharged within wastewater to the environment. LCA of macroalgae cultivation
for producing biofuel was studied by Aitken and co-authors [26]. The investigation aims to
identify energy conservation and environmental effects of the cultivation and processing of
bioethanol production from marine macroalgae and biogas. As the authors point out, the
impact of CO2 emission reduction can be limited unless industrial-scale models are used.
Sajid et al. [27] investigated biodiesel production from Jatropha oil for damage categories
of climate change and ecosystem quality. The authors showed that the production process
from Jatropha oil has fewer environmental side effects than that from the waste cooking
oil process. Sills et al. [28] quantified the environmental performance of algal biofuels to
estimate ranges of expected values of LCA metrics. The ranges of reported LCA impact cat-
egories showed that global warming potential values aligned with algal biofuel production
together with anaerobic digestion are quite uncertain. Table 4 compares biochemical and
thermochemical routes in terms of environmental impacts and economic indicators.

Table 4. Economic and environmental aspects of methanol production via biochemical and thermo-
chemical processes.

Process Environmental Impact Analysis Economic Evaluation Reference

Methanol production from
wood biomass

Both production processes had a
much lower CO2 emission

compared to fossil fuel-based
methanol production.

The rectisol-based acid gas removal
unit used for removing sulfur and
CO2 from syngas corresponds to
20% of the total investment costs.

[29]

Biomethanol production from
palm wastes steam gasification

The reduction in CO2 using CaO
was effective with a slight increase

in the total cost of the plant.

The total capital cost is
approximately USD 120 M. [3]

3. Potential of Using Biomass for Methanol Production
3.1. Types of Biomasses

Biomass refers to organic matter derived from carbon structures that can be employed
as a renewable energy source. The utilization of biomass as a fuel source has been gaining
increasing attention as a sustainable alternative to fossil fuels. There are various types of
biomasses, including agricultural residues, wood waste, energy crops, municipal solid
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waste, and aquatic biomass. Agricultural residues are residues left after harvesting crops
such as corn, wheat, and rice. Wood waste is generated from forestry operations, sawmills,
and wood processing industries. Energy crops refer to crops specifically grown for energy
production, such as switchgrass and sugarcane. Municipal solid waste is waste generated
from households and commercial establishments. Finally, aquatic biomass is derived from
plants and animals living in water bodies such as seaweed and algae [30]. Understanding
the different types of biomasses is crucial in identifying the most appropriate feedstock
for different applications. Alternative energy sources derived from biomass are not only
environmentally friendly but also sustainable due to their wide availability across the globe.
A range of plant and animal-derived biomasses can be harnessed as sustainable sources
to generate gaseous, liquid, and solid fuels [31]. Examples of waste biomass that could
be utilized for this purpose include municipal household waste, agricultural waste, forest
residues, abattoir waste, bio-industrial waste, and human excreta. Different thermochem-
ical and biochemical processes can be used to modify these waste biomasses to produce
high-calorific value gaseous and liquid fuels. However, prior treatment may be required, es-
pecially for biomasses rich in lignocellulose, to attain optimal conversion efficiency. Various
pretreatment methods, including physical, chemical, biological, and combined approaches,
have been developed [32]. Chemical pretreatment is relatively expensive and not environ-
mentally sustainable [33]. Among these pretreatment methods, combined treatments have
demonstrated greater success compared to individual pretreatment methods.

Various types of biomasses such as wood waste, agricultural residues, energy crops,
and algae, can be transformed into methanol through two main reactions known as ther-
mochemical and biochemical conversion. For instance, during gasification, the biomass
is heated under an inert atmosphere to produce a gas mixture consisting of H2, CO, and
CO2 [34]. This gas mixture, also known as syngas, could be converted into methanol
through a series of catalytic reactions. The use of biomass for methanol production offers
several advantages over traditional fossil fuel-based production methods, including lower
greenhouse gas emissions and reduced dependence on non-renewable resources.

3.2. Biomass Composition

Most biomass feedstocks consist of cellulose, hemicellulose, and lignin, which exhibit
distinct properties and behaviors during biomass conversion. Among these components,
cellulose is the most reactive and generally produces more gases and char. On the other
hand, lignin is more stable and tends to yield more solid and liquid products. Lignocellu-
losic biomass, such as natural fibers and agricultural residues, are more economically viable
for slow pyrolysis due to their higher lignin content [35]. Lignin has a higher heating value
and produces valuable products such as phenols, which contain less oxygen compared to
cellulosic biomass and are used as chemical feedstocks [36]. Additionally, lignocellulosic
feedstocks require less energy to break down during pyrolysis compared to other biomass
feedstocks with lower lignin content, such as algae or municipal solid waste. Furthermore,
the high carbon content of lignin-rich biomass makes it an attractive feedstock for biochar
production since lignin acts as a glue to hold the lignocellulosic fiber together. Therefore,
lignocellulosic feedstocks have significant potential as a potential and cost-effective source
of bioenergy and value-added products.

Biomass is primarily composed of hemicellulose, cellulose, lignin, and a small amount
of inorganic material. The composition i.e., contents of hemicellulose, cellulose and lignin
in biomass can vary. These three components are critical to the stability of biomass [37].
The configuration and transformation of pyrolyzed biomass depend on its composition.
When lignin is pyrolyzed, it produces less oil compared to hemicellulose and cellulose. In
lignocellulosic biomass, the maximum reduction in cellulose occurs at 400 ◦C, while for
hemicellulose it occurs at 268 ◦C, and for lignin, it occurs at 900 ◦C. Lignin adds greatly
to the char residue during pyrolysis [38]. The optimal temperature for producing the
maximum amount of oil also depends on the composition of the biomass being used. A
study conducted by Raveendran et al. [39] demonstrated the comparability of pyrolyzing
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lignin, cellulose, rice husk, and bark. The performance of biomass during pyrolysis can be
influenced by the presence of oxygen and heteroatoms. Higher oxygen and heteroatom
content generally result in increased reactivity. Nevertheless, a separate study has suggested
that the oxygen content has a moderate effect on the biomass subjected to pyrolysis [40].
The biochemical composition of the biomass introduced into the biorefinery is crucial for
the effective production of biofuels and energy yield, making it a significant driver for
biorefinery operations.

3.3. Pretreatment of Biomass for Higher Conversion Yield

Pretreatment is a crucial stage in the biotransformation of lignocellulosic biomass
into biofuels including methanol. The pretreatment selection method relies on various
parameters, including the composition of the biomass, production cost, and energy demand.
The optimization of pretreatment methods and the development of novel ones are essential
for enhancing the effectiveness of biotransformation and reducing the production cost of
biofuels [41]. Figure 5 illustrates the transformation of complex lignocellulose biomass into
simpler forms during pretreatment. Lignin, a complex polymer that provides core strength
in tissue structure, is removed during pretreatment. Cellulose crystallinity is also reduced
to enhance the accessibility of enzymes and microbes for the effective transformation of
biomass. The main objective of pretreatment is to mitigate the inhibitory physicochemical
factors that impede the conversion of biomass into biofuels. By doing so, it aims to minimize
the energy requirements and production costs associated with biofuel production [42].
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Figure 5. Different phases of biomass decomposition during pretreatment.

Pretreatment techniques can be categorized into various types, including physical,
chemical, physicochemical, biological, or a combination thereof. Physical methods en-
compass milling, ultrasonication, freezing, comminuting, extrusion, and microwaving.
Chemical methods involve treating biomass with acids, alkalis, oxidizing agents, ozonation,
organic solvents, or chemical catalysts. Physicochemical methods combine physical and
chemical processes, such as acid/alkali treatment coupled with ultrasonication. Biological
methods involve the pre-incubation of biomass with intact microbial cells or enzymes de-
rived from microorganisms. Combined methods utilize two or more of the aforementioned
approaches to achieve synergistic effects and enhanced results [43].

The proportion of lignin and cellulose within lignocellulosic biomass plays a crucial
role in determining the suitable biomass for biotransformation processes. Biomass with a
lower lignin content is preferred due to the inhibitory effect of lignin on the transformation
process. For instance, biomass sources like rice leaves and straw are favored over materials
like sawdust or wood chips, which have relatively higher lignin content. Furthermore,
the presence of ferulic acid in lignin hydrolysate can impede microbial activity during the
biotransformation of such biomass. Therefore, reducing lignin content during pretreatment
is crucial for the effective biotransformation of lignocellulosic biomass [33]. High cellulose
biomass, such as corn stover, switchgrass, and wood chips, contain more easily accessible
sugars and are generally considered more desirable for biofuel production [44]. This is
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because cellulose is a polysaccharide that can be broken down into glucose and other sugars
using enzymatic processes, which can then be fermented into biofuels [45].

Moreover, the development of novel pretreatment methods and the optimization
of existing ones are still ongoing. Researchers have shown that using ionic liquids as
solvents for the pretreatment of lignocellulosic biomass can significantly reduce the energy
demand and production cost of biofuels. Similarly, using supercritical fluids, such as
water and CO2, for pretreatment has shown promising results [46]. In addition, the use of
microwave-assisted pretreatment has been reported as an efficient technique for enhancing
the biotransformation of biomass into biofuels [47].

4. Sustainable Production of Methanol

Green methanol can be generated from lignocellulosic biomass via thermochemical
and biochemical routes as shown in Figure 6. Among the dominant thermochemical tech-
nologies, pyrolysis, gasification and liquefaction are common approaches for lignocellulosic
biomass conversion to biofuels which also include methanol as a bioproduct [48]. It should
be noted that CO, CO2, H2 and CH4 are some gaseous byproducts obtained from gasifica-
tion and pyrolysis processes. CO and H2 (components of syngas) can be further converted
into methanol through the catalytic Fischer-Tropsch process. On the other hand, catalytic
reforming processes also transform methane into methanol. However, these gas-to-liquid
processes are secondary processes that rely on primary biomass conversion processes such
as gasification, liquefaction and pyrolysis.
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4.1. Pyrolysis

Bio-alcohol fuels and chemicals including methanol, ethanol and butanol can be
produced from the pyrolysis of biomass in the absence of oxygen, especially in the
aqueous phase of the liquid product. Table 5 presents the various types of pyrolysis.
Kamarudin et al. [49] carried out the production of methanol from biomass waste via pyrol-
ysis. It was observed that to increase the yield of methanol and ethanol, a low temperature
and short gas residence time is mandatory in the process.
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Table 5. Classification chart for pyrolysis. Reference: Wang et al. [50].

Slow Pyrolysis Fast Pyrolysis Vacuum Pyrolysis

Reaction conditions

Heating rate (◦C/s) 0.2–12 12–300 >1100

Particle size (mm) 7–52 <2 <0.5

Vapor residence time (s) 460–570 0.7–12 <0.7

Product yield (wt% wet basis)

Liquid 40 68–83 90

Char 40 17–28 18

Gas 37 17 7

4.2. Gasification

Gasification changes carbonaceous biomass materials, which are pretreated into
methanol. The pretreatment is due to an increase in the exposed surface area, where the
large polymeric molecules are partially oxidized at ultra-high temperatures (800–900 ◦C).
During gasification, the syngas formed mainly consist of CO and H2 with low concen-
trations of methane. Various gasifiers have been designed and the generated syngas are
influenced by biomass and reactor type. Table 6 lists some characteristics of different
gasifier types for different biomass feed. To guarantee minimal impurities and byproducts,
different downstream strategies are used to produce pure syngas. The tar and the gaseous
impurities are separated by transition metal catalysts through high-temperature barrier fil-
ters. The studies on the gasification of biomass for methanol production were summarized
in detail (Table 7).

Table 6. Classification chart for gasifiers. Reference: Amigun et al. [51].

Gasifier Reactor Packed Bed Fluidized Bed Entrained Bed

Product temperature Low (435–620 ◦C) Medium (920–1070 ◦C) High (1350–1700 ◦C)

Oxidant demand Low Medium High

Ash properties Dry ash and slagging Dry ash and agglomerating Slagging

Size of coal feed 8–52 mm 7–13 mm <120 µm

Acceptability of fines Limited Good Unlimited

Other characteristics Methan, tar, and volatiles
present in syngas Low carbon conversion Pure syngas

High carbon conversion

Table 7. Summary of gasification reactions for methanol production from different feedstocks.

Feedstock Methanol Yield Comments Reference

Forest residues
and lignin 62–66% Catalytic gasification provides operational

advantages at production costs. [52]

Lignite 40–60%
Simulations show the proposed low-carbon

methanol synthesis plant is an effective alternative
for methanol valorization.

[53]

Rice straw 14.01 g/kg biomass for
gasification temperature of 900 ◦C

It was shown that the methanol yield rises owing to
a significant growth in gasification temperature. [54]

Biomass and plastics
(polyethylene
terephthalate)

Methane conversion
of 98%

Methanol production costs rely on the purity
of the syngas as the feed gas. [55]
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4.3. Methane

To develop a platform for methane-to-methanol conversion, Kulkarni et al. [56] re-
ported a key enzyme that participated in natural gas consumption. Cell mass analysis
showed a maximum methanol formation of 308.70 mg/L on pure methane. Methane
fermentation was carried out in an optimized reaction mixture and resulted in 1.87-fold
higher specific methanol productivity. Methanol can be produced biologically through
catalytic oxidation. As stated by Sahoo et al. [57] a sequential two-stage integrated process
is used for the reduction of CO2 into methanol. It can be concluded that the maximum
methanol production is dependent on the partial pressure of CO2 in the headspace of a
semi-batch stirred tank reactor. Biotransformation approaches have been recognized as
a green/clean strategy to produce methanol over methane. Patel et al. [58] reported the
immobilized co-culture within polyvinyl alcohol for methanol production using methane.
The results indicated that a significant decrease of 90% in residual methanol production
might be associated with immobilization methods of methanotrophs. Table 8 summarizes
the application of methane as potential feedstock to produce biofuel such as methanol.

Table 8. Summary of the studies on the production of methanol over methane.

Feedstocks Reaction Conditions Key Findings Reference

Glycerol and methane Gasification at 500 ◦C under 35 bar
Reforming at 900 ◦C under 20 bar

TEA confirmed that fuel prices and total
cost have a significant effect on the average

cost of methanol.
[59]

Different feedstock and
agricultural residues

Anaerobic digestion at
psychrophilic

temperature (25 ◦C)

Methanol yield via anaerobic digestion was
strongly dependent on the hydraulic

retention time.
[60]

Biowaste-derived
sugars and methane

Integration of biogas to
biomethanol for up to 120 h at 30 ◦C

The integration of dark-fermentative and
anaerobic digestion yielded 13.8 mmol/L

of methanol via methanotrophs.
[61]

Nitrosomonas eutropha cell
biomass

Biotransformation reaction at 28 ◦C
under 0.7 bar

The methanol conversion rate was
dependent on enzyme activity and its

maximum yield was found to be 103 mg/L.
[62]

4.4. Catalytic Fischer-Tropsch Synthesis

The Fischer-Tropsch synthesis (FTS) has been investigated through heterogeneous
catalytic reactions and as a sustainable process to generate synthetic liquid fuels. It has
been estimated that the bioethanol produced by FTS can be much less expensive than the
ethanol produced by hydrolysis. Santos et al. [63] conducted TEA of FTS and direct natural
gas-to-methanol processes to investigate the effects of tail gas emissions and methane
recycling in a compact plant footprint. The simulation results revealed that increasing the
tail gas recycle ratio results in an increase in the C5+ yield. It should be mentioned that
increasing the methane recycle ratio leads to an increase in the yield of methanol.

Khademi et al. [64] employed an optimal design of natural gas tri-reforming to generate
appropriate syngas for Fischer-Tropsch and methanol synthesis processes. It is noteworthy
that the syngas ratio is almost greater than 1.5, which is proper for application in methanol
units. According to the optimization results the methanol conversion and reaction rate
increase at high CO/CO2 ratios. Yue et al. [65] prepared bimetallic Co-Cu supported CeO2
to produce alcohols under 3 MPa at 180 ◦C. During the photothermal catalytic reaction, the
yields of methanol, ethanol, and isopropanol increased to 33, 15.8 and 6.6 mmol/gCo/h,
respectively. At the same time, the in situ Diffuse reflectance infrared Fourier transform
spectroscopy (DRIFTS) indicated that the linearly adsorbed CO is further transformed
into side products for C–C coupling. The possible reaction processes over Co-Cu/CeO2
revealed that light can enhance the production of carrier electrons (Figure 7). The Cu/CeO2
catalyst under irradiation by visible light can exhibit excellent reverse water gas shift
reaction. Localized surface plasmon resonance induces electrons of Cu to promote the
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dissociation of formate and regeneration of oxygen vacancies, which promotes the reverse
water gas reaction.
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Marquart et al. [66] studied producing long-chain oxygenates over K/β-Mo2C cat-
alysts in the FTS to investigate the effect of synthesis protocols. The selectivity towards
oxygenates was reduced to approximately 20 C% upon potassium promotion. Simulta-
neously, the unpromoted catalysts were mainly reported to form methanol and the chain
growth probability confirms this observation. Increasing reaction temperature decreased
methanol selectivity while increasing the ethanol content. Zaffran et al. [67] reported
the formation mechanism of methanol in FTS at Co2C surfaces using combined density
functional theory and microkinetic modeling. Density functional theory modeling was
employed for vibrational calculations, and it suggests that (101) and (111) facets are more
favorable to methanol formation. It has been concluded that CH4 and C2H4 share the same
determining states at high temperatures. The main challenge for methanol production
using syngas is various types of impurities, such as tar, sulfur compounds, and trace con-
taminants. The level of contaminants that lead to metal corrosion and catalyst deactivation
are influenced by gasification conditions and feedstock type. In the FTS, as a heterogenous
polymerization reaction, the hydroxycarbene mechanism explains the condensation reac-
tion between two hydrocarbon reactants and the formation of alcohols by hydrogenation.
Additionally, the CO insertion mechanism proposes a C-C coupling reaction and the for-
mation of alcohols [62]. Owing to the current production cost of alcoholic biofuels and
their low heat of combustion, the economy of methanol production via FTS is unattractive
to entrepreneurs [63]. Replacing conventional feedstocks to produce cheaper syngas for
FTS can bring down the production cost of green methanol. Choudhury et al. [68] have
investigated the feasibility of the hybrid process of biomass Gasification Integrated FTS to
present the possible pathway for its commercial implementation. They concluded that the
surplus biomass generation results in considering the hybrid process as a viable method
for the generation of liquid transportation fuel and electricity.

4.5. Methanol Production through Fermentation

The production of methanol from biomass through fermentation involves several steps
such as biomass pretreatment, fermentation and distillation. Feedstocks such as wood
chips or agricultural residues should first be pretreated to break down the complex carbo-
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hydrates into simpler sugars. An efficient pretreatment process aims to achieve several
goals, including the direct formation of sugars or their subsequent production through
hydrolysis, preservation of the formed sugars to prevent any loss or degradation, restriction
of the formation of inhibitory substances, reduction in energy consumption, and minimiza-
tion of costs. The four primary categories of pretreatment techniques used are physical,
chemical, physicochemical, and biological improvements, and typically, a mixture of these
reactions is employed in the pretreatment step. This is performed through various pro-
cesses, such as steam explosion, acid hydrolysis, or enzymatic hydrolysis [64–66]. Figure 8
represents a simplified diagram of the process of methanol production from biomass
through fermentation.
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4.5.1. Acid and Alkaline Pretreatment

Acid pretreatment is a crucial technique to achieve high yields of sugars from ligno-
cellulosic materials. This process involves the application of concentrated or diluted acids
(usually between 0.2% and 2.5% w/w) in different temperature ranges. Among various
types of acid, sulfuric acid is the most used for acid pretreatment [69]. The acid solution
targets the polysaccharides, especially hemicelluloses, which are more easily hydrolyzed
than cellulose [69]. Acid pretreatment can be carried out using either dilute or concentrated
acids to enhance cellulose hydrolysis [69]. However, acid pretreatment also generates
various inhibitors such as acetic acid, furfural, and 5-hydroxymethylfurfural, which can
prevent the growth of microorganisms during fermentation [69]. To use the hydrolysates
for fermentation, detoxification is necessary. Moiser et al. reported that diluted H2SO4
is more effective than other acids in pretreating lignocellulose and achieving higher hy-
drolysis yield [70]. For example, when wheat straw was subjected to 0.75% vol/vol of
H2SO4 at 121 ◦C for 1 h, a saccharification yield of 74% was reached [71]. In addition
to sulfuric acid, different types of acid such as carboxylic acids can also be used for acid
pretreatment, but sulfuric acid is preferred due to its low price, high efficiency, and easy
availability [72]. Furthermore, the use of diluted acids can reduce the production of in-
hibitory compounds, thereby making the hydrolysates more suitable for fermentation [73].
Overall, acid pretreatment is a promising technique for the efficient generation of sugars
from lignocellulosic biomass, but the detoxification of hydrolysates remains a challenge
that needs to be addressed to enhance the feasibility of the process [74].

Alkaline pretreatment is an effective technique for digesting the lignin matrix of lig-
nocellulosic materials and making polyose more accessible for enzymatic hydrolysis [75].
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Alkali treatment disrupts the porosity and thickness of cellulose, lignin, and SiO2, hydrolyz-
ing uronic and acetic esters and swelling cellulose, thereby decreasing the crystallinity
of (C6H10O5)n [76]. Hence, the compounds can be fractionated into imidazole ionic liq-
uids, hemicelluloses, and residue, making them more suitable for further processing into
higher-value products. The end residue, mainly agricultural residues, can be employed for
producing paper or cellulose derivatives [76].

Alkaline pretreatment can be conducted using hydroxides of Na, K, Ca, and NH3.
Compared to other pretreatment methods, alkaline pretreatment reactions require lower
temperatures and time [76].

Sun et al. (1995) used electrocatalysts in the presence of alkaline solutions for the delig-
nification of lignocellulosic biomass for enhancement of methanol production potential [77].
They suggested that the optimal process conditions were using 1.5% sodium hydroxide for
144 h at 20 ◦C, which released 65% and 85% lignin and hemicellulose, respectively. Sodium
hydroxide has also been reported to increase the digestibility of resulting wood from 17%
to 59% by decreasing lignin concentration from 55% to 25% [77].

Alkaline pretreatment has several advantages over other pretreatment techniques. For
example, it can efficiently remove water-soluble lignin and hemicellulose, making cellulose
more accessible for enzymatic hydrolysis [78]. Additionally, alkaline pretreatment can be
performed at lower temperatures and pressures than other pretreatment methods, which
reduces energy consumption and process costs [78]. However, alkaline pretreatment also
has some limitations, such as high chemical consumption, low selectivity, and difficulty
in controlling the degree of delignification [78]. Therefore, further research is needed to
optimize the alkaline pretreatment process and develop more efficient and cost-effective
methods for lignocellulosic biomass conversion.

4.5.2. Enzymatic Pretreatment

The chemical pretreatment of the biomass makes it suitable for enzymatic pretreatment,
which leads to the generation of a wide range of sugars for fermentation. During the process
of producing bioethanol, saccharification is a crucial step that involves converting complex
carbohydrate polymers into monomer sugars. Compared to acid hydrolysis, enzymatic
hydrolysis requires less energy and operates under mild environmental conditions [78].
Cellulase activity is reported to be optimal at temperatures between 40 and 50 ◦C and pH
values between 4–5. In contrast, xylanase activity is reported to be optimal at temperatures
between 50 and 60 ◦C and pH values between four and five [78,79]. In comparison to acidic
or alkaline hydrolysis, enzyme hydrolysis offers several advantages, including low toxicity,
low utility costs, low corrosion, and the absence of inhibitory byproducts [80,81]. As a
result of the substrate-specific nature of cellulase enzymes used in enzymatic hydrolysis,
its application may be limited [82,83].

4.5.3. Fermentation

After the saccharification step, the resulting sugars can be used for bioethanol pro-
duction due to high ethanol fermentation efficiency. However, the efficient commercial
production of bioethanol from lignocellulose is currently limited using microorganisms that
can effectively ferment both hexose and pentose co-fermenting yeast strains [84]. The ideal
microorganism for industrial-scale ethanol production should have the ability to utilize
a broad range of substrates, produce high ethanol yields and productivity, tolerate the
inhibitors present in hydrolysates, and exhibit cellulolytic activity, enabling it to produce
ethanol at high concentrations and temperatures [85]. Unfortunately, no wild-type microor-
ganisms possess all these traits, which necessitates the application of genetically modified
microorganisms to achieve optimal ethanol production from lignocellulosic feedstocks [86].
Such modifications can enhance sugar utilization and production efficiency, leading to a
more cost-effective and sustainable bioethanol industry.

Two main methods are commonly used for fermenting lignocellulosic hydrolysate:
simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermen-
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tation (SHF). The traditional approach has been SHF, but in recent years, SSF has gained
significant popularity. SSF offers several advantages, including increased ethanol yields by
mitigating end-product inhibition and omitting the requirement for separate reactors [87].
SSF is also cost-effective and reduces the risk of microbial contamination, but there are some
limitations due to differences in minimum temperature conditions required for enzymatic
hydrolysis and fermentation. The use of engineered microorganisms, such as Saccharomyces
cerevisiae, can help overcome this limitation by improving the ethanol yields and reducing
fermentation time in SSF processes [88].

The higher ethanol yield coefficient obtained from SSF is partially attributed to the
conversion of xylose to xylitol under SSF conditions. The xylitol formation is a consequence
of the higher availability of nicotinamide adenine dinucleotide phosphate (NADPH) and
the presence of enzymes that can catalyze the conversion of xylose to xylitol, such as xylose
reductase [45,89]. Xylitol can accumulate in the fermentation broth and reduce ethanol pro-
ductivity and yield. Therefore, to obtain a higher ethanol yield, it is necessary to suppress
xylitol formation by regulating the expression of genes involved in xylose metabolism. The
use of metabolic engineering techniques can also help minimize xylitol accumulation and
increase ethanol production from lignocellulosic hydrolysates in SSF processes [57,90–94].

5. Conclusions and Perspectives

In summary, green methanol has long been used as a platform chemical and precur-
sor for other fine chemicals and base materials. It has many commercial applications in
agrochemical, fabric, textile, paint, adhesive, wood processing and pharmaceutical indus-
tries. Its applications are currently being recognized as a biofuel or fuel additive due to its
low-emission flammability, high octane number and better engine performance. As dis-
cussed in this article, biomethanol can be synthesized from waste biomass sources through
thermochemical and biological processes. While thermochemical conversion processes
such as pyrolysis and gasification of biomass operate at moderate/high temperatures and
pressures, biological processes require microorganisms and enzymes for denaturing the
polysaccharides (cellulose and hemicellulose) into monomeric sugars for further fermenta-
tion to biomethanol. While biological conversion technologies can produce biomethanol as
the main product, the thermochemical processes lead to the generation of biomethanol as
a byproduct. For example, bio-oil derived from biomass pyrolysis comprises both aque-
ous and organic phases. While the organic phase contains high molecular weight crude
oil, the aqueous phase contains low molecular weight components such as water, acids,
aromatics and alcohols (including methanol). The article also reported on Fischer-Tropsch
synthesis, which can transform syngas into liquid hydrocarbons such as methanol using
selective and high-performance catalysts. Regardless of the production process, the main
advantage of biomass-derived methanol is that it is a distributed energy carrier for power
generation in methanol fuel cells, which upon combustion generates CO2 and water. This
CO2 can be further recycled by the fresh plants during photosynthesis leading to its no
net accumulation in the atmosphere. With the growing interest in biofuels and biochemi-
cals, biomethanol is steadily emerging as a bioproduct with a high potential for diverse
applications in value-added industries at a global scale.
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