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Abstract: At energy lower than 2 eV, the dispersion law of the electrons in a graphene sheet presents
a linear dependence of the energy on the kinetic momentum, which is typical of photons and permits
the description of the electrons as massless particles by means of the Dirac equation and the study
of massless particles acted upon by forces. We analytically solve the Dirac equation of an electron
in a graphene disk with radius of 10,000 atomic units pierced by a magnetic field and find the
eigenenergies and eigenstates of the particles for spin up and down. The magnetic field ranges within
three orders of magnitude and is found to confine the electron in the disk. States with a relatively
large total angular momentum exist and can be considered in a vorticose condition; these states are
seen to peak at different distances from the disk centre and can be used to store few bit of information.
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1. Introduction

The modern technological state of the art permits the fabrication of materials endowed
with new and astounding properties, able to disclose physical effects not seen before.
Among these new materials, reduced-dimensionality nano and mesoscopic objects are
gaining increasing interest in fundamental as well as applied research. They are charac-
terised by the feature that at least one of their spatial sizes is much smaller that the others;
the energy required to populate the levels pertaining to the relatively small dimension is
much larger than that required for the other dimensions so that the small dimension can be
disregarded in the mathematical description of the physical object; therefore, the system
can be safely studied by means of a lower number of degrees of freedom. The conceptual
interest in the possibility of experimentally exploring systems with a smaller number of
degrees of freedom is evident but the technological repercussions have been shown to be of
great importance too.

Among these new physical objects, one can include quantum dots, nano and meso
rings and nano tubes, all deserving special consideration. Quantum dots are small clumps
of semiconductor, confined within a convenient substrate and possessing a spectrum of
discrete energy levels that can be designed almost at will to fulfil particular requirements
and for this characteristics are pictorially referred to as artificial atoms; they can be seen
as zero dimensionality systems. Particular mention must be devoted to the rich variety
of allotropes of the carbon atom as some of them can be used to produce reduced dimen-
sionality systems. For example, C60 fullerene is a spherical arrangement of carbon atoms,
situated at the corners of hexagons and pentagons, that can be described as a zero- or a
two-dimensional object.

On the other hand, graphene is a flat monolayer of carbon atoms placed at the corners
of a pattern of hexagons of side L ∼= 2.7a0, with a0 the Bohr radius, and resembling
a honeycomb; it is one of the most interesting materials for fundamental and applied
research. At energy lower than 2 eV, owing to the particular symmetry of the lattice, the
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valence and conduction bands slightly overlap [1,2], producing a linear dependence of the
electron energy, E, upon the modulus of the kinetic momentum, π:

E = vFπ, (1)

where vF = uFc is the Fermi speed of the electrons in the layer, c the speed of the light
and uF ∼= 1/300 a dimensionless numerical constant. The linear dispersion is typical of
the photon, which allows the description of the charge carriers as massless, free fermions
moving with speed vF [1,3,4] and gives the opportunity of studying zero-mass charges
which, nevertheless, can be acted upon by electromagnetic forces; in this way, a new
phenomenon with no classical counterpart is open to investigation. Even if vF < v1s with
v1s ∼= c/137, the average electron speed in the hydrogen ground state, one can see that the
description of the charge carriers by using the Schrödinger equation is impossible and the
Dirac equation must be used after the substitution c → vF.

In the Dirac electron theory, the dual presence of a positive–negative energy solu-
tion, or electron–positron pair, is inherent and the Klein paradox makes the confinement
of relativistic fermions by means of a repulsive potential barrier larger than 2mc2 quite
complicated, it would act as a chasm for the negative energy solution of the Dirac equation.
Actually, in the presence of a large enough barrier, the positive energy solution of the Dirac
equation disappears from the classical permitted zone of the space and makes a transition
into the negative energy state solution by appearing in the classical forbidden zone of the
space [5].

In graphene, the condition of massless fermions is valid at low energy and for an
infinite sheet, although the latter condition can be safely overcome by using quite large
fragments of film. In spite of the finding that the formalism is quite similar, in graphene,
actually, there is no room for the electron–positron interpretation of the positive and
negative energy solution and the two solutions are to be interpreted as states in the valence
and conduction bands. Nevertheless, the similarity of the theory makes a phenomenon
similar to the Klein paradox present also in graphene, where the electron, moving in the
conduction band of the film, in impinging upon a potential barrier, appears in the region of
the step in the valence band [6]. Thus, several confinement schemes, based on magnetised
pieces of graphene [2,7–11], or on the presence of electric and magnetic fields [12–16], have
been devised.

Graphene is the strongest known material [17] and endowed with a quite a large
charge mobility [18]: because of these and other properties, it is one of the most promising
materials for applicative research in Medicine, Chemistry, Informatics and Physics. Among
the many applications, we mention the use in efficient solar cells [19], which could help
the increasing demand for electrical energy with a quite low environmental impact, and as
a frequency multiplier of laser light in the well-known high harmonic generation [20–22].
Considering graphene, most interesting is the finding that, by suitable manipulation, it
is possible to obtain, from the basic honeycomb structure, different systems possessing
different dimensionality. Actually, graphene sheets can be rolled to form quite long and
slender cylinders, dubbed nano tubes, and cones with lengths several orders of magnitude
larger than the radius and, by cutting from tubes, nano rings can also be fabricated with
unidimensional properties. Also by cutting a graphene sheet, two dimensional annuli and
disks can be prepared. Another fascinating development is the realisation of elaborate
three-dimensional graphene structures inspired by origami [23–25].

Today, computer technology prompts the design and fabrication of meso- and nano-
sized electronic components for information storage and as the fastest logic circuital el-
ements [26–29]. However, saturation in the performance of traditional silicon devices is
presently observed so that the quest for new material is active; in this context, graphene
and other carbon allotropes, such as C60, fullerene and carbon tubes, are natural candidates
for their quick response to external fields and high-frequency operation. Therefore, the
comprehension of the behaviour of carbon-based material as C60 molecules, quantum
rings and annuli acted upon by static or dynamic electromagnetic fields is of paramount
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importance. Far from being of hindrance to the theoretical approach, the quite large size
of these molecules may create symmetries which, judiciously exploited, produce deep
simplification in the theoretical approach to the problem and often leads to analytical
solutions or crucial insight into the physics of the problem [30].

This paper deals with a disk of graphene of radius ρ1 = 10,000 a0 crossed by a static
magnetic field B0. The quite large radius ρ1 of the disk makes the dispersion law in
Equation (1) and the massless condition of the charge carriers suitable approximations.
Moreover, the large size makes the inevitable irregularity and roughness at the disk border
insignificant as it is well known that armchair or zigzag edges give different spectra in
graphene ribbons [1,31]. We analytically solve the Dirac equation for the charge carriers
by finding the eigenstates and relative energy as a function of the magnetic field and
numerically evaluate them. As a result, we find that the magnetic field has a strong
confinement action on the electron and that relatively large orbital angular momentum
states are supported by the disk. These states are confined in different regions and might
be used to store several bits of information; since large angular momenta states of Bose–
Einstein condensate, vortices, confined in spherical surfaces and rings, are currently actively
investigated [32–35], graphene disks can be suitable candidates for studying vortices states
with simple enough equipment.

2. Theory

Several equivalent representations of the Dirac equation can be given that are related
by a unitary transformation. The commonest forms are the standard representation that is
mostly useful in weak relativistic approximations and the chiral representation which is
mostly useful in ultrarelativistic regimes, when the energy of the particle is much larger than
the rest energy. For reasons that will soon be clear, in what follows, the chiral representation
is used. Thus, the Dirac equation for a fermion of charge q and mass mq in the presence of a
magnetic field in the chiral representation is

[
−⃗σ ·

(
p⃗˜− q

c
A⃗
)
− ih̄∂0

]
Ψ
˙
(L) = −mqcΨ

˙
(R),[⃗

σ ·
(

p⃗˜− q
c

A⃗
)
− ih̄∂0

]
Ψ
˙
(R) = −mqcΨ

˙
(L),

(2)

where σ⃗ = (σ1, σ2, σ3) is the triplet of the Pauli matrices, p⃗˜ = −ih̄∇⃗ the canonical momen-
tum operator (denoted by a tilde below the symbol), h̄ is the reduced Planck constant,
A⃗ the vector potential, ∂0 ≡ ∂/∂ct, t denotes the time, and Ψ

˙
(L) and Ψ

˙
(R) are the time-

dependent left and right two-component Weyl spinors (denoted by a dot below the symbol),
respectivly, forming the four component Dirac spinor in the chiral representation. Ψ

˙
(L) and

Ψ
˙
(R) depict the positive and negative energy states of the fermion. Care must be taken in

handling σ⃗ because, in spite of the look, under a spatial rotation it does not transform like a
vector; it must be regarded as a convenient notational device that accounts for the mixing
of the spinor components. From Equation (2), one sees that the mass couples the left and
right spinors. In our model, however, the mass and the related rest energy are zero so that
the equations for the two components uncouple:

[
−⃗σ ·

(
p⃗˜− q

c
A⃗
)
− ih̄∂0

]
Ψ
˙
(L) = 0

˙
,[⃗

σ ·
(

p⃗˜− q
c

A⃗
)
− ih̄∂0

]
Ψ
˙
(R) = 0

˙
,

(3)

and differ only for a sign; thus, the positive and negative energy solutions behave indepen-
dently. For the sake of brevity, only the first equation, with the superscript (L) dropped out,
is studied here. For the Dirac charge (after the default substitution c → cuF), Ψ

˙
assumes

the form of a time-dependent Schrödinger equation,

ih̄∂tΨ
˙
= −cuF⃗σ ·

(
p⃗˜− q

c
A⃗
)

Ψ
˙

, (4)
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with the Hamiltonian,
H˜ = −cuF⃗σ ·

(
p⃗˜− q

c
A⃗
)

. (5)

One recognises in the operator π⃗˜ ≡ p⃗˜ − (qA⃗/c) the kinetic momentum operator. The
Hamiltonian is related to the helicity operator. As mentioned in Section 1, in general, for
studying the properties of ultrarelativistic electrons, Equation (3) is used approximately.
In the case of graphene, for the vanishing of the mass, this use is necessary and offers the
opportunity to investigate relativistic effects without making use of large accelerators.

2.1. Total Angular Momentum

In this paper, we consider that the static magnetic field

B⃗0 = B0(0, 0, 1), (6)

generated by the vector potential,

A⃗0 =
1
2

B⃗0 × r⃗ =
B0

2
(−x2, x1, 0), (7)

pierces a disk of radius ρ1 whose centre rc lays at the origin of the (x1x2)-plane, rc = (0, 0).
The particular geometry of the system suggests that the third component of the total angular
momentum is a constant and that to seek common eigenstates of the Hamiltonian and
this component of the angular momentum operators is convenient. The calculations to
find the expressions for the operators and to obtain their equation of motion require quite
an amount of algebra and may be rather long. In what follows, we confine ourselves to
outlining the significant steps and the interested reader may find details in [5,36].

Thus, after long but straightforward use of commutator algebra, the equation

d⃗J

d̃t
=

quF
2

B⃗0 × (⃗r × σ⃗) (8)

for the total angular momentum J⃗˜ (in units of h̄) is arrived at. One can see that the time

derivative of J⃗˜ is orthogonal to the magnetic field, so that the component of the total angular
momentum along the magnetic field,

J˜3 ≡ −i∂φ +
1
2

σ3, (9)

is constant and admits common eigenstates with the Hamiltonian. Here, φ is the polar
angle. Moreover, as discussed in Section 1, in materials with reduced dimensionality,
the active electron can be described as confined on the disk to be considered as a two-
dimensional object.

We begin by considering the eigenstates of the angular momentum. In circular vari-
ables, the eigenvalue equation is J˜3ψ

˙
(ρ, φ) = j3ψ

˙
(ρ, φ), with ρ the radial variable and j3

the angular momentum eigenvalue. The two components of the time-independent spinor
ψ
˙
(ρ, φ) correspond to the two projections of the angular momentum along the magnetic

field. After splitting ψ
˙
(ρ, φ) into its components by setting

ψ
˙
(ρ, φ) =

(
Φ1(φ)R1(ρ)
Φ2(φ)R2(ρ)

)
(10)

and sustituting into Equation (9), one obtains(
−i∂φ +

1
2

σ3
)(

Φ1(φ)R1(ρ)
Φ2(φ)R2(ρ)

)
= j3

(
Φ1R1
Φ2R2

)
, (11)
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equivalent to the two coupled differential equations for the angular part:
dΦ1

dφ
= i
(

j3 −
1
2

)
Φ1 ,

dΦ2

dφ
= i
(

j3 +
1
2

)
Φ2 ,

(12)

with the solution 
Φ1(φ) =

eimφ

√
2π

,

Φ2(φ) =
ei(m+1)φ

√
2π

,
(13)

where m is the quantum number of the orbital angular momentum,

m = j3 −
1
2
= . . . ,−2,−1, 0, 1, 2, . . . . (14)

Let us stress that j3 and not m is the conserved quantity. Actually, it is a straightforward
task to check, by direct calculations, that ψ

˙
(ρ, φ) is not eigenstate of σ3.

In order to obtain the form of the equation for the radial parts, many tedious steps are
required [36]; the result is

H˜ψ
˙

m = ih̄cuF

[
eimφ

√
2π

(
R′

2
eiφR′

1

)
+

1
ρ

eimφ

√
2π

(
(m + 1)R2
−meiφR1

)]
+

quFB
2

ρ
eimφ

√
2π

(
−iR2
ieiφR1

)
(15)

with the prime denoting differentiation with respect to ρ. Surely, the subscript m had to
be added to the wave function. Actually, notational rigorousness would require that the
same index should flag the radial wave functions R1 and R2 but symbolism would become
heavy and cumbersome and requires refraining from full coherence.

The eigenenergy equation is
iuF

[
h̄c
(

d
dρ

+
m + 1

ρ

)
− qB0

2
ρ

]
R2 = ER1 ,

iuF

[
h̄c
(

d
dρ

− m
ρ

)
+

qB0

2
ρ

]
R1 = ER2 ,

(16)

where the energy E, common to both the spin components, and the radial functions R1(ρ)
and R2(ρ) must be found simultaneously. The two coupled first-order equations are not
of immediate solution and substitution of R2(ρ) from the second into the first equation is
convenient. The procedure leads to a second-order differential equation and is similar to
the one that leads from the first-order Maxwell equation to the second-order differential
equation for the potentials. The result is

d2R1

dρ2 +
1
ρ

dR1

dρ
+

[
E2

h̄2(uFc)2
+

qB0(m + 1)
h̄c

−
q2B2

0

4h̄2c2
ρ2 − m2

ρ2

]
R1 = 0. (17)

To work with a dimensionless variable, it is convenient to define

x = ρ2/λ2, (18)

where
λ2 ≡ 2h̄c

|q|B0
(19)
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has the dimension of length square. Thus, the parameter λ introduces in the problem a
length scale, inversely proportional to

√
B0, and measures the confinement range induced

by the field. In terms of the new variable (18), Equation (17) for R1 thus reads

x2 d2R1

dx2 + x
dR1

dx
+

(
− x2

4
+

ϖ2

4
x − m2

4

)
R1 = 0 (20)

where

ϖ2 =
2E2

h̄u2
Fc|q|B0

+ 2η(m + 1) (21)

with η = |q|/q the sign of the charge.
The substitution,

R1(x) = e−x/2x|m|/2 f (x), (22)

leads to the known confluent hypergeometric equation (CHE):

x f ′′ + (|m|+ 1 − x) f ′ −
(
|m|+ 1

2
− ϖ2

4

)
f = 0. (23)

The standard form for the CHE is

zw′′ + (b − z)w′ − aw = 0 (24)

admitting two independent solutions, M(a, b, z) and U(a, b, z), which can be written as
infinite series. The expression of M(a, b, z)

M(a, b, z) = 1 +
a
b

z
1!

+
a(a + 1)
b(b + 1)

z2

2!
+ . . . (25)

gives few problems. The expansion of U(a, b, z)

U(a, b, z) =
π

sin πb

[
M(a, b, z)

Γ(1 + a − b)Γ(b)
− z1−b M(1 + a − b, 2 − b, z)

Γ(a)Γ(2 − b)

]
(26)

which is well behaved (as a limit) for integer b [37], is not straightforwardly numerically
approached because of the presence of the sin πb and of the Γ function of negative integer
that can lead to divergences, the latter are quite difficult to handle. Indeed, the one of
interest here is located in the hard subset of the problem because, in our model, b is always
an integer.

Looking at the expression (23), one determines the parameters of the confluent hypar-
geometric functions (CHFs) in terms of the relevant physical quantities:

a =
|m|+ 1

2
− E2

2h̄u2
Fc|q|B0

− 2η(m + 1) (27)

b = |m|+ 1. (28)

Again, we stress that the feature that b is a positive integer be carefully addressed during
the numerical evaluation of U(a, b, z).

To summarize, the radial function R1(x) has two independent solutions:

R1;1(ρ) = e−
ρ2

2λ2
( ρ

λ

)|m|
M
(

a, b,
ρ2

λ2

)
(29)

and

R1;2(ρ) = e−
ρ2

2λ2
( ρ

λ

)|m|
U
(

a, b,
ρ2

λ2

)
(30)



Physics 2024, 6 323

which correspond to the spin-up component of the spinor.
The analytic evaluation of the radial functions of the spin down is possible start-

ing from these expressions but requires a lot of algebra of the CHF and is detailed in
Appendix A. The final result is

R2;1(ρ) =
iuF
E

e−
ρ2

2λ2
ρ|m|−1

λ|m|

{[
h̄c
(
(η − 1)

ρ2

λ2 + |m| − m
)]

M
(

a, b,
ρ2

λ2

)
+ 2

a
b

ρ2

λ2 M
(

a + 1, b + 1,
ρ2

λ2

)}
(31)

and

R2;2(ρ) =
iuF
E

e−
ρ2

2λ2
ρ|m|−1

λ|m|

{[
h̄c
(
(η − 1)

ρ2

λ2 + |m| − m
)]

U
(

a, b,
ρ2

λ2

)
− 2a

ρ2

λ2 U
(

a + 1, b + 1,
ρ2

λ2

)}
. (32)

In R2;1(ρ) and R2;2(ρ), the presence of the term |m| −m is rather interesting as it acts in
different ways for positive and negative m. Actually, the study of a positive charge (η = 1)
and positive m would flow into a tremendous simplification of the formulas as one piece of
the wave functions would vanish. The general radial wave functions are given by a linear
combination of these functions:{

R1(ρ) = µR1;1(ρ) + νR1;2(ρ),
R2(ρ) = µR2;1(ρ) + νR2;2(ρ),

(33)

where µ and ν are constants to be found from the boundary conditions and normalisa-
tion condition.

For a fixed value of m, one observes that a can be maintained constant by keeping
B0 ∝ E2 and this would give the dependence of the eigenenergies from the magnetic field;
this is, nevertheless, of little use as λ is dependent upon B0.

2.2. Boundary Conditions

In this paper, we consider a disk with a sharp edge. Actually, no real fragment of
graphene can have a sharp border and studies of graphene ribbons have shown that the
form of the edges is relevant for the determination of the states of the charges [31]. Again,
this approximation can be made weak by considering a disk with a large enough radius ρ1
so that roughness is not relevant.

The fulfilment of the boundary conditions permits the determination of the eigenstates
and eigenenergies (the eigenvalues of the total angular momentum were already found in
Equation (14))

R1(ρ1) = R2(ρ1) = 0. (34)

To avoid long final expressions, let us introduce the constants

M1(ρ1) ≡ M

(
a, b,

ρ2
1

λ2

)
, U1(ρ1) ≡ U

(
a, b,

ρ2
1

λ2

)
, (35)

M2(ρ1) ≡ M

(
a + 1, b + 1,

ρ2
1

λ2

)
, U2(ρ1) ≡ U

(
a + 1, b + 1,

ρ2
1

λ2

)
, (36)

C(ρ1) ≡ h̄c

[
(η − 1)

ρ2
1

λ2 + |m| − m

]
M1(ρ1) + 2

a
b

ρ2
1

λ2 M2(ρ1) (37)
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and

D(ρ1) ≡ h̄c

[
(η − 1)

ρ2
1

λ2 + |m| − m

]
U1(ρ1)− 2a

ρ2
1

λ2 U2(ρ1), (38)

so that the boundary conditions assume the form of a two-variable, homogeneous linear
algebraic equation: {

µM1(ρ1) + νU1(ρ1) = 0,
µC(ρ1) + νD(ρ1) = 0,

(39)

where the unknown coefficients µ and ν may be determined only if the determinant of the
coefficients vanishes:

M1(ρ1)D(ρ1)− U1(ρ1)C(ρ1) = 0. (40)

Remembering that E is present in the expression of a, one can see that the values of E
that fulfil the condition in Equation (40) are the allowed values of the energies. The problem
is therefore fully analytically solved:

ν = −M1(ρ1)

U1(ρ1)
µ , (41)


R1(ρ) = µ

[
R1;1(ρ)−

M1(ρ1)

U1(ρ1)
R1;2(ρ)

]
,

R2(ρ) = µ

[
R2;1(ρ)−−M1(ρ1)

U1(ρ1)
R2;2(ρ)

]
.

(42)

The value of µ is found by the normalisation of the wave functions:∫ +∞

0
|Rℓ(ρ)|2ρdρ = 1, ℓ = 1, 2. (43)

2.3. Helicity

As it quite straightforward to see by direct calculation, the Hamiltonian eigenfunctions
are not eigenstates of σ1 and σ2 and the spin projections on the (x1x2)-are not individually
constant but the helicity is constant. The helicity operator h˜ can be defined as

h˜ ≡ σ⃗ · π⃗˜2E
= −

H˜2cuFE
(44)

so that the helicity evaluated on the energy eigenstates is constant. Generally, the helicity
gives the projection of the spin on the kinetic momentum. In our model, both π⃗ and A⃗0
lie on the (x1x2)-plane (see Equation (7)), so only the projection of the spin in this plane
is relevant. The finding that in the present model of disk, the Hamiltonian H˜ shares the
eigenstates with the helicity is helpful feature as helicity is the only degree of freedom
for massless particles. One can expect that, the orbital angular momentum is associated
with a rotation around an axis; the fact that here the eigenstates of the energy are not
eigenstates of L˜3 and that m is not a proper quantum number, hinders the possibility of
giving a transparent meaning to vortex states.

3. Results and Conclusions

In what follows, we adopt atomic units (au) (|e| = h̄ = me = 1); thus, the Bohr
radius a0 is the unit of length, the unit of energy is 27.21 eV and B = 1 au = 2.35 · 105 T.
The radius of the disk is ρ1 = 10,000 a0, the large value ensuring that the electron can
be treated as massless; the magnetic field is taken in the interval B0 ∈ [10−7, 10−4] au.
To find the values of E that solve Equation (40) is a complicated enough task because, as
comes from their power expansion, the CHFs are especially sensitive to the value of their
parameters; nevertheless, we have checked our results against numerical precision and
found no mistakes.
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From the expression of the parameters and of the wave functions, we observe that the
energy always appears through the ratio E/uF and therefore we use this ratio as the relevant
parameter and, generally, call it energy. Through the parameter a in Equation (27), the
energy enters the equations with the ratio E2/B0, showing an intrinsic weak dependence
of the eigenvalues upon

√
B0. The parameters of the CHF are quite sensitive to the value

of the magnetic field B0 and this dependence is rather crucial at low enough B0. Thus,
actually, the results are stabler and more reliable at large enough B0. For any value of m,
there are several eigenstates fulfilling the boundary conditions and these eiegenstates are
numbered with the integer n; thus, to label the eigenenergies and, consequently the relative
eigenstates, the second subscript n must be introduced as Em;n. For m ≥ 0, n counts the
number of nodes of the eigenstates between the centre and the disk edge. For m < 0, such
an appealing correspondence is not realised and the number of nodes can be n + 1. We
have performed numerical calculations to determine the eigenvalues and eigenstates of
the Dirac electron in the disk for different values of B0, m and n; in all the calculations, we
have considered a negative charge: η = q/|q| = −1.

Figure 1A shows the eigenengies of the Dirac electron versus the magnetic field for
n = 0 and for different values of the orbital angular momentum, m. For non-negative m,
Em,n increases with B0 and m and observe the mentioned weak dependence of Em,n on B0.
Relegated in the lower left corner of the figure, the curve for m = −5 pops up with its
considerably small energy and decreasing behaviour. Figure 1B shows the eigenenergies
of the electron versus n at B0 = 5.0 × 10−5 au for different value of the orbital angular
momentum. The eigenvalues increase almost linearly with n and can be extrapolated
with confidence.
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Figure 1. (A) Eigenenergies (in atomic units, au) versus the magnetic field (in au) for different values
of the orbital angular momentum, m, and n = 0. The energy of the states increases with B0 because
the parameter a in the CHFs depends on the the ratio E2/B0 (see Equation (27)). (B) Eigenenergies
versus n for different values of m and the magnetic field B0 = 5 × 10−5 au. Now the energy of the
states increases with n because the area where the charge can be found is decreased by the presence
of n nodes in the eigenstates.

The meaning of the integer n can be understood from Figure 2 where we show few
eigenstates at m = 0 and different values of n. Figure 2A displays the case of spin up. The
states peak always at the centre of the disk and present n nodes (the node at the disk edge
is there by construction). The case for the spin down is shown in panel Figure 2B. Now,
the states have a node at the origin and present again n nodes between border and edge.
The presence of the nodes gives an expected explanation of the growth in the energy as
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shown in Figure 1B since the nodes have the effect of decreasing the available area of the
disk, thus confining the charge in a smaller area.

Actually, the description is not so clear-cut for negative m. In Figure 3, the case for
m = −1 is shown. For spin up, n again gives the number of nodes between the centre
and edge of the disk. In the spin-down case, on the other hand, the eigenstates show
n + 1 nodes. To stress is that states with the same n (in Figure 3A,B) correspond to the
same eigenvalue.
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Figure 2. Wave functions for B = 5 × 10−5 au, versus the radius ρ (in au) with m = 0 and different
values of of n for (A) spin up and (B) spin down. n gives the number of nodes of the wave function.
The presence of nodes in the wave function decreases the area of disk where it is possible to find
the charge: because of the uncertainty relation the overal effect is to increase the energy of the states
with n.
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Figure 3. Wave functions for B = 5 × 10−5 au versus the radius ρ (in au) with m = −1 and different
values of n for (A) spin up with n number of nodes and (B) for spin down with n+ 1 number of nodes.

Figure 2 suggests a possibility of obtaining a spatial separation of the two-spin polar-
ization. For example, for m = 0, the spin-up eigenstates, in Figure 2A, peak at the centre of
the disk while the spin-down states, in Figure 2B, have a node at the same point. For the
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case m = −1, shown in Figure 3, the situation is reversed and the spin-down states peak at
the centre. However, to stress is that the relevant quantity is |Rk(ρ)|2ρ, (see Equation (43)),
which emphasizes the mid to the detriment of the innermost (where ρ = 0) and peripheral
(where Rk(ρ) = 0) parts of the disk. For example, in Figure 4, we show |Rk(ρ)|2ρ (k = 1, 2)
for B = 5 × 10−5 au, m = 0 and n = 1 whose relative eigenstates are shown in Figure 2.
However, still from Figure 4, one can see that a certain amount of external control for the
location of the peak of the two-spin polarization is possible by using the quantum numbers
n and m as knobs.
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Figure 4. Probability density, w(ρ) = ρ|Rk(ρ)|2, versus the radius ρ (in au) with k = [1, 2], for the spin
up and down states. w(ρ)dρ gives the probability of finding the particle in the infinitesimal annulus
[ρ, ρ + dρ]. The magnetic field is B = 5 × 10−5 au, m = 0 and n = 1. To be compared with Figure 2
where the eigenstates are plotted. w(ρ) for the two considered states peaks at different locations; the
disk presents, therefore, concentric regions of different spin polarisation.

In Figure 5, we show the eigenstates of the Dirac electron versus ρ for B0 = 5.0× 10−5 au
and for several values of the orbital angular momentum m ≥ 0 for both the cases with spin
up and down. In all the curves, n = 0 and thus the wave function shows no nodes. A few
interesting features emerge. As to be expected, states with a quite large value of the orbital
angular momentum are pushed toward the outer region of the disk as if a centrifugal force
is acting on the particle even if it is massless. Recently the study of trapped Bose–Einstein
condensates (BEC) led to the discussion of quantised vortices [32] which generally can be
defined as states possessing a well-defined orbital quantum number, µ. Such states and
their control to design devices for reading and writing in computers are today an extensive
research activity [38]. Actually, the possibility of stacking or arranging rings and disks in a
coplanar geometry to let them communicate via their magnetic field is appealing [39]; from
this point of view, the use of graphene annuli and disks is particularly attractive because
modern technology permits the preparation of multi-layered graphene sheets.



Physics 2024, 6 328

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R 2(
)

10-4

m=0
m=1
m=5
m=10
m=20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R 1(
)

10-3

m=0
m=1
m=5
m=10
m=20
m=40

(A) (B)

Figure 5. Wave function versus ρ (in au) for B0 = 5 × 10−5 au, n = 0, and different values of m
for (A) spin up and (B) spin down. Both spin case show the same behaviour: the peak of the wave
functions shifts towards the edge of the disk when m increases. This feature is expected: a quite large
angular momentum is obained when the particle orbits at relatively large distance from the centre.

One can associate these concept of energetically rotating states possessing a relatively
large orbital angular momentum to a vortex. In relativistic quantum theory for a free
particle, the orbital L⃗ and the spin σ⃗ angular momenta are not individually constant, so we
are led to interpret the state ψ

˙
3 as a vortex having j3 vorticity number. Moreover, states with

large and small enough values of m overlap quite little and a way to associate different bits
of information to them should be envisaged.

Figure 6 clarifies the role of the nodes of the eigenstates for negative m with the curves
taken for m = −2 and the states have different number of nodes in spite of their same
energy. Summarizing, for m ≥ 0, the degenerate eigenstates can be labelled by the two
quantum numbers, m and n, with n counting the number of nodes of the eigenstates; for
m < 0, on the other hand, n can only set the order of the states.
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Figure 6. Eigenstates versus the radius ρ (in au) for m = −2 and B0 = 5 × 10−5 au for the states
having the same energy, E/uF = 8.3 × 102 au, but different number of nodes.



Physics 2024, 6 329

In Section 1, we mentioned the difficulty, encountered in relativistic quantum theory,
of confining electrons by means of a potential barrier.

This difficulty arises from the point that the negative energy states see the barrier as
a well and are, then, pulled to climb the cliff. In graphene, the Klein paradox is present
but appears as a transition between conduction and valence band of the lattice; however,
confinement can be obtained by means of a magnetic field. The curves in Figure 7 show
few states for n = m = 0 and spin up, for sake of simplicity. It is clear enough that
the magnetic field has a relevant importance in confining the charges; In general, for a
relatively large magnetic field, the wave function does not approach the edge of the disk.
Here, one can see how the Klein paradox may be controlled. The paradox lies on the
basis that a positive energy solution of the Dirac equation (the electron in the conduction
band) cannot be confined by a repulsive potential since in reaching the potential it makes a
transition toward a negative energy solution (the electron in the valence band). However,
the magnetic field forbids the approach of the particle to the border of the disk and the
consequent interaction with the potential; we consider this one of the relevant results of
this paper. It is essentially to stress that the necessary magnetic field is rather large but the
physical situation is not ordinary in describing massless charges; the use of a smaller disk
is even detrimental for the confinement as a larger field is required. Actually, the energy
of the electrons increases by decreasing the radius ρ1 and this outcome can be exploited if
wanted. As a side effect, it can be noticed that a stretching force is exerted by the charge on
the disk [36] wich increases with the confinement and, consequently, with the magnetic
field. Such a stretching may become detectable in the near future.
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Figure 7. Sequence of four eigenstates of the disk versus the radius ρ (in au) for m = n = 0 and
different magnetic field intensity, B0. The plots well demonstrate the confining action of the magnetic
field. The field B0 = 2.5 · 10−5 au has indeed a relatively low confining property while the field
B0 = 10−4 au confines the charge within the origin and ρ ∼= 2500 a0. The use of a smaller disk would
require a stronger field for efficient confinement.

In conclusion, in this paper, we study the wave function of the charge carriers in a
considerably large disk of graphene in the presence of a static magnetic field orthogonal to
the plane of the disk. Thanks to the particular symmetry of the lattice, the valence electrons
of the carbon atoms can be treated as having null mass, like the photon, but moving with a
speed much slower that the average speed of the electron in the hydrogen ground state. In
spite of this observation, because of the massless condition, the charges can be described
only by means of the relativistic Dirac theory with its intrinsic positive–negative energy
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dualism. Thus, the graphene provides a handy way to observe massless particles that can
be acted upon by electromagnetic fields.

The analysis shows that the magnetic field acts as a confining tool of the charges and,
perhaps, it may provide the only confinement parameter to defeat the Klein paradox. The
eigenstates and related energy can be labelled by the integer quantum numbers m and n.
The key result is that the position of the peak of the eigenstates can be manipulated using
the quantum numbers m and n as control knobs and can be made to range from the inner to
the outer part of the disk. In this way, by linear superposition it is possible, in a graphene
disk, to construct states with different peaks. By associating a bit of information to any
eigenstate of the superposition, it is possible to store many bits of information in the disk.
Moreover, the disk can support states with high values of the orbital angular momentum m,
thus providing a way to observe states with large enough vortex charge. In this perspective,
annuli and disks of graphene have been extensively studied both from the analytical and
the fully numerical point of view to investigate their use as quantum dots by varying the
edge confinement potential [12,13,15,40].

Recapitulating, in this paper, we obtained the wave function of the states of the
electrons in a magnetised disk of graphene in strict analytical form both for the up and
down spin components and labelled them according to two quantum numbers for the
orbital angular momentum and for the nodes of the wave functions. These quantum
numbers can be used as a knobs for controlling the position of the peaks of the states in the
disk in the context of storing bits of information. We showed that the system can support
states with quite large angular momentum and suggested that the relativistic treatment
does not permit the definition of vortex states as endowed with a precise orbital angular
momentum. However, the total angular momentum is a proper quantum number and
allows a redefinition of the vortex state. A key new contribution is the evaluation of the
states for several values of the magnetic field and proved that confinement may be achieved
by means of a magetic field. All of these characteristics make the graphene fragments a
quite particular object for basic and applicative research.
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Appendix A. The Spin-Down Solution

In this Appendix, details of the determination of the radial line of the spin-down wave
function R2(ρ) are given. Once that the expression for the spin up R1(ρ) has been derived,
from the second part of Equation (16), one can see that R2(ρ) can be obtained through the
derivative of the spin-up wave function R1(ρ) that is the linear combination of the two
CHFs as given in Equations (29) and (30).

According to Equations (13.4.8) and (13.4.21) of ref. [41], the derivatives of the two
independent CHFs are

M′(a, b, z) =
a
b

M(a + 1.b + 1, z); U′(a, b, z) = −aU(a + 1, b + 1, z), (A1)
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where the prime denotes derivative with respect to z. Thus, the following two involved
expression are derived:
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The expression for R2;1 can be obtained from
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and, with
qB0

2h̄c
= η
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λ2 , (A5)
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Similar algebra lead to the expression for R2;2.
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35. Padavić, K.; Sun, K.; Lannert, C.; Vishveshwara, S. Vortex-antivortex physics in shell-shaped Bose-Einstein condensates. Phys.
Rev. A 2020, 102, 043305. [CrossRef]

36. Fiordilino, E. Laser assisted Dirac electron in a magnetized annulus. Symmetry 2021, 13, 642. [CrossRef]
37. Riley, K.F.; Hobson, M.P.; Bence, S.J. Mathematical Methods for Physics and Engineering; Cambridge University Press : Cambridge,

UK, 2006. [CrossRef]
38. Kläui, M.; Rothman, J.; Lopez-Diaz, L.; Vaz, C.A.F.; Bland, J.A.C.; Cui, Z. Vortex circulation control in mesoscopic ring magnets.

Appl. Phys. Lett. 2001, 78, 3268–3270. [CrossRef]
39. Nam, C.; Mascaro, M.D.; Ross, C.A. Magnetostatic control of vortex chirality in Co thin film rings. Appl. Phys. Lett. 2010,

97, 012505. [CrossRef]
40. Li, X.; Tao, L.; Chen, Z.; Fang, H.; Li, X.; Wang, X.; Xu, J.-B.; Zhu, H. Graphene and related two-dimensional materials:

Structure-property relationships for electronics and optoelectronics. App. Phys. Rev. 2017, 4, 021306. [CrossRef]
41. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover

Publications, Inc.: New York, NY, USA, 1972. Available online: https://archive.org/details/handbookofmathe000abra/ (accessed
on 15 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.103.053306
http://dx.doi.org/10.1103/PhysRevA.102.043305
http://dx.doi.org/10.3390/sym13040642
http://dx.doi.org/10.1017/CBO9780511810763
http://dx.doi.org/10.1063/1.1361282
http://dx.doi.org/10.1063/1.3459973
http://dx.doi.org/10.1063/1.4983646
https://archive.org/details/handbookofmathe000abra/

	Introduction
	Theory
	Total Angular Momentum
	Boundary Conditions
	Helicity

	Results and Conclusions
	The Spin-Down Solution
	References

