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Abstract: This paper presents a novel class of interior solutions for anisotropic stars under the impo-
sition of a self-similar symmetry. This means proposing exact solutions to the Einstein field equations
to describe charged matter distribution with radiation flow. The Einstein–Maxwell system by employ-
ing specific choices of mass function is formulated to describe the gravitational collapse of charged,
anisotropic, spherically symmetric distributions using the Schwarzschild metric. Two ordinary dif-
ferential equations governing the dynamics are derived by matching a straightforward solution
of the symmetry equations to the charged exterior (Reissner–Nordström–Vaidya). Models with
satisfactory physical behavior are constructed by extensively exploring self-similar solutions for a set
of parameters and initial conditions. Finally, the paper presents the evolution of physical variables
and the collapsing radius, demonstrating the inevitable collapse of the matter distribution.
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1. Introduction

In this study, the evolution of an electrically charged matter distribution is investigated
by treating it as an anisotropic fluid. It is quite widely accepted that different energy–
momentum tensors can produce identical space-time configurations [1,2]. An illustrative
example is in the framework of spherical symmetry, where viscosity can be considered
to be a particular manifestation of anisotropy [3]. Then, to demonstrate the proposed
methodology and based on the derivation of dynamical models, free streaming is adopted as
the underlying transport mechanism while employing a self-similar space-time description
with the Schwarzschild coordinates for the interior region. This approach accommodates
several gravitational collapse scenarios, including one previously documented [4–6].

Spherically symmetric exact solutions play a crucial role in studying compact stellar
objects within the framework of general relativity. In particular, the investigation of
charged fluid spheres, characterized by self-gravitation and anisotropy, has been explored
in a separate study [7]. Several research endeavors have recently focused on compact star
models in an electric field, using the Einstein–Maxwell system of equations. It is worth
noting that the presence of charge can significantly impact essential stellar parameters such
as redshift, radius, and maximum mass values [8–10].

Incorporating electric charge into the analysis often requires researchers to make
additional assumptions, such as defining an equation of state, introducing additional
symmetries, or establishing relationships between metric variables [7,11]. The majority
of studies in this field have focused on static conditions. For instance, in Ref. [12], static-
charged perfect fluid spheres in general relativity were extensively explored, while Ref. [13],
the effects of electric charge on compact stars and its implications for gravitational collapse
were investigated. In Ref. [14], charged fluid spheres in an Einstein–Maxwell spacetime
were studied with the imposition of conformal symmetry.
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Other investigations on electric charge have examined self-similar charged spher-
ical distributions using diffusion approximation [9,11]. These studies have found that
exact solutions can provide valuable information about the physical characteristics of col-
lapsing stars [4,9,15]. These analyses highlight the relevance of precise solutions within
the framework of Einstein–Maxwell systems for describing highly dense astronomical
objects, such as neutron stars and strange stars. In Ref. [16], exact solutions of the Einstein–
Maxwell systems were obtained for charged spheres with specific choices of electric field
and gravitational potential.

In Ref. [17], regular models of invariant conformal spheres exhibiting an anisotropic
energy-momentum tensor were successfully identified. In this research, self-similar sym-
metry was proved to be a valuable tool for modeling dense relativistic stellar objects, repre-
senting a specific case of conformal symmetry. Furthermore, in Ref. [18], it was proposed
that the presence of electric fields in stellar bodies can give rise to pressure anisotropy.

In the current study, it is considered that electric charge can be seen as a form of
anisotropy [11], but not just any anisotropy, as is discussed. Within specific density ranges,
local anisotropic pressure can be physically justified in self-gravitating systems since
different physical phenomena that lead to local anisotropy can occur and relax the upper
limits imposed on the maximum value of the surface gravitational potential.

We investigate self-gravitating spherical distribution of charged matter, which includes
a dissipative fluid. Schwarzschild coordinates are used, following the method described
in Refs. [5,11]. An additional symmetry (homothetic motion) is assumed to be present
inside the sphere of viscous fluid induced by the electric charge, along with the radiation
flux. The self-similar inner solution is found to match with the outer Reissner–Nordström–
Vaidya solution.

The results of this paper demonstrate that electric charge produces local anisotropy in
the same sense as viscosity. From this perspective, relevant physical information is obtained
for spherically symmetric, self-similar, and electrically charged matter distributions under
the free streaming approximation. Furthermore, the solutions are found to satisfy the
Darmois–Lichnerowicz boundary conditions on the surface of the distribution and well
match the inner self-similar solution with the outer Reissner–Nordström–Vaidya solution.

Section 2 presents the field equations for Bondian observers, showcasing how they
demonstrate the influence of the electric charge in inducing anisotropy and establishing
the connection with the Reissner–Nordström–Vaidya exterior solution. Additionally, this
Section provides the corresponding surface equation for this analysis. Section 3 presents
a brief description of the numerical methods used in this study. This Section provides
a summary description of application and implementation of the methods considered.
Section 4 illustrates self-similar solutions using non-adiabatic charged models with an
emphasis of their significant and noteworthy implications within the research context.
Finally, Section 5 gives the conclusions and pertinent observations.

2. The Metric, Energy–Momentum Tensor, and Field Equations
2.1. Bondian Observers and Field Equations

The Einstein field equations are written using the line element in Schwarzschild
coordinates [6],

ds2 = eνdt2 − eλdr2 − r2
(

dθ2 + sin2θdϕ2
)

, (1)

where ν = ν(t, r), λ = λ(t, r), and t and r are the temporal and radial coordinates, respec-
tively. This matter exhibits spherical symmetry and comprises a charged fluid characterized
by energy density, ρ, pressure, p, electrical energy density, ρe, and non-polarized radiation
flux, ε, as follows [5,19]:

Tαβ = ( ρ + p ) uαuβ − pgβα + εlβlα + Eβα, (2)
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where Tαβ is the stress-energy tensor, uα and lα are the components of the 4-velocity and the
4-null vector, respectively, satisfying uαuα = 1 and lαlα = 0, and Eβα are the components of
the electromagnetic energy–momentum tensor,

Eβα=
1

4π

[
Fκ

β Fαk +
1
4

gβαFσκ Fσκ

]
, (3)

where Fβκ are the components of the Maxwell field tensor, which satisfies the Maxwell equations:

F[βα;σ] = 0 (4)

and (√
−gFνµ

)
,
ν
= 4π

√
−gJµ, (5)

where the semicolon and the comma in the subscript denote, respectively, the covariant
derivative and partial differentiation relative to the next indicated coordinate, g is the
determinant of metric 4-tensor, Jα = ρeuα is electric current 4-vector, σ is the electric
conductivity, and the Greek letter indexes take 0 (time) and 1, 2, and 3 (space) values.
Thanks to the spherical symmetry, only the radial electric field, Ftr= s

r2 e−
1
2 (ν+λ) = −Frt, is

nonzero, with
s( t, r ) = 4πr2

∫
Jte

1
2 (ν+λ)dr. (6)

On the other hand, the inhomogeneous Maxwell Equations (4) and (5) become [11]

s,r = 4πr2 Jte
1
2 (ν+λ) (7)

and
s,t = 4πr2 Jre

1
2 (ν+λ) (8)

where Jt and Jr are, respectively, the temporal and radial components of the current 4-vector
Jα. The function s(t, r) is naturally interpreted as the electric charge within the radius r at
the time t.

The conservation of charge inside a sphere moving with the fluid is expressed as

uis,i = 0. (9)

The conservation Equation (9) can be written in a form more suitable for numerical
purposes as follows:

s,t +
dr
dt

s,r = 0, (10)

where the velocity of matter in the Schwarzschild coordinates is

dr
dt

= ωe(ν−λ)/2 (11)

with ω, the radial direction velocity.
The contravariant components of the 4-velocity are

uµ =
e−ν/2

(1 − ω2)
1/2 δ

µ
t +

ωe−λ/2

(1 − ω2)
1
2

δ
µ
r (12)

with δ
µ
r the Kronecker delta. Then, the field Equation (12) can be written as

ρ + pω2

1 − ω2 + ε
(1 + ω)

1 − ω
+

s2

4πr2 =
1

8πr2

[
1
r
− e−λ

(
1
r
− λ,r

)]
, (13)
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p + ρω2

1 − ω2 + ε
(1 + ω)

1 − ω
+

s2

4πr2 =
1

8πr2

[
e−λ

(
1
r
+ ν,r

)
− 1

r

]
, (14)

p+
s2

4πr2 =
e−λ

32π

{[
2ν,rr + ν2

,r − ν,rλ,r +
2
r
(ν,r − λ,r)

]
− e−ν[2λ,tt + λ,t(λ,t − ν,t)]

}
, (15)

ω

1 − ω2 (p + ρ) +
(1 + ω)

(1 − ω)
ε = − λ,t

8πr
e−

1
2 (λ+ν). (16)

2.2. Anisotropy Fluid and Electric Charge

To express the field equations in a form equivalent to that of an anisotropic fluid, the
following definition is introduced:

e−λ = 1 − 2µ

r
,

where µ(t, r) = m(t, r) − s2

2r and m is the mass distribution [11]. Thus, the field
Equations (17)–(20) read

ρ̂ =
µ,r

8πr2 , (17)

p̂ =
µ,r

8πr

[
ν,r

(
1 − 2µ

r

)
− 2µ

r2

]
, (18)

pt =
(r − 2µ)

16πr

[
ν,rr +

ν2
,r

2
+

ν,r

r
− (ν,r +

2
r
)

(
µ,r − µ

r
)

(r − 2µ)

]
− e−ν

8π(r − 2µ)

[
µ,tt +

3µ2
,t

(r − 2µ)
− µ,tν,t

2

]
, (19)

∼
S =

−µ.t

4πr

(
1 − 2µ

r

) 1
2
e−

ν
2 , (20)

where
∼
S =

ω

1 − ω2 (p + ρ) +
(1 + ω)

(1 − ω)
ε

and the conservative variables are

∼
ρ =

ρ̂ + ω2

1 − ω2 + ε
(1 + ω)

1 − ω
(21)

and
∼
p =

pr − ρ̂ω2

1 − ω2 + ε
(1 + ω)

1 − ω
. (22)

Generally,
∼
ρ and

∼
p, are referred to as effective density and effective pressure, respectively.

For an anisotropic fluid, Equations (18)–(21) are formally the same, with ρ̂ = ρ + ρe,
pr = p− ρe, pt = p+ ρe, and the electric energy density ρe = E2/(8π ), and the local electric
field strength being equal to E = s/r2. If ∆ = pt − pr = 2ρe, which is defined as the degree
of local anisotropy induced by the electric charge, s; then, at any point, the electric charge
determines the degree of local anisotropy. Once the metrics µ(t, r) and ν(t, r) are obtained,
together with their derivatives, from the symmetry equations the physical variables ρ, p, ω,
and ε, and are determined in algebraic form from the field equations. In this framework,
the electric charge becomes an integral part of the metric, manifesting as anisotropy within
the fluid. The electric charge plays a significant role by contributing to the energy density
and pressure. Adopting the Bondian observers’ [5] approach to general relativity, which
incorporates a moving reference frame, enhancing understanding of this perspective.

2.3. Junction Conditions and Surface Equations

The exterior spacetime is described by the Reissner–Nordström–Vaidya metric. The
spherically symmetric charged distribution is considered to be bounded by the a(t) surface.
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Beyond this boundary, a Reissner–Nordström–Vaidya spacetime is assumed, as described
in Refs. [12,13]:

ds2 =
(

1 − 2M(u)/r + S(u)2/r2
)

du2 + 2dudr − r2
(

dθ2 + sin2θdϕ
)

, (23)

where M(u) is the total active gravitational mass, S(u) is the total charge of the sphere, and
u is the time delay. The exterior and interior solutions are separated by the surface r = a(t).
Darmois junction conditions [9] ensure a smooth transition between both regions on this
surface by demanding the continuity of the first fundamental form, resulting in

e−λa = 1 − 2M
a

+
C2

a2 , (24)

S(u) = C, (25)

M(u) = M, (26)

νa = −λa. (27)

The quantity (27) is evaluated on the surface what is indicated by the subscript a.

2.4. Surface Equations

The space in the matter distribution can be divided into the two distinct regions: the
inner region, which is described by the line element (1), and the outer region, characterized
by the Reissner–Nordström–Vaidya metric (23). These two regions are separated by the
hypersurface located at r = a. Consequently, it is imperative to account for the interaction
and connection between the solutions governing the inner and outer regions as dictated by
the field Equations (17)–(20).

Furthermore, in order to obtain the evolution of the matter physical variables, such as
the pressure p, the density ρ, the electric charge s, the radiation flux ε, and the velocity ω,
within the distribution, it is essential to establish a system of ordinary differential equations
at the surface of the matter distribution.

Once a system of the equations is established, one obtains a system consisting of two
ordinary differential equations. These equations involve three functions that vary with
respect to time t: the radius of the distribution, the velocity ω at the distribution’s edge,
and the mass function µ at the distribution’s surface.

Following the procedure outlined in Ref. [9], the surface equations are written by
evaluating Equations (11) and (20) on the surface of the distribution. The first and second
surface equations then read:

da
dt

= ωa

(
1 − 2µa

a

)
, (28)

dµa

dt
= −L +

C2

2a2
da
dt

, (29)

where

L = ϵ(1 − ωa)

(
1 − 2µa

a

)
(30)

and
ϵ = 4πa2εa. (31)

Up to here, four field Equation (10) governing seven unknowns, which consist of two
geometric variables, ν and µ, and five physical variables, p, ρ, radiation flux ε, velocity ω,
and electric charge s.

Here is the step-by-step solution algorithm:

• Prior to this, solve the surface equations by utilizing a fourth-order Runge–Kutta
method. This yields the surface variables, which are obtained by satisfying the cou-
pling conditions.
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• Start by obtaining the geometric variables through the application of an additional
homothetic (self-similar) symmetry. This means deriving these variables based on the
equations of symmetry by considering the surface variables.

• Determine the electric charge by numerically solving the charge conservation equation.
• Once the geometric variables and the electric charge are determined, the physical

variables of pressure, density, radiation flux, and velocity are determined in algebraic
form from the field Equations (13)–(16).

3. Integration of the Conservative Equation

Once the equations are integrated on the surface, observation Equation (10) has to be
integrated to obtain all the physical variables in the source. For this purpose, we introduce
the dimensionless coordinate, x = r/a. Thus, the conservation equation can be written as

s,u = − dx
du

s,x, (32)

which is integrated numerically using the Lax method with the appropriate Courant–
Friedrichs–Levy (CFL) condition [17]. The solution of the conservation Equation (32) is
constrained by the evolution of the surface and was implemented as follows:

sm+1
j =

1
2

(
sm

j+1 + sm
j−1

)
+

δt
2δx

(
dx
dt

)n

j

(
sm

j+1 − sm
j−1

)
. (33)

The superscript n points to the hypersurface u = nδu, and the subscript j points to the
position for a comoving observer with x = jδx. Typically, the time delay increments in
u = 10−2 with the CFL condition of δt = 2δx. To integrate the conservation equation, one
must specify the boundary and initial conditions. In this case, the boundary condition is

s(x = 0, u) = 0 (34)

with the initial condition of
s(x, u = 0) = sxP, (35)

where the power p allows studying the sensitivity of the results to the initial conditions.
We define the initial electric charge function in a manner that ensures it complies with the
conservation Equation (32), particularly with respect to its radial dependence.

At this point, there are no limitations on exploring the interior of the distribution and
tracking the temporal changes in the physical variables. To achieve this, it is essential to
specify the charge function with regard to the radial coordinate r at time t = 0. While doing
so, it is needed to take into account that the temporal evolution should not compromise
the fulfillment of the physical prerequisites. By this consideration, one can readily derive
the model.

4. Self-Similarity and Determination of the Metric

Covariant descriptions of self-similarity in the context of spherical matter distributions
reveal that self-similar solutions can be categorized into two types based on their invariance
or non-invariance to scale transformations. From a mathematical perspective, self-similarity
is intriguing for two primary reasons: it first simplifies the field equations into a set of
ordinary differential equations, and, secondly, it nullifies both the homothetic Killing
symmetry and the conformal Killing symmetry [20–22].

The presence of a homothetic Killing vector field serves as an invariant definition of
self-similarity. In a specific coordinate system, self-similarity becomes evident through
a straightforward scaling relation for the metric functions. Subsequently, an additional
homothetic (self-similar) symmetry is imposed [20,23]:

Lξ g
µν

= 2gµν, (36)
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where gµν is the metric tensor, and the homothetic generator, ξ, is of the form

ξµ = Λ(t, r)δµ + Γ (t, r)δµ, (37)

where Λ and Γ are the temporal and radial components of the homothetical vector, respec-
tively, and δµ represents the Kronecker delta.

Equations (36) and (37) combined with Equation (1) lead to

Γ = r, (38)

Λ,r = 0, (39)

Λµ,t + Γµ,r = µ, (40)

Λν,t + Γν,r + 2Λ,t = 2. (41)

Then, inserting the functions

X =
µ

r
(42)

and
Y =

µe
r

ν/2
(43)

into Equations (40) and (41) leads to

ΛX,t + rX,r = 0 (44)

and
Y,t + rY,r = 0, (45)

respectively, which can also be written as

ξ(X(t, r)) = 0, (46)

ξ(Y(t, r)) = 0. (47)

As soon as Equations (44) and (45) are solved, it is possible to know the form of the
metric variables µ and ν at all t and r.

Equations (46) and (47) have general solutions X = X(ζ) and Y = Y(ζ), where
ζ = re−

∫ dt
Λ .

Specific solutions of X = A1ζk and Y = A2ζ l are proposed, where A1, A2, k, and l
are constants.

Therefore, the geometrical variables are

µ = µa

( r
a

)k+1
, (48)

eν = (1 − 2µa/a)
( r

a

)2(l+1)
, (49)

S =
ω

1 − ω2 (pr + ρ̂) + ε
(1 + ω)

1 − ω
. (50)

The case study involves a system consisting of a radiant fluid with an electric charge,
made possible through the application of field equations describing the Einstein–Maxwell
system. Solving these equations leads to two crucial outcomes. Firstly, it yields a set of
physical properties, including density, pressure, fluid velocity, energy flow, and electric
charge. Secondly, it furnishes insights into the structural characteristics of space-time.

From a theoretical perspective, this problem requires a more complete examination
where it is taken into account that the matter distribution’s surface delineates two distinct
space-time regions: the inner region, replete with matter and radiation, and the outer region
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beyond the surface, where radiation emanates unhindered into infinity. Thus, it becomes
imperative to adequately define the geometry of both the inner and outer regions and
delineate the nature of their energy and material constituents.

To facilitate the analysis, the sphere was partitioned into five layers, wherein the physi-
cal variables derived from the field equations were meticulously assessed. The collapse was
imposed by imparting an initial velocity to the surface, allowing the surface’s evolution.
The fourth-order Runge–Kutta method integrated the differential Equations (28) and (29)
on the surface. In addition, the physical variables during integration are bounded within
the physically acceptable values of ρ > 0, ρ > p, and −1 < ω < 1.

That is, at a density above zero, high pressure, and radial velocity in between −1 and 1,
one avoids propagation at speeds exceeding the speed of light. The CFL sets a limit the
latter not to happen.

A crucial feature is the anisotropy index of pt − pr = 2ρe, where it is evident that the
charge induces such anisotropy. When the charge is zero, the anisotropy index is also zero.
The time evolution of the distribution radius and the variation of the physical variables
are detailed in Figure 1, with the radius of the distribution, which inevitably collapses,
being illustrated.
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Figure 1. The evolution of the radius of the matter distribution with well decrease over time. See text
for details.

5. Discussion

Initially, in the search for solutions for the Einstein–Maxwell system (17)–(20) proposed
in this study, there were no limitations regarding the specification of the values of the
constants k, l, and the initial electric charge C (25); see Equations (48)–(50). What was
required is that the choice allows for physically acceptable behaviors, as discussed in
Section 4 above. Any choice of the parameters listed must be consistent with the condition
of −1 < ωa < 1 and M > 0 (defined in Equation (26)) in the initial light cone (surface of the
matter distribution).

The evolution with time of the distribution radius in Figure 1 shows that the matter
distribution collapses inexorably. The parameters used in the simulation are k = 0.25,
l = 0.30, and the initial data of the initial charge and the radius s(0) = 0.75 and a(0) = 0.23,
respectively [9,24].

Figures 2–6 show, respectively, the velocity dr/dt (11), the charge function, s, the
radiation flux, ε, the matter density, ρ, and the pressure, p for the set of initial conditions:
a(0) = 5, M(0) = 1, ωa(0) = −10−3, s(0) = 0.5, with k = 0.35, l = 0.5, and different r/a values
as indicated. From Figure 3, it follows that at any time, the interior electric charge for any
comoving space marker r/a is always less than the total electric charge enclosed by the
boundary surface. Therefore, the electric charge for inner regions can, actually, increase.
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Due to the effect of the repulsive force, the charged matter distribution is expected
to exhibit a larger mass and radius than for the uncharged matter. This phenomenon
resembles that which was observed in Refs. [14,25]. Notably, the presence of the electric
field results in an increase in the gravitational redshift at the surface; consequently, an
observer then perceives a more distant compact distribution compared to the no-charge
scenario. This aspect was used to check the validity of the code.

It should be noted that Figures 2–6 represent a selection of various executions of the
code with different initial conditions of the radius a(0) and with different values of the
self-similar variables k, l, and total charge C.

The primary motivation for this study was based on previous results employing the
same system and solutions but with a different transport mechanism, i.e., the diffusion
limit [11]. The evolution of the distribution varies markedly due to heat flow: the presence
of electric charge prevents collapse, resulting in a final state with oscillations. In this paper,
the electric charge does not alter the fate of gravitational collapse.

In this study, the Einstein–Maxwell equations are resolved with the inclusion of the
homothetic vector, resulting in the creation of realistic generalized exact models featuring
charge and pressure anisotropy. A thorough physical analysis was conducted on this newly
generated class of solutions to assess its physical viability. The examination revealed regu-
larity of matter variables and gravitational potentials at the distribution center, satisfaction
of energy conditions, and adherence to stability criteria. Notably, our generalized set of
exact solutions builds upon earlier explorations [9,11,26–33].

A feature of great importance is the anisotropy factor. In Ref. [32], similar results
were obtained despite having carried it out with the Bondi metric, and this study has been
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undertaken with the Schwarzschild metric, straightforwardly showing that the charge
induces anisotropy in both cases. When the charge is zero, the anisotropy factor also
becomes zero. This observation was used to validate the code, given that results have been
previously presented in the case of zero charge. It can be seen in Figure 1 that the radius
of distribution falls over time, with a further observation that the electric charge does not
prevent the collapse, unlike in the study developed in Ref. [11], where the determining
factor to stop the collapse is the flow of heat.

6. Conclusions

In this investigation, we delved into a model of an anisotropic compact star endowed
with electric charge. The exploration led to the obtaining of an exact solution within
the framework of the Einstein–Maxwell equations, showcasing a self-similar symmetry.
Specifically, the [fits better, the scrutiny cannot belong to someone] scrutiny extended
here to instances where the parameters k and l deviate from zero. The analysis distinctly
illustrates the commendable behavior of the metric variables and the metric potentials
ν and µ across the entire distribution, signifying their stability and cohesiveness.

Our study focused on incorporating electric charge as a specific manifestation of
anisotropy within spherical symmetry. Leveraging the free streaming approximation as a
transport mechanism, we implemented a dynamic model, employing a self-similar space-
time for the interior region. Emphasis was placed on scrutinizing the final state of gravita-
tional collapse, exploring the ramifications of dissipation through the free streaming of radi-
ation and local anisotropy stemming from electric charge. The assumption of self-similarity
facilitated the simplification of the problem into a system of ordinary differential equa-
tions, with boundary conditions dictated by matching to a Reissner–Nordström–Vaidya
exterior solution.

With free streaming, the interior was found to evolve under a total charge surpassing
the maximum allowable charge in the diffusion limit derived in prior studies [11,32]. The
system deviates from equilibrium and undergoes collapse. The contribution of electric
charge to the collapse parallels how anisotropy, with tangential pressure exceeding radial
pressure, favors collapse, as elucidated in earlier studies [25,26]. A critical total electric
charge (or anisotropy parameter) exists, defining the boundaries within which the system
evolves according to the Einstein–Maxwell system of field equation constraints.

To ascertain the universality of the results presented in this paper exploring more
general solutions of the symmetry equations is imperative. Nevertheless, the outcomes
derived through the anisotropic approach align with those previously reported when the
steady state is the final state [27,28].

To ascertain the universality of the results presented in this paper exploring more
general solutions of the symmetry equations is imperative. Nevertheless, the outcomes
derived through the anisotropic approach align with those previously reported when the
steady state serves as the final state [28,29].
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