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Abstract: We propose a correspondence between the partition functions of ideal gases consisting of
both bosons and fermions and the algebraic bases of supersymmetric polynomials on the Banach
space of absolutely summable two-sided sequences `1(Z0). Such an approach allows us to interpret
some of the combinatorial identities for supersymmetric polynomials from a physical point of view.
We consider a relation of equivalence for `1(Z0), induced by the supersymmetric polynomials, and
the semi-ring algebraic structures on the quotient set with respect to this relation. The quotient set
is a natural model for the set of energy levels of a quantum system. We introduce two different
topological semi-ring structures into this set and discuss their possible physical interpretations.
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1. Introduction

Symmetric polynomial variables and relations between the bases of the algebra of sym-
metric polynomials are widely used in algebra, combinatorics (see [1]), and, in particular,
in statistical quantum mechanics. In [2,3], Schmidt and Schnack proposed some correspon-
dence between the relations in the algebra of symmetric polynomials and partition functions
of bosons and fermions. Under this correspondence, one basis of symmetric polynomials
is responsible for bosons and another for fermions. Such an approach was applied and
developed for different cases by many authors (see, e.g., [4–8]). On the other hand, recently,
some new results for the algebras of symmetric analytic functions on infinite-dimensional
Banach spaces were obtained [9–14]. The infinite number of variables of the underlying
space allows us to introduce some interesting algebraic operations on the spectra of such
algebras that may have a physical meaning. In addition, in the infinite-dimensional case,
we can consider the behavior of the ideal gas “at infinity” if, for example, the number of
particles grows to infinity while the total energy of the system is bounded.

In [15–17], supersymmetric polynomials and analytic functions of abstract Banach
spaces were considered. The supersymmetric polynomials of several variables were studied
in [18–20]. It seems to be that some bases of supersymmetric polynomials give us a tool
for the investigation of a quantum ideal gas consisting of both bosons and fermions.
Moreover, supersymmetric polynomials define a relation of equivalence on the underlying
vector space and the quotient set with respect to this relation, which looks like the most
natural model for the set of energy levels of a given quantum system. Such a set admits
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some algebraic semi-ring structures that are related, in particular, to tropical (idempotent)
mathematics.

In this paper, we discuss the relations between the algebras of supersymmetric poly-
nomials on Banach spaces and the partition functions of bosons and fermions and consider
some new algebraic structures on the set of energy levels of the corresponding quantum
systems.

In Section 2, we gather the basic known information about the algebraic bases of
symmetric polynomials on the Banach space, `1, and their relations to the partition functions
of ideal quantum gases. In Section 3, we consider the algebraic bases of supersymmetric
polynomials and discuss their relations to the partition functions of ideal gases consisting,
simultaneously, of bosons and fermions. In Section 4, we construct two different semi-ring
structures on a set of energy levels. The first one is related to the algebraic operations that
were introduced in [17] for a more general case. The second is related to the idempotent
operation, max, and looks like an infinite-dimensional generalization of the tropical semi-
ring: R∪+∞ (c.f. [21]).

General information on the polynomials and analytic functions on abstract Banach
spaces can be found in [22,23]. Idempotent analysis and tropical semi-rings are considered
in [24,25].

2. Preliminary Results for Symmetric Polynomials and Partition Functions
2.1. Symmetric Polynomials

Let N be the set of all positive integers, and `1 be the Banach space of all absolutely
summing complex sequences x = (x1, . . . , xn, . . .), with a norm of ‖x‖ = ∑∞

n=1 |xn|. The
function f on `1 is called symmetric if

f
((

xσ(1), xσ(2), . . .
))

= f ((x1, x2, . . .))

for every (x1, x2, . . .) ∈ `1 and every bijection σ : N→ N.
Let us define the following symmetric polynomials on `1. Let the polynomial Fn be

defined by

Fn((x1, x2, . . .)) =
∞

∑
i=1

xn
i , (1)

where n ∈ N. The polynomial Fn is called a power sum symmetric polynomial. Let us
define polynomial Bn as

Bn((x1, x2, . . .)) = ∑
i1≤···≤in

xi1 · · · xin , (2)

where n ∈ N. The polynomial Bn is called a complete symmetric polynomial. Let the
polynomial Gn be defined by

Gn((x1, x2, . . .)) = ∑
i1<···<in

xi1 · · · xin , (3)

where n ∈ N. The polynomial Gn is called an elementary symmetric polynomial.

Definition 1. A linear combination of the finite products of the powers (zero powers are also
allowed) for the elements of an algebra is called an algebraic combination of these elements.

A subset of an algebra is called algebraically independent if zero elements of the algebra cannot
be represented as a nontrivial algebraic combination of the elements of this subset.

An algebraically independent subset of an algebra is called an algebraic basis of this algebra if
every element of the algebra can be represented as an algebraic combination of the elements of the
subset. Due to algebraic independence, every such representation is unique.
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Let Ps(`1) denote the algebra of all continuous symmetric complex-valued polyno-
mials on `1. Every set of polynomials, {Fn : n ∈ N}, {Bn : n ∈ N}, and {Gn : n ∈ N}, is an
algebraic basis in Ps(`1) (see, e.g., [9,13]). There are so-called Newton recurrent formulas
connecting different algebraic bases:

mGm =
m

∑
k=1

(−1)k−1Gm−kFk, m ∈ N, (4)

mBm =
m

∑
k=1

Bm−kFk, m ∈ N, (5)

Gm =
m

∑
k=1

(−1)k−1Gm−kBk, m ∈ N, (6)

and

Bm =
m

∑
k=1

(−1)k−1Bm−kGk, m ∈ N. (7)

Let B(x)(t) and G(x)(t) be the so-called generating functions for polynomials Bn and
Gn, respectively, defined as the following formal series:

B(x)(t) =
∞

∑
n=0

tnBn(x), B0 = 1 (8)

and

G(x)(t) =
∞

∑
n=0

tnGn(x), G0 = 1. (9)

The following relations are well-known ([1], p. 3):

G(x)(t) = exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)
and B(x)(t) = exp

(
∞

∑
n=1

tn Fn(x)
n

)
, (10)

and they immediately imply that

G(x)(t)B(−x)(t) = 1. (11)

Here, the equality holds for every x ∈ `1 and for every t in the common domain of
convergence. Note that G(x)(t) is a well-defined analytic function of x ∈ `1 for every fixed
t ∈ C and an exponential-type function of t for every fixed x [26].

2.2. Partition Functions

The canonical partition function plays a fundamental role in statistical mechanics since
most thermodynamic functions can be derived from it [3]. It is defined by

ZN(β) = Tr exp(−βH), (12)

where H denotes the Hamiltonian of the system, N is the number of particles, and

β =
1

kBT

denotes the inverse temperature (kB is the Boltzmann constant, and T is the temperature).
In other words, H is a self-adjointed operator such that exp(−βH) is a trace class operator
for β ∈ R.
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The grand canonical partition function is defined by

Z(z, β) =
∞

∑
N=0

ZN(β)zN , (13)

where the variable z is physically interpreted as the fugacity of the system, i.e.,
z = exp(µ/(kBT)) (µ is the chemical potential). It describes the system in which the
number of particles can be changed. The physical interpretation implies that z must be
non-negative.

Note that the partition function completely defines all possible states of the system.
Moreover, it can be used for deriving the likelihood of states.

Consider the ideal gas consisting of non-interacting identical particles (bosons or
fermions). In this case, the Hamiltonian H is the sum of N identical single-particle Hamilto-
nians:

H =
N

∑
n=1

hn.

Let Ei be single-particle energy eigenvalues counted in such a way that several Ei have
the same value in the case of degeneracy. In [27], it is shown that

ZN(β) = BN((x1, x2, . . .)) (14)

for the system of bosons and

ZN(β) = GN((x1, x2, . . .)) (15)

for the system of fermions, where BN is defined by (2), GN is defined by (3), and

xi = exp(−βEi). (16)

Note that ZN is a symmetric function between energy levels, not between particles.
The ordering of levels needed for (14) and (15) is simple for one-dimensional systems, but
this is potentially difficult in higher dimensions due to the degeneracies of energy levels
and the use of multi-indices to characterize them.

According to (8), (9), (13), (14), and (15), the grand canonical partition function can be
represented in the form

Z(z, β) = B((x1, x2, . . .))(z)

for bosons and
Z(z, β) = G((x1, x2, . . .))(z)

for fermions, where xi are defined by (16). In addition, according to [2], the co-ordinates
(x1, x2, . . .) of x ∈ `1 correspond to the abstract energy levels of the system; a monomial
xn1

1 · · · x
nm
m , n1 + · · ·+ nm = N in a partition function corresponds to the possible occupation

of levels x1, . . . , xm by N particles. Moreover, there exists a so-called fundamental symmetry
ω of Ps(`1), which is defined as an algebra homomorphism from Ps(`1) to itself such that
ω(Fn) = (−1)n−1Fn n ∈ N. In other words, for every n,

(
ω(Fn)

)
(x) = −Fn(x). Note that

ω is an involution in the sense that ω2 is the unity operator. It is known that ωGn = Bn
and ωBn = Gn for every n ∈ N ([1], p. 4). In [2], it was observed that Newton’s identity (4)
corresponds to Landsberg’s identity in physics [28], and equation (11) is related to a Bose-
Fermi symmetry. Some specific examples for the mentioned Bose-Fermi symmetry can be
found in [29–31].

2.3. Note about the Banach Space `1

As we mentioned above, exp(−βH) is a trace class operator, and so its eigenvalues
xi = exp(−βEi) are summable, that is, x = (x1, x2, . . .) ∈ `1. On the other hand, in [2], it
was observed that for the case n = ∞,, the evaluations G and B lead to corresponding
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grand canonical partition functions only if these series converge. Since all xi ≥ 0, the vector
x must be in `1. Thus, the space of absolutely summable sequences, `1, is the most natural
domain for vectors x = (x1, x2, . . .), and Ps(`1) is the most natural algebra of the symmetric
polynomials for n = ∞. However, it is possible to consider symmetric polynomials in the
general case `p, 1 ≤ p < ∞ and even for the case of “continual” numbers of variables if
x ∈ Lp, 1 ≤ p ≤ ∞ (see [13,32–34] and the references therein).

Note that in [35], some of the relations between a trace class operator A and the
(infinite-dimensional) Fredholm determinant det(I − A), were considered, where I is the
identity operator. In particular, if A is self-adjoint with eigenvalues xi,, then

det(I − tA) = G(x)(t) and (det(I − A))−1 = B(−x)(t).

Applications of determinants of the form det(I − A) for partition functions can be
found in [36].

3. Supersymmetric Polynomials and Partition Functions for Mixed Systems of Bosons
and Fermions

Let Z be the set of all integers and Z0 = Z \ {0}. By `1(Z0), we denote the Banach space
of all absolutely summing complex sequences indexed by the elements of Z0 (two-sided
sequences). Every element of `1(Z0) can be represented in the form

(y|x) = (. . . , y2, y1|x1, x2, . . .)

with

‖(y|x)‖ =
∞

∑
i=1

(|xi|+ |yi|),

where x = (x1, x2, . . .) and y = (y1, y2, . . .) belong to `1.
For every n ∈ N, we define the polynomials Tn, n ∈ N on `1(Z0) by

Tn((y|x)) = Fn(x)− Fn(y),

where Fn is defined by (1).
A polynomial on `1(Z0) is called supersymmetric (see [17]) if it can be represented as an

algebraic combination of elements of the set {Tn : n ∈ N}. Let us denote Psup
(
`1(Z0)

)
as the

algebra of all supersymmetric polynomials on `1(Z0). Note that the set {Tn : n ∈ N} is the
algebraic basis of the algebra Psup

(
`1(Z0)

)
. Let us define another important supersymmet-

ric polynomial on `1(Z0), which also forms the algebraic basis of the algebra Psup
(
`1(Z0)

)
.

For n ∈ N, let Wn : `1(Z0)→ C be defined by

Wn((y|x)) =
n

∑
k=0

Gk(x)Bn−k(−y). (17)

Note that polynomial Wn can be obtained if we substitute in Newton’s Formula (4) for
polynomials Tn instead of Fn [17]. In other words,

mWm((y|x)) =
m

∑
k=1

(−1)k−1Wm−k((y|x))Tk((y|x)), m ∈ N. (18)

From (18), in particular, it follows that all polynomials, Wn, are supersymmetric and form
the algebraic basis in Psup

(
`1(Z0)

)
.

LetW((y|x))(t) be the formal series

W((y|x))(t) =
∞

∑
n=0

tnWn((y|x)), W0 = 1, (19)
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that is,W is the generating function for polynomial Wn. According to ([17], Theorem 2),

W((y|x))(t) = G(x)(t)
G(y)(t) , (20)

the equality is true on the common domain of convergence.
Consider a mixed system of bosons and fermions. In [27], it is shown that the partition

function for the system, where the total number, N, of bosons and fermions is fixed, can be
represented in the form

ZN(β) =
N

∑
k=0

Gk

((
x(F)

1 , x(F)
2 , . . .

))
BN−k

((
x(B)

1 , x(B)
2 , . . .

))
, (21)

where
x(F)

i = exp
(
−βE(F)

i

)
and x(B)

i = exp
(
−βE(B)

i

)
,

E(F)
i and E(B)

i are the single-particle energies of fermions and bosons, respectively.
Let W̃n : `1(Z0)→ C be defined by

W̃n((y|x)) = Wn((−x| − y)), (22)

where Wn is defined by (17). According to (17) and (22),

W̃n((y|x)) =
n

∑
k=0

Gk(−y)Bn−k(x). (23)

According to (21) and (23),
ZN(β) = W̃N((ỹ|x̃)), (24)

where
ỹ =

(
−x(F)

1 ,−x(F)
2 , . . .

)
(25)

and
x̃ =

(
x(B)

1 , x(B)
2 , . . .

)
. (26)

If the sequences are finite, we complete them with an infinite number of zeros. Note that the
equality (24) makes sense only if x̃ and ỹ belong to `1. Otherwise, we can only consider (24)
as the formal equality.

Let us consider the grand canonical partition function. According to (13) and (24),

Z(z, β) =
∞

∑
N=0

zNW̃N((ỹ|x̃)), W̃0 = 1. (27)

For (y|x) ∈ `1(Z0) and t ∈ C, let W̃((y|x))(t) be the formal series

W̃((y|x))(t) =
∞

∑
n=0

tnW̃n((y|x)). (28)

Evidently,
Z(z, β) = W̃((ỹ|x̃))(z). (29)
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On the other hand, according to (28), (22), (20), and (19),

W̃((y|x))(t) =
∞

∑
n=0

tnW̃n((−x| − y))

=W((−x| − y))(t)

=
G(−y)(t)
G(−x)(t)

=
B(x)
B(y) .

(30)

Therefore, according to (29), (30), and (11),

Z(z, β) =
G(−ỹ)(t)
G(−x̃)(t)

=
B(x̃)
B(ỹ) ,

where ỹ and x̃ are defined by (25) and (26), respectively.
Thus, we have represented the grand canonical partition function of the mixed system

of bosons and fermions via the generating functions G and B for elementary symmetric
polynomials.

Let us observe that, if we apply the transformation (y|x) 7→ (−x| − y) to Tn for the
case y = 0, we will obtain

Fn(x) = Tn((0|x)) 7→ Tn((−x|0) = (−1)n−1Tn((0|x)) = (−1)n−1Fn(x) = (ω(Fn))(x).

In other words, the involution ω on Ps(`1) can be extended to Psup
(
`1(Z0)

)
, setting

(ω(P))((y|x)) = P((−x| − y)). In particular, ω(Wn) = W̃n. Applying the homomorphism
ω to (18), we obtain

mW̃m((y|x)) =
m

∑
k=1

W̃m−k((y|x))Tk((y|x)), m ∈ N,

that is, W̃n can be obtained if we substitute Tn instead of Fn into the Newton Formula (5);
therefore, we have another representation for W̃n, which can be interpreted as another
realization of Landsberg’s identity. In addition, from (6), (7), we can obtain

W̃m =
m

∑
k=1

(−1)k−1W̃m−kWk, m ∈ N.

Example 1. Let us compute ZN(β) = W̃N(ỹ, x̃) for N = 4, x̃ = (x1, x2), ỹ = (−y1,−y2,−y3).
According to (23),

W̃N(ỹ, x̃) = B4(x) + G1(−y)B3(x) + G2(−y)B2(x) + G3(−y)B1(x) + G4(−y)

= x4
1 + x4

2 + x3
1x2 + x2

1x2
2 + x1x3

2 + (y1 + y2 + y3)(x3
1 + x3

2 + x2
1x2 + x1x2

2)

+ (y1y2 + y1y3 + y2y3)(x2
1 + x2

2 + x1x2) + y1y2y3(x1 + x2).

4. Semi-ring Structures on the Set of Variables
4.1. The RingM0

First we consider the dense linear subspace c00 of `1. Let c00 be the vector space of all
the eventual zero sequences of complex numbers. Let c00(Z0) be the subspace of `1(Z0)
consisting of all (y|x) ∈ `1(Z0) such that x, y ∈ c00. In order to shorten the notation, we
will write the elements of c00 as (x1, . . . , xn) instead of (x1, . . . , xn, 0, . . .). Correspondingly,
we will write the elements of c00(Z0) as (y1, . . . , ym|x1, . . . , xn).
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Let us define the following equivalence relation on c00(Z0). For a, b ∈ c00(Z0), let
a ∼ b if and only if Tn(a) = Tn(b) for every n ∈ N. LetM0 = c00(Z0)/∼. Note that we
have two types of equivalent elements:

(y1, . . . , ym|x1, . . . , xn) ∼
(
yτ(1), . . . , yτ(m)|xσ(1), . . . , xσ(n)

)
,

where τ and σ are permutations on sets {1, . . . , m} and {1, . . . , n} respectively, and

(y1, . . . , ym, c|c, x1, . . . , xn) ∼ (y1, . . . , ym|x1, . . . , xn).

Consequently, every element ofM0 has the representative (y|x), where x, y ∈ c00, such
that the multi-sets of the nonzero elements of x and y are disjointed. On the other hand,
every pair of disjointed finite multi-sets of nonzero complex numbers defines some element
ofM0. So, we have the bi-jection betweenM0 and the set of all pairs of the disjointed finite
multi-sets of nonzero complex numbers. Let us define the ring operations onM0. First, we
define some auxiliary operations on c00. Let

(x1, . . . , xn) •
(
x′1, . . . , x′m

)
=
(
x1, . . . , xn, x′1, . . . , x′m

)
and

(x1, . . . , xn) �
(

x′1, . . . , x′m
)

=
(

x1x′1, x1x′2, . . . , x1x′m, x2x′1, x2x′2, . . . , x2x′m, . . . , xnx′1, xnx′2, . . . , xnx′m
)

for (x1, . . . , xn),
(

x′1, . . . , x′m
)
∈ c00.

Let
[z] + [z′] =

[(
y • y′|x • x′

)]
and

[z][z′] =
[((

y � x′
)
•
(
x � y′

)
|
(
y � y′

)
•
(

x � x′
))]

for z = (y|x), z′ =
(
y′|x′

)
∈ c00(Z0), where x, y, x′, y′ ∈ c00. According to [17], theM0 with

these operations is a ring, where −[(y|x)] = [(x|y)]. Note thatM0 is not a linear space, so
it is not an algebra [17].

Let a ∼ b. Since Tn(a) = Tn(b) for every n ∈ N, it follows that f (a) = f (b) for
every supersymmetric function f . That is, the value of a supersymmetric function does not
depend on the choice of a representative of a class. So, we can set

f
(
[a]
)
= f (a)

for a supersymmetric function f and for [a] ∈ M0.
Let us consider how our ring operations interplay with the algebraic basis Tn and the

partition function W̃(z)(t). According to [17],

Tn
(
[z][z′]

)
= Tn

(
[z]
)
Tn
(
[z′]
)

and Tn
(
[z] + [z′]

)
= Tn

(
[z]
)
+ Tn

(
[z′]
)

(31)

for every n ∈ N and [z], [z′] ∈ M0. In other words, each Tn is a ring homomorphism from
M0 to C. Moreover, it is easy to check (c.f. [17]) that

W
(
[z] + [z′]

)
(t) =W

(
[z]
)
(t)W

(
[z′]
)
(t)

and
W̃
(
[z] + [z′]

)
(t) = W̃

(
[z]
)
(t)W̃

(
[z′]
)
(t).

The following example may be interesting for evaluating grand canonical partition
functions “at infinity”.
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Example 2. Let λ and µ be positive numbers. Set

z(n) =
(
−µ

n
, . . . ,−µ

n︸ ︷︷ ︸
n

∣∣ λ

n
, . . . ,

λ

n︸ ︷︷ ︸
n

)
.

Taking into account ([17], pp. 7–8) and the relations betweenW and W̃ , we can see that if n→ ∞,
then both W(z(n))(t) and W̃(z(n))(t) approach the function e(λ+µ)t. Moreover, at the “limit
point”, Z1(β) = λ + µ, and ZN(β) = 0 for every N > 1.

Consider the case when sequences x̃ and ỹ, defined by (26) and (25), respectively,
have only a finite number of nonzero elements, i.e., x̃, ỹ ∈ c00. Then, (ỹ|x̃) ∈ c00(Z0). So,
[(ỹ|x̃)] ∈ M0. Since the functions W̃n, used in the representations (24) and (27) of partition
functions are supersymmetric, it follows that values W̃n(u) do not depend on the choice
of the representative u ∈ [(ỹ|x̃)]. So, it is natural to consider the partition functions as
functions on such equivalence classes. Note that all the elements of the sequence x̃ are
non-negative and all the elements of the sequence ỹ are non-positive. So, the equivalence
class [(ỹ|x̃)] belongs to the subsetM±

0 ofM0, defined in the following way. According to
M±

0 , let us denote the set of elements [u], where u is of the form

u = (−y1, . . . ,−ym|x1, . . . , xn), xi ≥ 0, yj ≥ 0.

Note that M±
0 can be completed with respect to a ring norm on M0 (see [15,17]). In

Section 4.2, we consider such completions in more detail.
For every [u] ∈ M±

0 and odd number k,

Tk(u) = Fk(x) + Fk(y) ≥ 0,

where x = (x1, . . . , xn) and y = (y1, . . . , ym), and it is equal to zero if and only if u = 0.
It is known thatM0 contains divisors of zero. For example,

[(−1|1)][(0|1,−1)] =
[(
(−1) � (1,−1)

)
•
(
(1) � (0)

)
|
(
(1) � (1,−1)

)
•
(
(−1) � (0)

)
]

=
[
(−1, 1) • (0)|(1,−1) • (0)]

=
[
(−1, 1, 0|1,−1, 0)]

= [(0|0)]
= 0.

Proposition 1. The setM±
0 is a commutative semi-ring with respect to the ring operations in

M0, without divisors of zero.

Proof. It is easy to check that if [u] and [v] are inM±
0 , then both [u] + [v] and [u][v] are

in M±
0 . But for a given [u] = [(−y1, . . . ,−ym|x1, . . . , xn)] ∈ M±

0 , u 6= 0, the element
−[u] = [(x1, . . . , xn| − y1, . . . ,−ym)] does not belong toM±

0 . Thus,M±
0 is a semi-ring but

not a ring. If [u][v] = 0, then, according to (31), T1(u)T1(v) = 0. So either T1(u) = 0 or
T1(v) = 0. Thus, either u = 0 or v = 0.

The semi-ringM±
0 has the following important property:

[(−y1, . . . ,−ym|x1, . . . , xn)] =
[(
−y′1, . . . ,−y′m′ |x

′
1, . . . , x′n′

)]
if and only if m = m′, n = n′ and there are permutations σ and τ such that

(−y1, . . . ,−ym|x1, . . . , xn) =
(
−y′τ(1), . . . ,−y′τ(m)|x

′
σ(1), . . . , x′σ(n)

)
.
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Let ][u] be a pair (m, n) such that in the representation [u] = [(−y1, . . . ,−ym|x1, . . . , xn)]
in M±

0 , the number of nonzero elements yj is equal to m and the number of nonzero
elements xi is equal to n. From the definition of the ring operations in M0, we have
this if ][u] = (m, n) and ][v] = (k, s), then ]([u] + [v]) = (m + k, n + s) and ]([u][v]) =
(ms + nk, mk + ns). In particular, ][u]2 = (2mn, m2 + n2).

Proposition 2. Every invertible element inM±
0 is of the form (0|x) for some x > 0 or (−y|0) for

some y > 0. Every idempotent [u] inM±
0 is of the form [u] = [(0|1)] or [u] = [(−1|0)].

Proof. Let [u][v] = [(0|1)], then, ]([u][v]) = (0, 1), and so, ][u] = (0, 1) and ][v] = (0, 1) or
][u] = (1, 0) and ][v] = (1, 0). Consequently, u = (0|x) and v = (0|1/x) for some x > 0 or
u = (−y|0) and v = (−1/y|0) for some y > 0.

Let [u] be an idempotent inM±
0 , that is, [u]r = [u] for some positive integer r > 1.

Then, ][u]r = ][u] only if ][u] = (1, 0) or ][u] = (0, 1). Elements of the form [(−a|0) and
[(0|a)], a > 0, are idempotents only if a = 1.

Proposition 3. Elements of the form [(−x1, . . . ,−xn|x1, . . . , xn)], xi > 0 can be represented as

[(−x1, . . . ,−xn|x1, . . . , xn)] = [(−1|1)][(−x1, . . . ,−xk|xk+1, . . . , xn)]

for every integer k, 0 ≤ k ≤ n.

Proof. The straightforward computation.

From the proposition, it follows that we have no multiplicative cancelation inM±
0 ,

that is, the equalities [u][v] = [w] and [u][v′] = [w] do not imply [v] = [v′].

4.2. A Tropical Semi-Ring Structure

We now introduce another semi-ring structure onM±
0 , which is related to tropical

mathematics. Some of the applications of tropical semi-rings for quantum mechanics can be
found in [37]. Let us recall that the min tropical semi-ring is the semi-ring

(
R∪ {+∞},⊕,�

)
,

where the operations ⊕ and � are defined by

x⊕y = min{x, y}, x� y = x + y, x, y ∈ R∪ {+∞}.

The operations ⊕ and � are called the tropical addition and the tropical multiplication, respec-
tively. The unit for ⊕ is +∞, and the unit for � is 0.

Similarly, the max tropical semi-ring is the semi-ring
(
R∪ {−∞},⊕,�

)
such that

x⊕y = max{x, y}, x� y = x + y, x, y ∈ R∪ {−∞}.

In this semi-ring, the unit for⊕ is−∞, and the unit for� is 0. The semi-rings are isomorphic
with respect to the mapping x 7→ −x. The usual metric ρ(a, b) = |a − b| on R can be
extended to R ∪ {−∞} by setting ρ(a,−∞) = 1 for every a ∈ R. Similarly, ρ(a,+∞) = 1,
a ∈ R, for the case R∪ {+∞}.

Let (−ym, . . . ,−y1|x1, . . . , xn) be a representation of [u] ∈ M±
0 . We say that this

representation is ordered if x1 ≥ x2 ≥ · · · ≥ xn and −y1 ≤ −y2 ≤ · · · ≤ −ym. The ordered
representation of [u] is unique, and we denote it by (−ym, . . . ,−y1|x1, . . . , xn)o. Let us
denote by e as the formal element

e = (. . . ,+∞, . . . ,+∞,+∞| −∞,−∞, . . . ,−∞, . . .).
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Definition 2. Let us define a tropical semi-ringM⊕
0 as the setM±

0 ∪ {e} with operations ⊕ and
� such that

(−ym, . . . ,−y1|x1, . . . , xn)o ⊕ (−dm, . . . ,−d1|b1, . . . , bn)o

=
(
(−ym)⊕(−dm), . . . , (−y1)⊕(−d1)|x1⊕b1, . . . , xn⊕bn

)
o

=
(
min{−ym,−dm}, . . . , min{−y1,−d1}|max{x1, b1}, . . . , max{xn, bn}

)
o

and

(−ym, . . . ,−y1|x1, . . . , xn)o � (−dm, . . . ,−d1|b1, . . . , bn)o

=
(
(−ym)� (−dm), . . . , (−y1)� (−d1)|x1 � b1, . . . , xn � bn

)
o

= (−ym − dm, . . . ,−y1 − d1|x1 + b1, . . . , xn + bn)o.

Proposition 4. M±
0 ∪ {e} is a semi-ring, and the unit for ⊕ is e, and the unit for � is 0.

Proof. Let us check the distributive law. From the distributive laws in the min. tropical
semi-ring and the max. tropical semi-ring,

(−cm, . . . ,−c1|a1, . . . , an)o �
(
(−ym, . . . ,−y1|x1, . . . , xn)o ⊕ (−dm, . . . ,−d1|b1, . . . , bn)o

)
=
(
− cm�

(
(−ym)⊕(−dm)

)
, . . . ,−c1�

(
(−y1)⊕(−d1)

)
|a1�

(
x1⊕b1

)
, . . . , an�

(
xn⊕bn

))
o

= (−cm, . . . ,−c1|a1, . . . , an)o � (−ym, . . . ,−y1|x1, . . . , xn)o

⊕(−cm, . . . ,−c1|a1, . . . , an)o � (−dm, . . . ,−d1|b1, . . . , bn)o.

Let X be a Banach space with an unconditional Schauder basis (en), n ∈ N. Then, any
vector x ∈ X can be represented as

x =
∞

∑
n=1

xnen = (x1, . . . , xn, . . .).

Denote the ring of elements asMX

[u] = [(. . . , ym, . . . , y1|x1, . . . , xn, . . .)], xi, yj,∈ C

such that x = (x1, . . . , xn, . . .) and y = (y1, . . . , ym, . . .) are in X, endowed with the follow-
ing ring norm:

‖[u]‖ = inf
(
‖x‖X + ‖y‖X

)
,

where the infimum is taken over all representations u = (. . . , ym, . . . , y1|x1, . . . , xn, . . .). It
is known that this norm generates a metric d([u], [v]) = ‖[u] − [v]‖, and MX is a com-
plete metric space with respect to the metric. Moreover, the ring operations inMX are
continuous, andM0 is a dense subring inMX [15,17].

According toM±
X , let us denote the closed subset inMX , consisting of the elements

[u] = [(. . . ,−ym, . . . ,−y1|x1, . . . , xn, . . .)], xi ≥ 0, yj ≥ 0.

Thus,M±
X is a complete metric space and a topological semi-ring.

We can extend the metric toM⊕
X =M±

X ∪{e} by setting d(u, e) = 1 for every u ∈ M⊕
X .

Note thatM⊕
X \ {e} is a commutative group with respect to “�” and∥∥[u]�k∥∥ =

∥∥∥ [u]� · · · � [u]︸ ︷︷ ︸
k

∥∥∥ = ‖[ku]‖ = k‖u‖, k ∈ N.
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Theorem 1. For any Banach space X with an unconditional basis, the following statements are
true:

1. The tropical operations are continuous inM⊕
X ;

2. The mappings
Φ+[u] = max

i
xi and Φ−[u] = min

j
(−yj)

are continuous semi-ring homomorphisms fromM⊕
X to the max. tropical semi-ring

(
R ∪

{+∞},⊕,�
)

and to the min. tropical semi-ring
(
R∪ {−∞},⊕,�

)
, respectively.

Proof. 1. If [u] and [v] are not equal to e, then

‖[u]⊕ [v]‖ ≤ ‖[u]� [v]‖ ≤ ‖[u] • [v]‖

and we know that the operation “•” is continuous.
2. Clearly, Φ+([u]) = x1 and Φ−([u]) = −y1, in particular, Φ+(e) = +∞, and

Φ−(e) = −∞. Moreover,

Φ+([u]⊕ [u′]) = max(x1, x′1) = Φ+([u])⊕Φ+([u′])

and
Φ+([u]� [u′]) = x1 + x′1 = Φ+([u])�Φ+([u′]).

Thus Φ+ is a semi-ring isomorphism.
In order to show continuity, we observe that the function x = (x1, x2, . . .) 7→ maxn |xn|

is bounded (on bounded subsets) on every Banach space X with a Schauder basis (en).
Indeed, if (πn), n ∈ N be the sequence of projections,

πn(x) =
n

∑
k=1

xkek,

then
sup

n
‖πn‖ = K < ∞

(see ([38], pp. 1–2)), and so |xn| = |πn+1(x) − πn(x)| ≤ 2K‖x‖X. Hence, |Φ+([u])| ≤
2K‖[u]‖. The continuity of Φ+ follows from ([39], Theorem 11.22) taking into account that
Φ+ is a bounded homomorphism of the multiplicative-normed groupM⊕

X \ e such that∥∥[u]�k
∥∥ = k‖u‖, k ∈ N. The same works for Φ−.

5. Discussions and Conclusions

Mathematical models of quantum field theory deal with densely defined self-adjoint
operators on an appropriate Hilbert space L2(Ω) in the framework of the von Neumann
axioms (see [40]). The statistical approach to quantum mechanics uses a different language
of canonical partition functions, which, as we observed, can be described by symmetric and
supersymmetric polynomials and are well-defined in the domain of the Banach space `1.

In this paper, we continue to develop the ideas proposed by Schmidt and Schnack
in [2,3] about involving symmetric polynomials for investigations into the partition func-
tions of ideal quantum gases. The first goal of the paper was to find a correspondence
between the algebraic bases of supersymmetric polynomials and the partition functions
of ideal gases consisting of both bosons and fermions. We can see that the combinato-
rial relations in the algebra of supersymmetric polynomials have corresponding physical
interpretations. By taking into account the fact that the two elements (vectors) z and z′,
in the set of possible energy levels, are equivalent if and only if P(z) = P(z′) for every
supersymmetric polynomial P. It is natural to consider the quotient set with respect to the
equivalence as a natural domain. For such a quotient set, the usual vector operations are
not valid, and we introduced new ring operations (addition and multiplication) on the
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quotient setM0. It seems to be that the new addition can be obtained using the direct sum
of operators exp(−βH1) and exp(−βH2), and the new product leads to the tensor product
of operators. Note that the elements ofM0 have the physical interpretation if xi ≥ 0 and
yj ≤ 0. Otherwise, we can obtain a system where the cancelation rule [(y, a|a, x)] = [(x|y)]
plays a nontrivial role and where we can obtain negative energy. It leads us to tachyonic
particles that cannot exist because they are inconsistent with the known laws of physics.
But such an approach can be interesting for tachyon condensation (for details on tachyon
condensation, see [41]).

The fact that the energy on a level can not be negative suggests the use of elements
inM0, which have a very specific form, [z] = [(−y1, . ,−ym|x1, . . . , xn)], where all xi and
yj are non-negative. The subset of such elements forms a semi-ring without divisions
of zero, denoted byM0

±. We considered the algebraic properties of this semi-ring and
its completionsM±

X with respect to the various metrics associated with different Banach
spaces X. Moreover, we introduced new operations on M⊕

X = M±
X ∪ e that lead to an

infinite-dimensional analog of the so-called tropical semi-rings. We proved the continuity
of the operations onM⊕

X and constructed some of the real-valued homomorphisms ofM⊕
X .

For further investigation, we are going to use block-symmetric (or MacMahon) and
block-supersymmetric polynomials on `1(Cs) and explore their applications for the par-
tition functions of quantum gases. The space `1(Cs) can be defined as a vector space of
sequences

x = (x(1), . . . , x(n), . . .)

such that every element x(n) = (x(n)1 , . . . , x(n)s ) is a vector in Cs, and

‖x‖ =
∞

∑
n=1
‖x(n)‖.

A polynomial is block-symmetric on `1(Cs) if it is symmetric with respect to all permuta-
tions of the vectors (blocks) x(n). We can expect that models based on block-symmetric (and
maybe block-supersymmetric) polynomials can be useful for describing quantum gases
with entanglement particles.

The combinatorial properties of block-symmetric polynomials were considered in [42].
The algebras of block-symmetric polynomials and the analytic functions and correspond-
ing bases of the polynomials on `1(Cs) were studied in [43–48]. Applications of block-
symmetric polynomials for the quantum product of symmetric functions were proposed
in [49].
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