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Abstract: Exposure to secondhand smoke (SHS) during fetal development results in negative post-
natal effects, including altered organ development, changes in metabolism, and increased risk of
respiratory illness. Previously, we found the induction of intrauterine growth restriction IUGR)
dependent on the expression of the receptor for advanced glycation end-products (RAGE) in mice
treated with SHS. Furthermore, antenatal SHS exposure increases RAGE expression in the fetal lung.
Our objective was to determine the postnatal effects of antenatal SHS treatment in 4- and 12-week-old
offspring. Pregnant animals were treated with SHS via a nose-only delivery system (Scireq Scientific,
Montreal, Canada) for 4 days (embryonic day 14.5 through 18.5), and offspring were evaluated at 4 or
12 weeks of age. Animal and organ weights were measured, and lungs were histologically character-
ized. Blood pressure and heart rates were obtained, and RAGE protein expression was determined
in the lungs of control and treated animals. We observed the following: (1) significant decreases in
animal, liver, and heart weights at 4 weeks of age; (2) increased blood pressure in 4-week-old animals;
and (3) increased RAGE expression in the lungs of the 4-week-old animals. Our results suggest
an improvement in these metrics by 12 weeks postnatally such that measures were not different
regardless of RA or SHS exposure. Increased RAGE expression in lungs from 4-week-old mice
antenatally treated with SHS suggests a possible role for this important smoke-mediated receptor in
establishing adult disease following IUGR pregnancies.
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1. Introduction

Cigarette smoke is one of the major contributors to health problems that lead to
preventable deaths [1]. It is well established that smoking and exposure to secondhand
smoke (SHS) culminate in detrimental health outcomes. Smoke exposure during pregnancy
has been linked with several obstetric complications and increased risk for both the mother
and fetus. Smoking cigarettes throughout pregnancy may be the single most important
avoidable cause of adverse pregnancy outcomes [2]. There are several complications
associated with smoking during pregnancy, including altered placental development,
intrauterine growth restriction [3,4], preterm birth, low fetal birthweight, and stillbirth [3-7].
Maternal exposure to cigarette smoking has been linked to delayed development of kidneys
and the heart, alterations in neurologic development, increased risk of high blood pressure,
obesity, and increased respiratory illness [8-17]. Furthermore, antenatal smoke exposure
continues to influence health during postnatal development and is linked to the onset of
diabetes and hypertension into adulthood [18]. Although significant studies are available
that focus on the consequences of direct smoking during pregnancy, studies detailing the
effects of SHS during pregnancy are more limited. The precise effects of maternal SHS
exposure on a developing fetus remain under evaluation. It is known that SHS exposure
contributes to around 1.2 million deaths annually. Such exposure has also been linked
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to sickle cell disease and other lung complications in adults. In children, SHS is known
to affect lung function, increase lung inflammation, and increase the severity of cystic
fibrosis [19,20]. We previously demonstrated in our laboratory that exposure to SHS during
pregnancy induced the development of IUGR in pregnant mice [2]. IUGR impacts fetal
and neonatal morbidity and mortality, and studies have reported long-term sequelae
of complications, including adult hypertension, heart disease, stroke, and diabetes [2].
These observations were associated with increased expression of the receptor for advanced
glycation end-products (RAGE) in the lung and placenta of exposed mothers [2,21].

RAGE is a member of the immunoglobulin superfamily that recognizes a host of
ligands [22-24]. In adults, RAGE is expressed at low levels in most tissues, with the
exception of the lung, where RAGE expression is much more pronounced [25]. RAGE
is highly expressed during embryonic development and is activated by early growth
responses [26]. It has been proposed that RAGE involvement may play a role in the
structural maintenance of the lung through adult life [27]. In response to ligand binding,
RAGE mediates a signaling cascade that leads to the activation of a host of pro-inflammatory
mediators [28,29]. In fact, RAGE signaling is implicated in the pathogenesis of diseases,
including Alzheimer’s, diabetes, atherosclerosis, COPD, and diverse rheumatological
disorders [30-33]. Studies have shown that RAGE overexpression during embryogenesis is
lethal as a result of pulmonary hypoplasia [34]. Thus, RAGE expression must be intimately
regulated during development, and altered fetal RAGE expression in response to antenatal
SHS exposure may be a mechanism through which fetal development is impacted.

This study specifically sought to clarify the effects of antenatal SHS treatment on
offspring after 4 or 12 weeks of postnatal life. As a general theme, antenatal smoke exposure
remained a causal influence on several metrics evaluated after 4 weeks of life. Alternatively,
12 weeks after birth was sufficient time for deleterious hindrances to correct themselves.

2. Methods
2.1. Animal Housing and Tissue Collection

All animal work was performed in accordance with protocols approved by the Institu-
tional Committee for the Care and Use of Animals (IACUC) at Brigham Young University.
C57 Black 6 (C57BL/6) mice were obtained from Charles River Laboratories (Wilming-
ton, MA, USA), housed in standard plastic cages with enrichment, maintained in a 12-h
light/dark cycle, and provided access to food and water ad libitum. Timed pregnancies
were performed, and the identification of a vaginal plug confirmed embryonic (E) day.
Pregnant mice experienced normal gestational development until randomized mice were
exposed to either room air (RA; n = 8) or SHS (n = 8) for 4 days, from E14.5-E18.5. Litter
size averaged around 8-9 pups. After birth, pups remained with the dam until postnatal
day (PN) 21. Necropsies were performed at either 4 weeks or 12 weeks of age. On the date
of necropsy, animals were anesthetized with avertin (2.5% in 0.015 mL) and euthanized
by exsanguination. Heart and kidney weights relative to body weight were determined,
and tissues from the heart, kidneys, and right lung were snap-frozen in liquid nitrogen for
protein analysis or mitochondrial respiration assessment. The left lung was inflation-fixed
with 4% paraformaldehyde for histological analysis, as outlined previously [1].

2.2. Secondhand Smoke (SHS) Exposure

SHS treatment was conducted as previously described by our laboratory [2]. Mice
(n = 8) were exposed to SHS generated from 3R4F research cigarettes obtained from
the Kentucky Tobacco Research and Development Center, University of Kentucky, via
a nose-only exposure system (InExpose System; Scireq, Montreal, QC, Canada). This
system produces a 10 s computer-controlled puff of primary smoke every minute that is
subsequently cleared from the apparatus, preventing primary smoke exposure. Side-stream
smoke was separately generated with a dedicated pump and delivered without mixing
with primary smoke. Animals were accordingly exposed to SHS from six cigarettes during
a 10-min period. This procedure was repeated each day, from E14.5 to E18.5. There were no
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deaths observed throughout these experiments. Control mice (n = 8) were exposed to room
air (RA) only.

2.3. Blood Pressure and Heart Rate

A CODA monitor system (CODA tail-cuff blood pressure system; Kent Scientific
Corporation; Torrington, CT, USA) was used to measure blood pressure and heart rates
as previously performed in our laboratory [35]. During measurements, animals were
restrained for 5 min by a clear column crafted by Kent Scientific. Heart rates and blood
pressure were determined in RA controls and treated mice (SHS).

2.4. Western Blotting

Western blot analysis was performed to determine RAGE protein expression in lung
lysates from RA control or SHS animals, as previously described by our laboratory [35].
Briefly, the protein was isolated from lung tissue using RIPA lysis buffer with protease
and phosphatase inhibitors. Lung protein lysates (30 mg) were separated using a Mini
PROTEANV TGX™ precast gel (Bio-Rad Laboratories, Hercules, CA, USA), followed by
transfer to a nitrocellulose membrane. Membranes were incubated with RAGE (1:250 R&D,
Minneapolis, MN, USA) or f3-actin (1:500 Santa Cruz Biotechnology, Santa Cruz, CA, USA)
antibodies overnight at 4 °C. Fluorescent secondary antibodies (LICOR, Lincoln, NE, USA)
were applied at 1:3000 and incubated at room temperature for one hour. Membranes were
then imaged with a LICOR Odyessy CLx imaging system (Lincoln, NE, USA) and analyzed
with Image Studio software 5.5 (LICOR, Lincoln, NE, USA).

2.5. Histology

The left lungs from at least 4 animals were fixed with 4% PFA, processed with a series
of ethanol washes, and embedded in paraffin. Then, 5 pm sections were deparaffinized
and stained with hematoxylin and eosin to permit observation of general lung morphology.
The mean linear intercept (MLI) was determined as outlined [1] by analyzing 10 or more
pictures of lung parenchyma containing smaller airways in each section with an Image J
program. Slides were imaged with a BX61 compound microscope.

2.6. Immunofluorescence (IF)

IF was performed on paraffin-embedded lung samples. In summary, slides were
de-waxed and blocked for 1 h. This was followed by incubation overnight with a mouse
primary RAGE antibody (R&D Systems, Minneapolis, MN, USA; Cat# mAb1179, 1:300). For
detecting fluorescence, slides were incubated for an hour with a donkey anti-mouse Texas
Red (TX) (Santa Cruz Biotechnology, Santa Cruz, CA, USA, 1:5000) secondary antibody.
Immunofluorescence was detected using a BX6 microscope.

2.7. Lung Mitochondrial Respiration Analysis

To characterize mitochondrial respiration, lung tissues were collected at the time
of necropsy, and high-resolution O, consumption was determined at 37 °C using the
Oroboros O2K Oxygraph (Innsbruck, Austria) with MiR05 respiration buffer. RA control
and treated samples were tested to determine electron flow through complex I and to
determine basal oxygen consumption [glutamate + malate (GM)]. Following this step,
adenosine diphosphate (ADP) (2.5 mM) was added to determine oxidative phosphorylation
capacity (GMD). Succinate was then added (GMDS) for complex I + II electron flow into
the Q-junction.

2.8. Statistics

Differences in animal and organ weights, blood pressure, and RAGE protein expression
were determined between RA control and SHS-treated animals using a Mann-Whitney test.
GraphPad Prism software 10.1.2 (GraphPad; Santa Clara, CA, USA) was used for statistical
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analysis. Differences are shown as mean + SE, with significant differences between groups
noted at p < 0.05.

3. Results
3.1. Body and Organ Weights

Previously, we demonstrated reduced fetal weight (n = 12) following antenatal expo-
sure in an SHS-induced mode of IUGR [2]. In the current study, we still observed reduced
weight postnatally in mice 4 weeks of age after antenatal exposure to SHS (Figure 1A,
1.0-fold; p < 0.03). This difference in animal weights when comparing antenatal RA and
SHS was not detected when the mice reached 12 weeks of age (Figure 1B). As previously
mentioned, maternal exposure to cigarette smoke affects the development of the heart
and kidneys [8,9,12]. Offspring showed decreased heart (1.2-fold; p < 0.004) and kidney
(1.3-fold; p < 0.03) weights at 4 weeks of age (Figure 2A,B); however, these weights were
not different at 12 weeks of age (Figure 2C,D).
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Figure 1. Body weights of 4- and 12-week-old animals exposed to antenatal secondhand smoke
(SHS). A significant decrease in body weights (1.0-fold; p < 0.03) was observed in the 4-week-old
animals when compared to room air (RA) controls (A). No significant differences in body weights
were observed when comparing 12-week animals to RA controls (B). * Statistically different from
control (p < 0.05).
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Figure 2. Heart and kidney weights in 4- and 12-week-old animals exposed to antenatal secondhand
smoke (SHS). A significant decrease in heart ((A), 1.2-fold; p < 0.004) and kidney weights ((B), 1.3-fold;
p < 0.03) was observed in the 4-week-old animals when compared to room air (RA) controls. No
significant differences in heart (C) or kidney weights (D) were observed when comparing 12-week
animals to RA controls. * Statistically different from control (p < 0.05).
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3.2. Pulmonary Structure and RAGE Expression

Assessing mean linear intercepts (MLI) provides an estimate of the area available for
gas exchange in the lung. Characteristic histology of the lung from mice (n = 8) at either
4 or 12 weeks of age is shown in Figure 3A,B,D,E. There were no general alterations in
lung histology or notable differences in MLI in lungs from offspring at 4 or 12 weeks of age
following antenatal exposure to SHS (Figure 3C,F). Previous studies in our lab have shown
that antenatal SHS exposure produced an increase in fetal lung expression of RAGE [21].
We, therefore, sought to determine RAGE expression in the lungs of offspring at 4 and
12 weeks of age. Representative RAGE immunofluorescence at 4 weeks of age is shown
in Figure 4A,B. Furthermore, RAGE Western blotting revealed significantly more RAGE
expression in lungs 4 weeks after antenatal SHS exposure compared to the RA controls
(Figure 4C, 1.4-fold; p < 0.03). We discovered no differences in RAGE immunofluorescence
(Figure 5A,B) or Western blotting (Figure 5C) in the lungs of 12-week-old mice, regardless
of exposure.
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Figure 3. General lung morphology in 4- and 12-week-old animals exposed to antenatal secondhand
smoke (SHS). Histological sections of mouse lungs revealed indistinguishable differences when
comparing samples from 4-week-old mice exposed to RA (A) and those exposed to SHS (B). Mean
linear intercepts revealed no significant differences between the 2 groups of 4-week-old mice (C).
Similarly, H&E staining of lung sections revealed no morphological disturbances in lungs from
12-week-old mice exposed to RA (D) or SHS (E), which was confirmed by quantifying mean linear
intercepts (F). Scale bars represent 200 um using a 20 x objective.
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Figure 4. RAGE expression in the lungs of 4-week animals exposed to antenatal secondhand smoke
(SHS). RAGE immunofluorescence was qualitatively assessed in lung sections (scale bars represent
200 pm using a 20 x objective) from mice exposed to RA (A) or SHS (B). Immunoblotting for RAGE
(C) revealed a significant increase in RAGE expression in lungs from 4-week-old mice exposed to
antenatal SHS compared to 4-week-old RA controls. * Statistically different from control (p < 0.05).
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Figure 5. RAGE expression in the lungs of 12-week animals exposed to antenatal secondhand smoke
(SHS). RAGE immunofluorescence was qualitatively assessed in lung sections. Scale bars represent
200 um using a 20X objective from mice exposed to RA (A) or SHS (B). Immunoblotting for RAGE
(C) revealed a significant increase in RAGE expression in lungs from 12-week-old mice exposed to
antenatal SHS compared to 12-week-old RA controls. * Statistically different from control (p < 0.05).
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3.3. Lung Mitochondrial Respiration Analysis

The observation that lung weights were decreased in the 4-week-old mice led us to
investigate the potential for altered cellular function in terms of mitochondrial respiration
(n = 8). Oxygen flux was determined during the exposure conditions of multiple sub-
strates (see Section 2 for details). We discovered a significant reduction in mitochondrial
respiration in antenatal SHS-exposed mice at 4 weeks of age compared to RA controls,
but no differences were detected in the 12-week-old animals (Figure 6A,B). Despite the
difference in respiration rates observed in the 4-week-old animals, respiratory control ratios
(RCR), a general indicator of mitochondrial function, revealed no apparent differences in
the functionality or overall health of the mitochondria.
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Figure 6. Mitochondrial respiration in lungs from 4- and 12-week-old animals exposed to antena-
tal secondhand smoke (SHS). To measure mitochondrial respiration, cells were treated with GM,
Glutamate (10 mM) + Malate (2 mM), GMD: + ADP (2.5 mM), GMDs, and + Succinate (10 mM).
Mitochondrial respiration was significantly decreased in the 4-week-old animals when compared to
RA controls (A). No differences in mitochondrial activity were observed in the lungs of 12-week-old
animals (B). * Statistically different from control (p < 0.05).

3.4. Blood Pressure and Heart Rate

Heart rates were determined at 4 and 12 weeks of age. Interestingly, heart rates were
not affected at either point studied. In addition, we measured the systolic and diastolic
blood pressures (n = 8) at the time of necropsy. There was a significant increase in systolic
(1.3-fold; p < 0.0002) and diastolic (1.3-fold; p < 0.0004) blood pressures in the 4-week-old
animals (Figure 7A,B). At 12 weeks, there was no significant difference in blood pressure
between groups (Figure 7C,D).
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Figure 7. Cont.
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Figure 7. Systolic and diastolic blood pressure in the 4- and 12-week-old animals exposed to antenatal
secondhand smoke (SHS). A significant increase in systolic and diastolic blood pressure was observed
in the 4-week-old animals exposed to SHS as compared to room air controls (A,B). No differences in
blood pressure were observed in 12-week-old animals when compared to controls (C,D). * Statistically
different from control (p < 0.05).

4. Discussion

Preterm birth (PTB) is associated with up to 70% of neonatal deaths and leads to an
increased incidence of cerebral palsy, neurological defects, and pulmonary disorders in
the neonate [36]. There is an association between the development of Intrauterine Growth
Restriction (IUGR) and PTB [37]. Studies have shown that there is a risk of up to 44% of PTB
in IUGR pregnancies [38]. IUGR is a significant complication that affects up to 12% of all
pregnancies. This disease is characterized by birth weight (BW) below the 10th percentile
of the usual gestational age [39]. In addition, several studies reported long-term sequelae
of IUGR complications, including adult hypertension, heart disease, stroke, and diabetes.
Interestingly, many studies have shown that although newborn infants are smaller in size
and have decreased body weight compared to non-IUGR infants, they seem to “catch up”
in weight and size during their infancy [40-42]. In previous studies, we showed decreased
fetal weight when pregnant mice were treated with SHS [19]. This decreased body weight
was still observed postnatally in the 4-week-old mice, which correlates to approximately
3 years of age in humans [43]. Further, the concept that babies born during IUGR “catch
up” was realized in the current study when we observed no weight differences in mice by
12 weeks of age, which corresponds to approximately 9 years of age in humans [43]. These
findings support the observation of others who argue for the recovery of the infant’s weight.
Because kidney and heart development, often manifested as altered gross organ weight,
is affected in infants born of smoking mothers, we next wanted to investigate whether
the weight of these organs contributed to decreased body weight observed at 4 weeks.
Both heart and kidney weights were decreased at 4 weeks, but no differences were seen at
12 weeks of age. These weight discrepancies suggest that there is a potential developmental
delay in the organ-to-body weight ratios for both the heart and kidneys, as we observed
in the 4-week-old mice. Again, the fact that no differences were observed in these organs
when comparing controls and antenatal exposed animals at 12 weeks suggests that this
metric could be part of the “catch up” experienced with the low-birthweight infants.

After embryonic development, RAGE remains notably expressed in lung tissue and
only minimally expressed in most other tissues. At 4 weeks of age, mice that antenatally
encountered SHS still expressed significantly more RAGE in pulmonary tissues when
compared to RA controls. This was interesting, as these expression data confirmed our pre-
vious observations and showed that even after 4 weeks, the initial antenatal SHS stimulus
was sufficient to maintain elevated RAGE expression. Furthermore, if RAGE expression
remained higher than controls, such a discovery would implicate ongoing inflammatory
RAGE-mediated signaling. By extension, the observation that RAGE expression waned
to the same levels as RA controls at 12 weeks of age portends inflammatory RAGE sig-
naling becomes diminished during the “catch-up” process experienced by intrauterine
growth-restricted offspring. Abundant research has shown that RAGE up-regulation leads
to inflammatory outcomes that include decreased cell turnover and pulmonary simpli-
fication [27,44,45]. We, therefore, assessed overall lung morphology via screening mean
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linear intercepts to assess lung simplification at 4 weeks and 12 weeks of age. Because we
observed no significant differences between treated and control animals regardless of age,
we can correctly assume that SHS-induced lung compromise did not affect histological
architecture in the parenchyma.

We were interested in the observation that increased RAGE expression at 4 weeks of
age correlated with decreased mitochondrial respiration, suggesting a possible connection
between elevated pro-inflammatory RAGE expression and disrupted mitochondrial status.
Compromised respiration efficiency has previously been noted in the context of tobacco
smoke exposure, and decreased respiration is detrimental to cellular energetics [30,46].
Previous studies have also shown increased blood pressure in offspring of mothers who
smoked prenatally. Such disparities in blood pressure, even at 4 weeks after exposure,
suggest a role for cigarette smoke in cardiovascular health during adolescence [47,48]. We
specifically observed increased systolic and diastolic blood pressure in the 4-week-old
animals exposed to SHS prenatally, and pressure differences were absent by 12 weeks.
These results suggest that antenatal SHS exposure is enough to maintain a postnatal
increase in blood pressure up to 4 weeks of age that is nearly normalized in the “catching
up” of the animals by 12 weeks of age. It is important to note that although we did not
determine SHS components for these studies, previously published data show that SHS
contains high levels of PAHs, tobacco-specific nitrosamines (TSNA), aromatic amines,
aza-arenes, carbon monoxide, nicotine, ammonia, pyridine, benzene, toluene, and other
harmful substances [49].

In general, our results demonstrated that maternal SHS exposure is sufficient to affect
fetal development and that notable adverse effects last up to 4-weeks of age. Although it
seems that neonates “catch up” by 12 weeks of age, the effects observed at 4 weeks could
be, in part, involved in the development of long-term sequelae of adult hypertension, heart
disease, stroke, and diabetes observed in infants affected by IUGR.
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