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Abstract: Graft steatosis has been associated with inferior outcomes after liver transplantation.
Given the rising prevalence of obesity and fatty liver disease, strategies allowing safe and successful
utilization of fatty liver grafts are needed. Liver preservation by normothermic machine perfusion
(NMP) allows reducing ischemia-reperfusion injury, extending preservation time and assessing graft
viability prior to implantation into the recipient. NMP can be initiated at the donor hospital using a
transportable device (referred to as upfront NMP or normothermic machine preservation) or after a
period of cold ischemia (known as back-to-base). In this report, we present the case of a graft from an
HCV-positive DBD donor with 70% macrovesicular steatosis, which was successfully preserved and
transplanted using upfront NMP. This approach was key to minimize initial injury to the graft and
allowed assessing its viability before transplantation, while improving transplant logistics. Upfront
NMP represents a promising approach to enhance the transplantation of fatty liver grafts.

Keywords: liver transplantation; macrovesicular steatosis; large droplet fat; normothermic
machine perfusion; normothermic machine preservation; ischemia-free liver transplantation;
ischemia-reperfusion injury; organ preservation

1. Introduction

Liver graft macrovesicular steatosis (MaS) has been linked to poorer outcomes fol-
lowing liver transplantation (LT) [1]. Grafts with severe MaS (≥60%) are often discarded
due to the increased risk of graft dysfunction, which is directly proportional to the sever-
ity of MaS. However, given the rising incidence of non-alcoholic fatty liver disease and
liver steatosis [2], the utilization of steatotic livers could significantly expand the donor
pool, and strategies to improve their preservation are needed. Machine perfusion has
been re-introduced in clinical practice to cope with the increased risks associated with the
utilization of so-called “extended criteria” donors by static cold storage. Although various
machine perfusion techniques have been used in steatotic grafts, the results have been
conflicting [3–14]. Given the rapid expansion of machine perfusion technology, it is crucial
to determine the appropriate settings for each technique [15].

Among the available machine perfusion techniques, normothermic machine perfusion
(NMP) aims to mimic a physiological environment in which the liver is provided with oxygen
and nutrients. Besides improving liver preservation and allowing prolonging preservation
time [16,17], NMP has been shown to increase the organ utilization rate [9,18]. This property is
closely linked to the possibility of assessing liver viability during perfusion, facilitating organ
acceptance based on objective parameters [19–22]. Steatotic grafts represent an ideal setting
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for the utilization of NMP, potentially enabling the safe transplantation of these high-risk
grafts after viability assessment [12]. While the adoption of NMP technology is gaining
momentum [23], clinical data about its use in fatty liver grafts are still scarce. Furthermore, it
is unclear which approach—upfront vs. back-to-base—should be preferred.

Here, we present a case of successful preservation and transplantation of a liver with
severe MaS using upfront normothermic machine perfusion (NMP), representing the arrival
point of our search for an optimal preservation strategy for fatty liver grafts.

2. Case Description

In December 2022, a 52 year old HCV-positive (HCV-RNA = 2,268,095 IU/mL; Geno-
type 3) DBD donor (Weight: 74 kg Height: 156 cm) with otherwise normal liver function
was offered to our center. The donor hospital was about a four-hour drive from our center.
A liver biopsy (Figure 1) had been performed before procurement, showing severe (~70%)
MaS, but no associated fibrosis. The pathology report of the liver biopsy was available at
the time of the liver offer. Given the availability of a suitable size-matched ABO-compatible
recipient, the liver was provisionally accepted, with the intention of utilizing upfront NMP
to optimize preservation and test liver viability prior to LT. At procurement, the liver
appeared grossly steatotic.
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Figure 1. Histology of the donor liver showing severe macrovesicular steatosis.

To reduce cold ischemia time and expedite backtable preparation, dissection of the
porta hepatis and cholecystectomy were performed prior to cross-clamping. Meanwhile,
the backtable setup was handled by a third assistant, and the NMP device (OrganOx Metra,
OrganOx, Oxford, UK) was prepared by a dedicated perfusionist. The NMP device was
primed according to the manufacturer’s instructions, with the exception that meropenem
500 mg, instead of cefuroxime, was used as an antibiotic (Table 1). After the cross-clamp
was applied, the liver was perfused in situ with chilled Celsior solution (IGL, Lissieux,
France), cooled down with ice slush, and kept on ice during backtable preparation and
cannulation. This initial cold preservation phase, which was necessary to facilitate the
connection of the liver to the NMP device, lasted just under 2 h.
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Table 1. Composition of the priming perfusate and infusion solutions.

Perfusate Composition (Priming)

Product Dilution Volume
4% Succinylated gelatine n/a 500 mL
Third party ABO-compatible PRBC n/a 3 units
Meropenem 500 mg/10 mL 10 mL
Heparin 5000 u/mL 2 mL
10% calcium gluconate 94 mg/mL 10 mL
8.4% sodium bicarbonate 84 mg/mL 20 mL *

Infusion Solutions

Product Dilution Infusion rate
Sodium taurocholate 5.6 g/30 mL 1.25 mL/h
Epoprostenol sodium 0.25 mg/30 mL 1.25 mL/h
Heparin 25,000 u/30 mL 1.25 mL/h
Insulin 200 u/30 mL 1.25 mL/h

Parenteral Nutrition

Product Dilution Infusion rate
Clinimix E5/25 n/a 0.5 mL/min **

* 20 mL of 8.4% sodium bicarbonate are typically required to equilibrate perfusate pH ≥ 7.3 before connecting the
liver to the device; ** parenteral nutrition activates when perfusate glucose level is set <160 mg/dL. Abbreviations:
PRBC, packed red blood cells.

After monitoring perfusion parameters on-site during the first hour of NMP, the liver
(weight: 2 kg) was transported by car to our center under continuous NMP. The OrganOx
Metra is a fully automated, transportable normothermic liver perfusion device that allows
perfusing the organ with oxygenated blood, medicines, and nutrients at a normothermic
temperature for up to 24 h. The perfusion is managed by an internal, independent algorithm
that aims to maintain an inferior vena cava pressure between 0 and 4 mmHg and an arterial
pressure between 65 and 80 mmHg in the hepatic artery. Target portal vein and hepatic
artery flows are 0.8–1.2 L and 0.4–0.8 L, respectively. Drugs and nutrition are infused
independently by the machine during perfusion at a constant flow rate, and the machine
also manages gas concentrations and flows in the oxygenator. A dedicated smartphone app
allows continuously monitoring of perfusion parameters during transport. In a standard
case, the only interventions required by the operator are correcting pH by adding sodium
bicarbonate to the perfusate (if needed) and setting perfusate glucose level every 4 h. In the
present case, the liver rapidly cleared lactate and maintained a stable pH and vascular flows
throughout perfusion. A total of 20 mEq of sodium bicarbonate was administered at the
start of NMP, without the need for further pH corrections. The liver rapidly metabolized
glucose. As the total parenteral nutrition pump was not activated during transport, the
perfusate glucose level dropped to 5 mg/dl upon arrival at the transplant center and had to
be corrected with 40 mL of 33% glucose solution, after which it stabilized at ~100 mg/dL.
Parenteral nutrition was then started. Perfusate transaminase levels at 1 and 6 h of perfusion
were below 2000 IU/L, while bile production was satisfactory regarding both quantity
(~15 mL/h) and quality (pH = ~7.8, HCO3- = ~50 mmol/L; glucose < 5 mg/dL). The liver
was judged transplantable based on both Birmingham [24] and Groningen [21] criteria, so
LT was scheduled. The timing and logistics of liver procurement, transport, and evaluation
are depicted in Figure 2.
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Figure 2. Timing and logistics of liver procurement, transport and evaluation. Dotted black line
represents pH perfusate levels, whereas continuous black line depicts perfusate lactate (mmol/L).

The recipient was a 53 year old man with a MELD 12, suffering from multifocal HCC in
progression after previous downstaging, in the setting of alcohol and HCV-related cirrhosis.
HCV-RNA became negative after treatment with direct-acting antivirals. The LT operation
and graft reperfusion were uneventful, and no significant post-reperfusion syndrome was
observed. Post-LT AST and ALT peaked at 4250 IU/L and 1133 IU/L, respectively, but
liver function tests quicky normalized and have been normal since (Figure 3). Due to the
AST peak > 2000 IU/L, he met the criteria for early allograft dysfunction as per Olthoff
criteria [25]. However, both L-GrAFT (−1.97; estimated risk of graft failure = 12.2%) [26]
and EASE (−4.4; estimated risk of graft failure = 1.2%) [27] scores were consistent with
good postoperative graft function. A liver biopsy obtained after graft reperfusion, at
the end of the transplant operation, confirmed the degree of MaS as assessed on the pre-
transplant biopsy and showed mild (<5%) necrosis, with no lipopeliosis. During the first
ten postoperative days, the only noticeable complication was a mild elevation of creatinine
levels (maximum level = 1.27 mg/dL), consistent with grade 1 acute kidney injury [28]).
The patient consistently maintained a good urine output, and no need for renal replacement
therapy arose. The subsequent postoperative course was characterized by transitory ascites,
which promptly responded to diuretics, and fever on postoperative day 13th. This fever
was attributed to a central line infection by Pseudomonas Aeruginosa and was treated
with antibiotics. Notably, perfusate samples collected at the end of NMP did not show
any bacterial or fungal contamination. Given the delayed timing and the mild clinical
presentation, which different from previously reported NMP-related sepsis [29,30], this
bloodstream infection was deemed unrelated to NMP. Volume depletion resulting from
diuretic administration and sepsis resulted in a transitory elevation of creatinine levels
(maximum = 1.94 mg/dL) between postoperative day 11th and 18th (Figure 3), which
resolved spontaneously. Overall, ICU and hospital stays were 1 and 20 days, respectively.
Ribavirin and sofosbuvir-velpatasvir were administered by postoperative 2, achieving
negative HCV-RNA by postoperative day 16th. At 6 months follow-up, the patient is alive
and well, with normal hepatic function and no clinical nor laboratory evidence of ischemic
cholangiopathy.
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Figure 3. Biochemical parameters after liver transplantation.

3. Discussion

Due to the high risk of post-LT dysfunction or non-function, liver grafts with severe
MaS have historically been approached with extreme caution, as reflected by the very low
numbers in published series [1]. In our experience, the utilization of these grafts preserved
by static cold storage has been associated with a 20% rate of primary non-function, 10%
mortality and a 60% requirement for renal replacement therapy after LT, with all grafts
invariably developing early allograft dysfunction [31]. In the past, the use of these high-risk
grafts was justified by the scarcity of organ donors and the need to relieve waiting list
pressure. However, their “blind” utilization (i.e., without viability assessment) appears
hardly justifiable nowadays.

Extended criteria donors are becoming commonplace in many countries, including
Italy. Prompted by the need to optimize the preservation of these grafts, our group has
successfully employed end-ischemic hypothermic oxygenated machine perfusion (HOPE)
in a variety of settings, including livers from elderly donors [11,31,32] and those procured
after circulatory determination of death [33]. However, the clinical results of applying
HOPE to steatotic grafts have been less promising. One limitation of HOPE for steatotic
livers is the occasional necessity to increase portal perfusion pressure due to the high
vascular resistances of these livers when perfused at a cold temperature. This carries
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the risk of further damaging the graft [6,34]. Secondly, liver viability assessment during
HOPE is more limited. Although perfusate levels of flavin mononucleotide (FMN)—a
mitochondrial complex I cofactor that is released into the perfusate proportionally to the
severity of graft injury—represent a promising approach to assess liver viability during
HOPE [35–37], relying on a single parameter for graft acceptance is challenging. The same
Zurich group, which has pioneered HOPE and extensively studied FMN as a biomarker
of liver function and injury, is now exploring NMP applied over several days to assess
the viability of severely steatotic grafts [38]. Overall, HOPE limitations in the setting of
moderate or severe MaS have prompted us to explore end-ischemic NMP. During this
approach, perfusion parameters are less affected by steatosis, and viability assessment
is more comprehensive, although still challenging in some cases. In a previous joint
experience between our group and Milano Niguarda Hospital [12], end-ischemic NMP
allowed the successful transplanting of about half of the evaluated livers. However, it is
worth noting that two cases of primary non-function highlighted the inherent difficulties
in assessing the viability of these grafts. However, bearing in mind the ultimate goal of
increasing utilization, an end-ischemic approach might be suboptimal, as some grafts could
already be severely damaged even after a relatively short period of cold storage. Indeed,
graft steatosis has been frequently associated with the liver being discarded in published
series of end-ischemic NMP (Table 2). This is why we have transitioned to upfront NMP.

Table 2. Relevant literature on clinical applications of normothermic machine perfusion in fatty
liver grafts.

Author, Year n Intervention Findings

Watson et al., 2018 [14] 1 End-ischemic NMP

One liver described as “very steatotic” was
accepted for research but not transplanted.
Perfusate ALT level was 7542 IU/L at 2 h and the
liver showed no glucose metabolism

Ceresa et al., 2019 [3] 1 End-ischemic NMP

Of 3 (9.7%) discarded livers, one DBD liver with
80% MaS was discarded due to insufficient
lactate clearance, as well as lack of bile
production and glucose metabolism

Mergental et al., 2020 [9] 2 End-ischemic NMP

Of 9 (29%) discarded livers, 2 had moderate or
severe MaS, respectively. Prevalence of
medium-large droplet steatosis was higher
among discarded livers (77.8% vs. 40.9%). No
liver with MaS ≥ 30% was accepted for LT

Fodor et al., 2021 [5] 3 End-ischemic NMP
Of 59 included patients, 3 (5.1%) received a liver
with MaS ≥ 30%. Specific outcomes were not
reported

Patrono et al., 2022 [12] 14 End-ischemic NMP

Of 14 evaluated livers with MaS ≥ 30%, 10 (71%)
were transplanted but 2 (14%) developed PNF.
Graft function was good in the remaining
patients

He et al., 2018 [7] 1 IFLT First report of IFLT in a liver from a DBD donor
with 85–95% MaS.

Chen et al., 2021 [4] 26 IFLT

Twenty-six livers with moderate (n = 16) or
severe (n = 10) MaS were included, of which six
were treated by IFLT. IFLT was associated with
reduced AST, GGT and creatinine peak after LT,
and lower EAD rate (0% vs. 60%, p = 0.001)

Abbreviations: NMP, normothermic machine perfusion; DBD, donation after brain death; MaS, macrovesicular
steatosis; LT, liver transplantation; PNF, primary non-function; IFLT, ischemia-free liver transplantation; EAD,
early allograft dysfunction.
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An upfront NMP approach has several advantages. Firstly, the initial cold ischemia
time is very limited, especially if cholecystectomy and porta hepatis dissection are per-
formed during donor operation. This technical detail also improves hemostasis during
NMP. Second, transport time allows liver function to stabilize, ensuring that viability crite-
ria are durably met and ruling out occasional rebounds in perfusate lactate levels, which
in our experience have been associated with poor function after transplant [12]. While
perfusate and bile samples can be collected during transport, definitive and comprehensive
viability assessment is better performed upon arrival at the transplant center. Third, trans-
plant logistics are favorably impacted, given the possibility to perform the LT operation
during daytime working hours, while the liver is preserved and monitored in a dedicated
space outside the operating theatre.

Upfront NMP may represent a good compromise between end-ischemic NMP and
ischemia-free LT (IFLT). IFLT, a procedure in which the organ is procured and implanted
into the recipient without any interruption of blood flow, was introduced to completely
avoid ischemia-reperfusion injury in LT, and its benefits have been recently confirmed in
a randomized controlled trial [39]. Interestingly, the first case of IFLT was performed on
a liver with severe steatosis [7], and a subsequent cohort study has suggested it could be
beneficial when applied to fatty livers [4]. Upfront NMP, particularly if measures are taken
to minimize initial cold ischemia time, could mimic the benefits of IFLT while extending its
applicability to other hospitals than those where the transplant center is located. Indeed, at
least for the present, IFLT has not been implemented using a transportable device, which
would be the next logical step to allow its more widespread adoption.

It is worth noticing that so far, our experience in fatty liver preservation does not
include upfront HOPE. Indeed, the reasonable comparator of upfront NMP should be
upfront HOPE/D-HOPE, rather than end-ischemic HOPE or NMP. Similar to upfront NMP,
an upfront approach to hypothermic oxygenated perfusion would minimize initial damage
sustained during static cold storage and would be particularly appealing in the setting
of graft steatosis. At the time of writing of this article, however, there is no transportable
HOPE/D-HOPE device available for clinical use in Europe, and data on the potential
benefits of this approach are eagerly awaited.

There are also shortcomings to an upfront NMP approach. Performing backtable
preparation at the donor hospital requires the availability of adequate space and surgical
instruments, especially in the case of aberrant hepatic arteries requiring reconstruction.
Additionally, this prolongs the occupation time of the surgical theatre. The NMP device
used in this case requires the setting of perfusate glucose values every 4 h, which could
be impractical under certain transport conditions and might require the availability of a
portable glucometer or a blood gas analysis machine. In the present case, it is likely that
the liver consumed perfusate glucose to synthesize glycogen during transport, requiring
its supplementation upon arrival at our transplant center. This was a teaching point of
this case, indicating that parenteral nutrition should have probably been initiated before
transport. In general, it should be considered that little intervention is possible during the
transport phase, and conversion to static cold storage should be readily available if needed.
Many of these difficulties can be overcome with adequate planning, staff training, and
equipment availability [18].

Another main limitation is represented by case selection for upfront NMP, which
limits its clinical applicability. Although in our case a liver biopsy had been performed
before the procurement, this is the exception rather than the rule. Given the logistical
challenges, it would be reasonable to reserve upfront NMP to those cases most likely
benefiting from it. Unfortunately, detection of donor steatosis, especially large droplet fat,
is largely unreliable based on donor data, and proposed predictive models have not gained
widespread adoption [40]. Even if a liver biopsy was available prior to procurement, it
should ideally be remotely evaluated by an experienced pathologist, which requires the
necessary equipment and may be difficult to implement on a systematic basis. So far, our
pragmatic approach has been to be prepared to use upfront NMP in cases of high suspicion
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of graft steatosis based on donor data (ultrasound scan, BMI, GGT level, history of alcohol
abuse), with macroscopic assessment as the final step dictating the indication to use upfront
NMP. This is suboptimal, as there is a well-known discrepancy between the degree of
steatosis as assessed by the procurement surgeon and by histological examination, and
this has resulted in an overemployment of upfront NMP in some cases. However, in the
absence of reliable tools to assess MaS during procurement [41], we believe that, at least in
our setting, this is the best available strategy to maximize utilization of these grafts.

4. Conclusions

In conclusion, this case suggests that upfront NMP initiated at the donor hospital can be
successfully employed in livers with severe MaS. Given the histological features of the case
presented, the clinical outcome seems encouraging. However, this will require confirmation
through longer-term follow-up, particularly regarding the possibility occurrence of late-onset
ischemic cholangiopathy. Upfront NMP may represent a promising approach to optimize
utilization and outcomes of livers with moderate and severe MaS. Further exploration of this
approach is warranted, potentially through the context of a randomized trial.
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