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Abstract: In the present work, we report a thermoresponsive hydrogel formed by the self-assembly
of compounds 1 and 2 Milli Q water. Both hydrogels showed thixotropic behavior. Atomic force
microscopy (AFM) studies confirm the fiber-like microstructure of compounds 1 and 2, but denser
fibers were observed in the case of compound 1. The hydrogel formed by compound 1 detected Cu2+,
Fe3+, and Hg2+, whereas the hydrogel of 2 showed a change in the optical signal, specifically upon
adding Cu2+ and Hg2+. Mechanistically, adding metal ions to the hydrogel resulted in the formation
of a (1:1) complex with Fe3+ and Hg2+ and (2:1) with Cu2+. The detection of metal ions has also been
achieved in real-life samples, such as in tap water. Low-cost portable gel-coated paper strips have
also been developed for the onsite detection of these metal ions.
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1. Introduction

More recently, stimuli-sensitive hydrogel, which responds to various external stimuli,
such as pH [1], temperature [2], light [3], electricity [4], and magnetic fields [5], has drawn
remarkable attention due to its widespread application in the fields of sensing [6], tissue
engineering [7], drug delivery [8], catalysis [9], bionic devices [10], and more [11]. In this re-
gard, supramolecular hydrogel derived from low-molecular-weight gelators (LMWGs) has
been actively developed. It is now considered a unique material due to its programmable
stiffness, softness, and high flexibility, which gives them stimuli sensitivity [12–14]. Thus,
these hydrogelators are designed such that a suitable stimulus group in the scaffold is
sensitive. Due to the solid relationship between the hydrogelator structure and the gelation
properties, a small perturbation in the structure of the gelator by a stimulus might result in
a gel-to-sol or sol-to-gel transition. However, the employed stimuli have been relatively
simple so far [15,16].

On the other hand, metal ions, up to a certain level, play vital roles in the proper
functioning of many physiological processes, including redox reactions, oxygen transport,
etc. [17,18]. However, beyond the permissible levels, these benign micronutrients trigger
unwanted physiological transformations, which lead to fatal health problems, such as
gastrointestinal disorders, neurodegenerative diseases, cardiovascular problems, renal
failure, etc. [19,20]. Thus, regular monitoring of these metal ions in consumable food items
(food, drinking water, etc.), as well as in biological samples (human blood serum, urine,
etc.), has become one of the major concerns for supramolecular chemists. The traditional
metal ion-sensing probes usually use a one-to-one recognition strategy similar to that of
natural enzymes [21–23]. However, over the years, researchers have become interested
in designing sensory systems that can detect multiple metal ions simultaneously, thus
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reducing the time and cost associated with sample analyses. One such strategy is to devise
‘array-based sensor systems’ to detect multiple metal ions simultaneously [24,25].

Considering this, we have demonstrated the design and synthesis of compounds 1 and
2, which can form a self-supported ‘gel’ in Milli Q water. Compound 1 showed fluorescence
quenching in the presence of Cu2+, Fe3+, and Hg2+, while compound 2 showed selective
interaction with Hg2+ and Cu2+. Stimuli-responsive behavior was observed when metal
ions were added to the self-supported hydrogels of compounds 1 and 2, leading to a change
in the color of the fluorescent gel. This toxic metal ion detection was achieved in real-life
applications, such as in tap water. A low-cost gel-coated paper strip was also designed to
detect these metal ions so that it could be used in remote areas.

2. Materials and Methods
2.1. Chemicals

All chemicals, solvents, and silica gel used for TLC were obtained from well-known
commercial sources and were used without further purification, as appropriate. Before
using the solvents, the samples were freshly distilled and dried using a standard procedure.
Melting points were measured in open capillaries and uncorrected. 1H-NMR and 13C-NMR
spectra were recorded using a Bruker-400 Advance NMR spectrometer. Chemical shifts
were reported in ppm downfield from the internal standard tetramethylsilane (TMS). Mass
spectrometry of the individual compounds was performed using a Micro Mass ESI-TOF
MS instrument. Elemental analysis was performed using Thermo Finnigan EA FLASH
1112 SERIES.

2.2. Gelation Studies

The formation of the gel was confirmed using the tube inversion method [11]. In a
typical experiment, the gelator molecules under investigation (compounds 1 and 2) were
taken. To this mixture, 1 mL of Milli Q water was added, followed by heating at 80 ◦C
till the solution became transparent. The resultant mixture was sonicated for five mins
and then cooled to room temperature. The critical gelator concentration (CGC) of the gels
formed by these molecules was evaluated quantitatively. To evaluate the CGC, a known
amount of the gelators (compounds 1 and 2) in Milli Q water was heated to 75–80 ◦C,
resulting in a slightly turbid solution, and then sonicated for 5 min. The resulting clear
solution transformed into an optically transparent/opaque robust hydrogel within 1–2 min.
The gelation propensities of compounds 1 and 2 were checked systematically by gradually
lowering the amount of gelator. In this way, the minimum concentration of the gelator
required to immobilize 1 mL of Milli Q water, i.e., the CGC value, was determined, as
reported for other systems [11]. The above measurement was carried out three times, and
the average CGC value was reported with a standard deviation of less than 1%. A glass
tube with a 10 × 75 mm capacity was used for the CGC measurement. For thixotropic
properties, the gel was vortexed for 1 min for a complete gel-to-sol transition and then kept
at rest for 10 min to revert to a gel.

2.3. FT-IR Spectroscopy

The prepared solution and gels of individual samples were drop-coated on a CaF2 cell
and dried under a vacuum. FT-IR spectra were recorded using a PerkinElmer Spectrum BX
FT-IR system. For baseline correction, the spectrum of neat CHCl3 was subtracted from the
sample spectrum.

2.4. Fluorescence Spectroscopy

The fluorescence spectroscopy of the mentioned solutions/suspensions was performed
using a Cary-Eclipse spectrofluorometer equipped with a temperature-controlled bath. In
this experiment, slit width was set at 5 nm (excitation) and 5 nm (emission), while the
excitation wavelength was set at 345 nm.
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2.5. Atomic Force Microscopy (AFM)

A dilute solution of the gel sample was drop-cast on a freshly cleaved mica surface,
and the resultant surface was carefully allowed to freeze dry. Each sample was analyzed
using a JPK 00901 AFM instrument and Nano-Wizard software: tapping mode off 10 nm
tip radius, silicon tip, 292 kHz resonant frequency, 0.7–1 Hz scan speed, and 256 × 256 and
512 × 512 pixels.

2.6. Rheological Studies

Rheology experiments using hydrogels were carried out using an Anton Paar MCR
52 with a cone and plate geometry (CP 25-2) with an adjustable Peltier temperature-
controlling system. The distance between the cone and plates was fixed at 0.105 mm for all
the measurements. The rheometer has built-in software that converts torque measurements
into either G′ (the storage modulus) or G′′ (the loss modulus), representing strain or shear
stress. The thixotropic properties were studied to examine the alteration of the rheological
properties of the hydrogel material under the application and the release of shear stress.
This process included two steps: (i) deformation of the hydrogel with increasing shear
stress from 0.01 to 80 Pa for 6.14 min and (ii) recovery of the sol state to the gel state under
low shear stress (0.01 Pa) for 6 min. In these two steps, the frequency was kept constant at
1 Hz. Three cycles were applied to the hydrogels to compare the extent of the gel strength
recovery.

2.7. Preparation of the Metal Ion Solution

A freshly prepared metal ion solution in its nitrate salts was used as a source of metal
ions, and an aliquot was directly added to the solution.

2.8. Preparation of Test Strips

To prepare gel-coated paper strips, filter paper (Whatman 40) was cut into a square
shape (1× 2 cm). To these square-shaped paper strips, 30 µL of the pre-prepared gel sample
(2.5 mM) was uniformly spread on the surface. The gel coated on the paper strip was
absorbed entirely within 15 min under an ambient open atmosphere and then naturally
air-dried. These gel-coated paper strips were then used for checking different metal ions.

2.9. Analysis of Metal Ions in Different Water Samples

Tap water samples were collected from the Department of Organic Chemistry Lab-
oratory, IISc. To remove the insoluble and suspended dirt particles from the tap water, it
was filtered through a 0.22 µm membrane filter cartridge. To these water samples, different
amounts of metal ions were added for more than 30 min before the analysis.

2.10. Stoichiometry Determination using Job Plot

Job plot is a method of continuous variation used for determining the stoichiometry of
the interaction between the two species. In this method, the total molar concentration of
the two binding specie was kept constant (1 × 10−4 M), and the mole fraction was varied.
Further, the change (here, fluorescence) was plotted against the mole fraction. The maxima
or minima showed the stoichiometry of the interaction.

2.11. Binding Constant Calculation

Binding constants were calculated based on the Benesi–Hildebrand equation of the
respective stoichiometry. The concentration of the guest was increased while the concentra-
tion of the host was fixed so that a wide concentration range could be adopted.

A straight-line plot was obtained, which in turn yielded an intercept of 1/ε and a
slope of 1/Kε, from which the formation constant was obtained.
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2.12. Detection Limit Determination

Here, we used the blank variability method to calculate the detection limit of the metal
ions. This method prepared the calibration curve by gradually adding the analyte to a fixed
ligand concentration via UV-vis titration.

From the equation obtained from the calibration plot, the added analyte concentrations
were calculated. Then, another calibration curve was drawn between the Creal (added
analyte) and Ccalc. (calculated amount of analyte). This afforded the value of the slope (b).
The signal of the ligand in the absence of the added analyte was taken as blank reading.
Ten blank replicates were measured. The standard deviation from the blank readings was
calculated by fitting the fluorescence reading into the equation obtained from the first
calibration curve (titration spectra). We calculated the detection limit using this standard
deviation value using the following equation.

LC = tC × s × (1 + 1/N)1/2 (1)

where N is the number of blank replicates taken; the value of tC for 10 blank readings is
1.833; and s is the standard deviation value.

The detection limit (LD) was calculated as double the decision limit obtained,

LD = 2Lc (2)

In concentration terms, the detection limit appeared as follows:

xD = 2 × C = 2LC/b (3)

where b = slope of the second calibration curve (Creal vs. Ccalc.)

3. Results and Discussion
3.1. Design and Synthesis of Hydrogelators 1 and 2

We designed and synthesized fluorophores (Figure 1a) linked via aromatic amino
acids, namely phenylalanine (compound 1) and tyrosine (compound 2). As reported by our
group earlier, these compounds were synthesized using typical peptide coupling reagents
and fully characterized using various spectroscopic techniques, such as 1H-NMR, 13C NMR,
ESI-MS, FT-IR, and elemental analysis [6].

3.2. Interaction of Metal Ions with Compounds 1 and 2

Both compounds 1 and 2 formed a self-supported thermoreversible transparent and
opaque hydrogel in Milli Q water with critical gelator concentrations of 0.52 mM and
0.82 mM, respectively (Figure 1d,e). Interestingly, both hydrogelators readily converted
to sol upon applying the mechanical force while reverting to gel when they were at rest,
thus confirming their thixotropic behavior (Figure 1f). The thixotropic behavior of the
hydrogel formed from compound 1 was further confirmed by a hysteresis loop rheology
test [25]. In this experiment, the hydrogel was subjected to a high strain of 80% for 6 min
for a complete gel-to-sol transition and a low strain of 0.01% for a sol-to-gel transition.
As shown in Figure 1h, upon removing the high strain, the original mechanical strength
of the hydrogel formed by compound 1 recovered by almost 98%, thus confirming its
thixotropic behavior. Microscopic characterization using atomic force microscopy analysis
revealed the formation of a fibrous microstructure (Figure 1b,c), but dense fibers were
observed in the case of compound 1. The proposed nano-model for the self-assembly of
compounds 1 and 2 is shown in Figure 1g. As evident from the fluorescence spectra, there
are considerable π–π stacking interactions between the two pyrene moieties, which are
hydrophobic. Hence, it stays away from the water molecules while the oxyethylene chain
remains exposed to the water molecules. These molecules undergo self-assembly to form
1D aggregates, which leads to 3D aggregates upon further aggregation. These aggregate
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molecules ultimately form entangled fibers, which in turn entrap the water molecules
inside it, leading to gelation.
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Figure 1. (a) Molecular structure of the compounds (1 and 2) used in the investigation. AFM images
of the freeze-dried hydrogel of (b) compound 1 and (c) compound 2. Picture of the gel formation
by (d) compound 1 and (e) compound 2 in Milli Q water. (f) Gel-to-sol transition and vice versa of
hydrogel formed by compound 2 under mechanical shaking and at rest, respectively. (g) Schematic
representation for the self-assembly of compounds 1 and 2 in Milli Q water. (h) Hysteresis loop test
rheology data of hydrogel 1.

Because compounds 1 and 2 possess acyl aroyl hydrazine (AAH) units and aromatic
amino acid residue, we were intrigued to investigate their metal ion-binding properties in Milli
Q water. Figure S1a shows that even at a concentration as low as 20 µM, compounds 1 and 2
exhibited broad red-shifted emission maxima due to the self-assembled nanostructure. Though
compound 1 with phenylalanine (λmax = 422 nm) residue showed effective aggregation in
water compared to its tyrosine analog, the latter showed a larger red-shift (λmax = 460 nm) in
the emission maxima, as evident in Figure S1b. This is indeed an interesting observation and
can probably be explained by the preferential charge transfer interaction between pyrene and
tyrosine [26]. The addition of metal ions to the aqueous solution of compound 1 (Figure 2a)
resulted in a significant reduction in the emission intensity, particularly in the presence of
Cu2+, Fe3+, and Hg2+ (20 µM). The addition of Cu2+ induced a 4-fold quenching of emission
intensity at the 422 nm band (Figures 2c and S1d), whereas Hg2+ induced quenching of the
emission intensity by ~2.5-fold (Figures 2d and S1e). Similarly, Figure S1c,f show that when
Fe3+ ions were added to a solution of compound 1, it induced the quenching of emission
intensity by ~3.7 fold.
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(b) compound 2 (20 µM, λex = 345 nm) at 470 nm upon the addition of various metal ions (20 µM).
Fluorescence titrations of 1 (20 µM, λex = 345 nm) with (c) Cu2+ and (d) Hg2+.

However, the extent of the change was found to be slightly less in the case of Hg2+

(Ksv = 0.080), which was also evident by its small Stern –Volmer constant value than that
observed with Cu2+ (Ksv = 0.159) and Fe3+ (Ksv = 0.134). The interaction stoichiometries of
compound 1 with the concerned metal ions were evaluated using the continuous variation
method, where it showed 1:1 interaction with Fe3+ and Hg2+, as shown in Figure S2a,b,
respectively, and 1:2 in the case of Cu2+ (Figure 3c). The binding affinity with transition metal
ions was found to follow the Irving–Williams series and was KCu

2+ = 4.56± 0.18× 109 mol−1

(Figure 3e). The binding constant of Fe3+ and Hg2+ calculated from Figure S2c,d was found to
be KFe

3+ = 1.21± 0.04× 105 mol−1 and KHg
2+ = 2.81± 0.05× 105 mol−1, respectively, which

indicates that the stability of the metal complexes depends on the ionic radius of M2+ and its
crystal field stabilization energy [27]. The minimum detectable concentrations of Cu2+, Fe3+,
and Hg2+ for compound 1 were calculated using the blank variation method, and they were
found to be 0.047 ppm, 0.052 ppm, and 0.196 ppm, respectively.

On the other hand, when compound 2 was exposed to various transition metal ions,
a distinct response was observed for Hg2+ and Cu2+ (Figure 2b). The addition of Cu2+

induced a 5-fold quenching of the emission intensity at the 460 nm band with a diminution
of blue fluorescence (Figure 3b). At the same time, the incorporation of Hg2+ indicated a
ratiometric change in emission intensity with the appearance of cyan fluorescence. Further,
titration with Hg2+ showed a decreased emission intensity at the 397 nm band with con-
comitant enhancement at 460 nm (Figure 3a). Here also, the Job plot indicated the formation
of a 1:2 complex with Cu2+ (Figure 3d). Similarly, as shown in Figure S3a, Hg2+ showed
a 1:1 interaction with compound 2. Further, the binding constants with Cu2+ and Hg2+

were calculated from Figure 3f and Figure S3b based on the Benesi–Hildebrand model for
1:2 and 1:1 complex, and they were found to be KCu

2+ = (4.30 ± 0.11 × 1010 mol−1) and
KHg

2+ = (1.18 ± 0.06 × 105 mol−1), respectively. The minimum detectable concentrations
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of Cu2+ and Hg2+ for compound 2 were calculated using the blank variation method, and
they were found to be 0.065 ppm and 0.232 ppm, respectively [28].
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3.3. Mechanistic Investigation of Metal Ions Binding

The interaction of peptide-based probes with metal ions can either result in an ion-
induced hydrolysis reaction or a formation of the coordination complex. To distinguish
between these two pathways, an EDTA-mediated recovery experiment was performed by
sequentially adding equimolar amounts of M2+ and EDTA to the same solution. In all cases,
as shown in Figures 4a,b and S4, we observed the recovery of the original emission signal
in the presence of EDTA, which ruled out the possibility of metal ion-mediated hydrolysis
reactions.
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Figure 4. EDTA-mediated recovery plot for the interaction of (a) compound 1 with Fe3+ and
(b) compound 2 with Hg2+. 1H-NMR titration of (c) compound 1 and (d) compound 2 with Hg2+

in DMSO-d6/D2O (4:1) mixture medium.

Further, to explore the exact modes of interaction with metal ions, 1H-NMR titrations
of the compound were performed with Hg2+, Cu2+, and Fe3+ in the DMSO-d6 medium.
As expected, Cu2+ and Fe3+ induced paramagnetic quenching of 1H-NMR signals due
to their open-shell electronic configurations. 1H-NMR titration with Hg2+ resulted in
downfield shifts of all the aromatic protons with changes in the AHH unit and tyrosine
moiety (Figure 4c,d). This indicates that in the self-assembled state, the closely placed AAH
units formed a metal ion-binding cleft along with a tyrosine residue. The FT-IR studies in
Figure S5 further substantiate this speculation, where a shift in the stretching frequencies of
the C=O and N-H bond was observed upon interaction with metal ions. Additional AFM
images revealed that spherical nanoaggregates formed when the metal ion was added to
the compound (Figure S6).

3.4. Application in Analyzing Real-Life Samples
3.4.1. Detection of Metal Ions in Water Samples

Here, we used water samples collected from laboratory taps to estimate the metal
ions. An increase in the metal ion (0–10 µM) concentration led to a gradual decrease in the
emission intensity of F/F0 at 422 nm for compound 1 and 470 nm for compound 2, thereby
ensuring the quantitative nature of the method (Figure 5a,b). This was further supported
by the recovery experiment, as presented in Tables S1 and S2 [28], where we observed that
the degree of proportional errors was less than 5% in all the cases.
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Figure 5. Estimation of different metal ions by (a) compound 1 (20 µM, λmax = 345 nm) and
(b) compound 2 (20 µM, λmax = 345 nm) in a tap water sample. Picture of paper-coated hydro-
gel strip on the addition of different metal ions to (c) compound 1 (2.5 mM) and (d) compound
2 (2.5 mM) coated paper strips (irradiated by >360 nm UV lamp). Gel picture of (e) compound 1
(2.5 mM) and (f) compound 2 (2.5 mM) in normal daylight/under a UV lamp in the presence of
different metal ions.

3.4.2. Detection of Metal Ions Using Dye-Coated Paper Strips

We developed paper strips coated with compounds 1 and 2 for on-site detection [29].
The paper strips coated with the compound showed blue fluorescence under a standard
UV lamp, which markedly changed upon immersion into Cu2+, Hg2+, and Fe3+ (for com-
pound 1) and Cu2+ and Hg2+ (for compound 2) solutions.

As shown in Figure 5c,d, metal ions could efficiently quench the native blue color
of the compound 1 coated paper strip. However, in the case of compound 2 coated
paper strips, we observed that blue fluorescence became cyan upon immersion into Hg2+

while quenching was observed upon spiking with Cu2+ solution. We also observed that
immersing them into other metal ions led to no change in the fluorescence color.

3.5. Gelation Ability of Compounds 1 and 2

We then checked the gelation ability of both compounds in the presence of various
metal ions. We observed that upon the addition of metal ions to the compounds, there was
no gel-to-sol transition; instead, it formed a weak gel compared to that of the hydrogel
formed by compounds 1 and 2, respectively. Interestingly, the addition of Cu2+ and Fe3+

resulted in a change in color from colorless to green and yellow in the case of compound
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1-based hydrogel, which may be due to mild charge transfer from an electron-dense pyrenyl
unit to a metal ion (Figure 5e). A similar color change was observed for the interaction of
Cu2+ with compound 2 (Figure 5f). As expected, the blue fluorescence of compound 1 was
efficiently quenched by the interaction of Cu2+, Hg2+, and Fe3+ with compound 1 (Figure 5e).
In the case of compound addition of Hg2+ resulted in the formation of cyan fluorescence.
In contrast, quenching was observed after adding Cu2+ to the hydrogel (Figure 5f). Thus,
using all the findings, we generated a table to predict the presence of individual metal
ions in the unknown samples. This can be achieved by comparing the responses of the
metal ions with compounds 1 and 2. If there is quenching for only compound 1, we can
predict that the unknown sample contains Fe3+. When both the compounds’ responses are
quenched, it confirms the presence of Cu2+ ions in the sample; on the other hand, if the
fluorescence responses are quenched and ratiometric for compounds 1 and 2, respectively,
then there is a presence of Hg2+ (Figure 6a).
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Figure 6. (a) Comparison table for the fluorescence responses generated by compounds 1 and 2 in
the presence of multiple metal ions. (b) Proposed mechanism for the interaction between different
metal ions with compounds 1 and 2.

4. Conclusions

In conclusion, we have designed and synthesized pyrene-based amino-acid linked
gallate-based amphiphiles 1 and 2, which can be super gelators in an aqueous medium.
Both the hydrogels were thermoreversible and thixotropic in nature. The AFM analysis
confirmed the presence of a fibrous microstructure in the self-assembled state. Further,
the compounds were used to detect metal ions in a water medium, such as Cu2+, Fe3+,
and Hg2+. Compound 1 showed emission quenching with all three metal ions but to
different extents. On the contrary, compound 2 showed quenching with Cu2+ ions and a
ratiometric color change with Hg2+. Compound 2 showed no interaction with Fe3+. Thus,
by comparing the responses of compound 1 and compound 2, we can predict whether the
unknown sample contains Fe3+ or not. Though compound 1 and compound 2 showed a
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similar spectral change with Cu2+ (quenching in both cases), a distinctive behavior was
observed with Hg2+. Thus, here also, we can differentiate between Cu2+ and Hg2+ by
comparing the relative responses of the two compounds. Mechanistic studies revealed the
formation of a coordination complex when metal ions were added to the hydrogel. Adding
metal ions to hydrogel resulted in a distinct change in color under daylight and UV lamp.
Moreover, metal ions were successfully detected in various natural water samples. The
gel-coated low-cost paper strips were also developed to easily detect metal ions in remote
areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/org4030032/s1. The supporting information contains the follow-
ing details. Figure S1. (a): Absorbance spectra of compounds 1 and 2 in water; (b): Emission spectra
of compounds 1 and 2 in water; (c): Fluorescence titration of compound 1 with increasing concen-
tration of Fe3+; (d): Change in the emission intensity of compound 1 in the presence of increasing
concentrations of different metal ions; Figure S2. (a,b): Job plot and binding constant calculation for
the interaction of compound 1 with Fe3+ and Hg2+; Figure S3. (a,b): Job plot and binding constant
calculation for the interaction of compound 2 with Hg2+; Figure S4. (a,b): EDTA-mediated recovery
plot for the interaction of compound 1 with Fe3+ and Hg2+; (c) EDTA-mediated recovery plot for the
interaction of compound 2 with Hg2+; Figure S5. (a): FT-IR spectra for the interaction of compound 1
with Cu2+, Fe3+, and Hg2+; (b): FT-IR spectra for the interaction of compound 2 with Cu2+ and Hg2+;
Figure S6: AFM images for the interaction of compound 1 with Cu2+, Fe3+, and Hg2+; Table S1. (a–c):
Recovery experiment of Cu2+, Fe3+, and Hg2+ using compound 1 in a tap water sample; Table S2.
(a,b): Recovery experiment of Cu2+ and Hg2+ using compound 2 in a tap water sample.
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