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Abstract: For practitioners and researchers, construction safety is a major concern. The construction
industry is among the world’s most dangerous industries, with a high number of accidents and
fatalities. Workers in the construction industry are still exposed to safety risks even after conducting
risk assessments. The use of personal protective equipment (PPE) is essential to help reduce the
risks to laborers and engineers on construction sites. Developments in the field of computer vision
and data analytics, especially using deep learning algorithms, have the potential to address this
challenge in construction. This study developed several models to enhance the safety compliance of
construction workers with respect to PPE. Through the utilization of convolutional neural networks
(CNNs) and the application of transfer learning principles, this study builds upon the foundational
YOLO-v5 and YOLO-v8 architectures. The resultant model excels in predicting six key categories:
person, vest, and four helmet colors. The developed model is validated using a high-quality CHV
benchmark dataset from the literature. The dataset is composed of 1330 images and manages to
account for a real construction site background, different gestures, varied angles and distances, and
multi-PPE. Consequently, the comparison among the ten models of YOLO-v5 (You Only Look Once)
and five models of YOLO-v8 showed that YOLO-v5x6’s running speed in analysis was faster than
that of YOLO-v5l; however, YOLO-v8m stands out for its higher precision and accuracy. Furthermore,
YOLOv8m has the best mean average precision (mAP), with a score of 92.30%, and the best F1 score,
at 0.89. Significantly, the attained mAP reflects a substantial 6.64% advancement over previous related
research studies. Accordingly, the proposed research has the capability of reducing and preventing
construction accidents that can result in death or serious injury.

Keywords: construction safety; PPE detection; deep learning; computer vision; mAP score; You Only
Look Once (YOLO)

1. Introduction

One of the riskiest fields of work is thought to be the construction industry. Compared
to workers in other industries, construction workers have twice as high a risk of injury. The
nature of construction sites is well known for its high volume of activity, large machinery,
frequent incidents, and numerous risks, all of which call for the careful consideration
and application of safety precautions. Personal protective equipment (PPE) is the main
line of defense against any threats that workers may encounter during their presence
on construction sites. Manual inspections, which may be laborious and prone to human
mistakes, are a major component of traditional ways of guaranteeing PPE compliance.
Further, it was found that 70% of fall accidents in 2017 occurred because of workers not
wearing personal protective equipment (PPE) on sites, as per a study conducted by Kang
et al. [1]. Further, statistics [2–4] show that there is a significant risk of worker fatalities
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and injuries in the construction sector. In addition, statistics on worker accidents in the
construction industry are continuously increasing, which is alarming and points to the
urgency of developing safety tracking systems for construction sites. For example, research
by the Korea Occupational Safety and Health Agency states that among all industries, the
construction sector has the second-highest rate of occupational accidents/injuries (25.5%)
and the highest rate of fatalities (46.7%) [5].

Notwithstanding human efforts in manual and visual inspections, computer vision
techniques have been developed and have progressed. This development is crystal clear to
see in the use of automated PPE detection systems, which have more options nowadays
than ever before. Such detection systems are a viable way to automate PPE recognition
on building sites, improving safety and lessening the workload for engineers and site
managers. Hence, significant efforts are currently being made to improve worker safety,
which also greatly benefits construction companies because PPE can reduce the probability
and severity of falling accidents. Creating recognition and monitoring systems for PPE used
during working hours is one of the targeted initiatives. That is why Ferdous and Ahsan [6]
created a YOLO-based architecture model for the recognition of workers wearing PPE on
construction sites. Consequently, artificial intelligence (AI) capabilities can be adapted
to create reasonably priced automation solutions for the construction industry, such as
monitoring systems that can identify workers and PPE and determine whether or not they
are adhering to safety requirements.

The major objective of this research is to exploit AI’s capabilities to create a PPE
detection system by using YOLO-based architecture. This aim can be established by
attaining the following subtargets: (1) evaluating the accuracy of the performance of YOLO-
based architectures in creating a PPE detection system; (2) comparing between models’
performance matrixes, such as precision, recall, and mAP; (3) exploring trade-offs between
the speed and accuracy of different YOLO architectural models; and (4) proposing future
recommendations for optimizing PPE detection systems in real-world applications.

The outline of this research study is delineated in the following manner. Section 2 enu-
merates previous research endeavors in relation to computer vision’s adaptation through
detection and recognition systems in fields such as the construction industry. Section 3
describes steps that were taken during the preparation of this study; it also incorporates the
research methodology framework. Section 4 illustrates the evolution of YOLO across the
years, in addition to enumerating the framework used in the implementation of the YOLO
model. Section 5 represents the dataset used in the training, validation, and testing of
different YOLO models, as well as incorporating the code used for the training of the YOLO
model. Section 6 highlights the performance evaluation matrix that can be considered as the
basis of comparison between the different YOLO models. Section 7 clarifies the results of
comparing the YOLO models in terms of the performance evolution matrix (recall, pression,
F1 score, and mAP). Section 8 summarizes the whole study and provides readers with
recommendations for future YOLO training to be more beneficial in the construction field.

2. Literature Review

Preserving the safety of construction workers during their presence on construction
sites is the main aim of this study. This can be achieved by reducing the probability
and/or severity of construction incidents. According to recent studies, as mentioned in the
introduction, construction workers’ safety is highly dependent on them wearing proper
personal protective equipment (PPE) during their presence on construction sites. Hence,
this study was conducted to continue work on recognizing PPE by using computer vision
applications. Consequently, this literature review shows a number of recent studies on
such computer vision techniques, including a number of investigations conducted within
the latest six years. The recent studies that will be discussed and reviewed in this paper
mainly concentrate on the progression of PPE recognition using computer vision techniques
such as convolutional neural networks (CNNs) and the application of transfer learning
principles. In addition, by examining these studies, a research gap can be identified, as well
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as recommendations for future research for the development of an effective PPE detection
system that can be tailored specifically for the construction field. As a result, and in terms
of incident reduction and avoidance, this would be advantageous.

In this regard, the Web of Science (WoS), which incorporates a significant number
of high-impact papers, is the most widely used platform for databases of the scientific
literature. Thus, researchers often use this database to collect precise data for bibliometric
analyses [7,8]. Consequently, the investigation of the literature review for this research is
obtained from the WoS database. Accordingly, to find the desired papers in the database,
a variety of criteria are analyzed, such as (construction worker) AND ((safety) OR (risk)
OR (health)) AND ((machine learning) OR (deep learning) OR (computer vision) OR
(vision-based))).

In a study conducted by Delhi et al. [9], the researchers applied a type of deep learning,
which is computer vision, by recognizing the PPE on construction sites on an immediate ba-
sis. Accordingly, the researchers collected the dataset on which they conducted the research
manually, in addition to applying web scraping. The dataset contained around 2500 images
that were classified into four classes, as follows: NOHARDHAT, NOJACKET, SAFE, and
NOT SAFE. Hence, YOLO-v3 was trained on that dataset. Furthermore, following the
augmentation step based on the data, YOLO-v3 was trained on a sample of data. This
gives the model resilience and generalization by performing flipping along with rotation
on both sides, left and right, with an angle of 30 degrees. Further, by using a validation
test strategy, the provided dataset was split into 90%, 8%, and 2% random segments for
training, validation, and testing, respectively. Consequently, and based on the tested data,
the model succeeded to fulfil an mAP and F1 score of 97%.

Deep learning neural networks were applied in the research of Wang et al. [10] for
real-time detection and recognizing of objects to address the problem of worker safety
by making sure that employees followed safety protocol. They consequently suggested
applying YOLO-v3, YOLO-v4, and YOLO-v5, which are detectors based on deep learning
of YOLO architectures. They used data from a high-quality dataset called CHV. Such data
incorporated 1330 images extracted from Wang et al.’s [11] dataset and broken down into
six categories: person, vest, and helmets with four colors. The research results showed
that YOLO-v5s had the fastest GPU performance of 52 FPS, while YOLO-v5x had the best
mAP of 86.55%. A newly introduced cognitive analysis of safety measures for a monitoring
system was proposed by Torrse et al. in another study [12]. Such a system was used in
this study to instantly determine whether personal protective equipment is being used
appropriately based on data gathered by the monitoring of CCTV cameras. Further, the
system employed a deep learning algorithm to identify objects. Hence, the study resulted
in the creation of a YOLO-v4 system that could achieve an 80.19% mAP at 80 frames per
second in real time. Most of the current deep learning detectors had limitations with
far-away objects and close-range objects [13,14]. YOLO models perform with a higher
accuracy more than other detection models.

A similar study by Hayat and Morgado Dias [15] adopted a deep learning method
for real time for the sake of identifying the heads and helmets on construction site work-
ers. This paper investigated three different iterations of the well-known deep learning
architecture YOLO: YOLO-v3, YOLO-v4, and YOLO-v5x. The model was implemented
by the authors using the public dataset made available by Make ML [16]. Therefore, a
huge number of 3000 instances were used for training, and 1000 instances were used for
testing. Furthermore, in this study, only the “Head” and “Helmet” were used as classes.
To address the preprocessing of the images, power-law transformation [17] was used for
image preprocessing so as to increase the quality of contrast and lighting in such data. With
accuracy, precision, recall, and F1 scores of 92%, 92.4%, 89.2%, and 90.8%, respectively, the
YOLO-v5x model gave the best accuracy and, hence, the best performance.

Gallo et al. suggested a system in [18] to recognize personal protective equipment (PPE)
in hazardous industrial areas. Deep neural networks were used for the system’s analysis
of a video stream. Five models—YOLO-v4, YOLO-v4-Tiny, SSD, CenterNet, EfficientDet,
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and MobileNet—were trained to determine whether or not the workers are implementing
the safety measures by wearing safety equipment. The authors utilized three datasets:
two were collected under controlled conditions and incorporated 215 and 236 images,
respectively; the third one is an available public dataset [19] with 7035 images. Because
of its rapid detection speed, YOLO-v4-tiny was implemented in the system, achieving an
mAP of 86%. Further, and by using the INRIA person dataset [20], Li et al. [21] were able
to train an autonomous safety-helmet-wearing recognition system. Furthermore, a safety
helmet detection model was suggested by Wang et al. [22], trained using 10,000 photos
taken on construction sites by 10 distinct surveillance cameras. Geng et al. [23] presented
an enhanced helmet recognition method based on an unbalanced dataset of 7581 photos,
the majority of which included a person wearing a helmet against a complicated backdrop.
By testing it on 689 photos, it resulted in a label confidence of 0.982.

A transfer learning model-based automated technique was developed by Vibhuti
et al. [24] to identify individuals who were not wearing masks in public in the period of
the COVID-19 epidemic. InceptionV3, ResNet50, VGG16, MobileNet, MobileNetV2, and
Xception were among the deep learning models that were employed in the intervention.
Training, testing, and validation were conducted using the Simulated Masked Face dataset
(SMFD) [25]. Through the use of fine-tuning strategy, the pretrained Inception (V3) model
was developed and optimized. The greatest results, obtained with the SMFD dataset [26],
were 100% accuracy and specificity in testing and 99.92% in training. The main outcomes
highlighted the excellent accuracy of non-mask-wearer recognition automation achieved
by the proposed transfer learning model.

Notwithstanding the above-mentioned studies, the previous studies and research did
not address a detailed comparative analysis between the different YOLO-based architecture
models’ performance. This is deemed to be the research gap in the mentioned studies that is
addressed and dealt with in this research by applying a detailed comparative performance
analysis between the different YOLO models.

3. Research Methodology

In light of developing this research, we went through different phases to reach the
optimum YOLO model in detecting PPE, as shown in Figure 1. The Web of Science (WoS)
database was employed in this research to compile an extensive collection for the literature
review to guide and inform our investigation. Moreover, in order to guarantee relevant
articles and lay the groundwork for an extensive literature review, the search criteria were
carefully crafted. Consequently, after gaining knowledge from previous research and
studying the limitations of other research, building up different YOLO models was our
goal to reach. This was achieved using Google Colab (accessed on 11 November 2023).
The preparation of the dataset comprising both images and annotations was an important
process to ensure that the results would be reliable. Subsequently, the stages of training and
validating YOLO models were the highlighted phases. The model testing was performed
by calculating performance evaluation metrics such as precision, recall, F1 score, and mAP.
In the final stages, a comparative analysis of different YOLO models was conducted by
analyzing the results to draw meaningful conclusions and contribute to the evolving field
of detecting PPEs.
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4. Materials and Methods
4.1. Framework

In this study, YOLO-v5 and YOLO-v8 with their different versions were used as
the primary models for classes detection. YOLO was first introduced to the computer
vision field in 2015 by Joseph Redmon et al. [27] under a paper entitled “You Only Look
Once: Unified, Real-Time Object Detection”. From 2015 to 2023, YOLO teams continued
developing YOLO models and versions from one year to another. Figure 2 shows the
evolution of YOLO across the years.
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Figure 2. Evolution of YOLO across the years.

YOLO is a one-stage single-shot detection. YOLO uses a convolutional neural network
(CNN) to process an image. YOLO makes a single pass on the input image to make a predic-
tion for targeted classes. It processes the entire image only in a single pass. Different YOLO
models contain different architectures, but all of them contain the same structure, consisting
of three main parts: backbone, neck, and prediction. Figure 3 shows the framework of PPE
detection based on YOLO models.
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The backbone helps to produce visual features with different shapes and types by
using the convolutional neural network. The neck is a set of layers which mix and combine
image features in order to pass them to the next prediction step. The prediction stage takes
the input from the neck stage in order to perform classification for the targeted classes.

4.2. YOLO History

YOLO is a powerful real-time detection model which was first introduced in 2015
by Joseph Redmon et al. [27]. Later, in 2018, Joshep Redmon [28] upgraded YOLO-v1 to
YOLO-v3, which was faster. YOLO is a one-stage single-shot detection. YOLO makes a
single pass on an input image to make a prediction for targeted classes. Different versions
of YOLO are faster than the two-phase object detection model. Two-phase object detection
uses two phases for detection. The first phase generates a pool of probabilities for object
locations. The second phase ensure these probabilities to make a final decision regarding
targeted classes. YOLO-v3 is faster than two-phase object detection models such as the
R-CNN and fast R-CNN models [28]. YOLO-v3 is 1000 times faster than R-CNN and
100 times faster than fast R-CNN.

Bochkovskiy et al. [29] released an updated version for YOLO, which is YOLO-v4, in
2020. Comparing YOLO-v4 to YOLO-v3, YOLO-v4 enhances the average accuracy (AP)
and FPS by 10% and 12% [29]. Regarding YOLO’s structure, Darknet53 was replaced by
CSPDarknet53, which had a backbone stage. Later in 2020, a company called Ultralytics
released a new version for YOLO named YOLO-v5 [30,31]. Ultralytics released YOLO-v5
as a source code on the Github website. YOLO-v5 contains ten different models. Table 1
shows YOLO-v5’s different models and its characteristics [30].

On January 2023, Ultralytics released YOLO-v8. YOLO-v8 contains five different
models. The models of YOLO-v8 produce more efficient output while using an equivalent
number of parameters. Table 2 shows YOLO-v8’s different models and its characteris-
tics [32].

Figure 4 shows illustrates a comparison between different YOLO models trained on
640 image resolution [30].
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Table 1. YOLO-v5’s different models [30].

Model mAP (50–95) Speed (ms)

YOLO-v5n 28.0 45
YOLO-v5s 37.4 98
YOLO-v5m 45.4 224
YOLO-v5l 49.0 430
YOLO-v5x 50.7 766

YOLO-v5n6 36.0 153
YOLO-v5s6 44.8 385
YOLO-v5m6 51.3 887
YOLO-v5l6 53.7 1784
YOLO-v5x6 55.0 3136

Table 2. YOLO-v8’s different models [32].

Model mAP (50–95) Speed (ms)

YOLO-v8n 37.3 80.4
YOLO-v8s 44.9 128.4
YOLO-v8m 50.2 234.7
YOLO-v8l 52.9 375.2
YOLO-v8x 53.9 479.1
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5. Model Implementation
5.1. Dataset Description

A public dataset containing PPE images was obtained from [10]. The dataset contains
images for vests, colored helmets (blue, red, white, and yellow) and persons. The dataset
is named the CHV dataset. The CHV dataset contains photos from real construction site
conditions, unlike other datasets which contain images with backgrounds that are not from
construction sites. The CHV dataset contains 1330 images with 9209 instances in total. The
dataset contains different gestures (e.g., standing and bending), different angles (e.g., front,
back, left, right, up), and distances (e.g., far away and close distance). Figure 5 shows the
image distribution into training, testing, and validation sets.

The training set is used in the training process of the model; the testing set is used as
the base for evaluation of the model; and the validation set is used to ensure that the model
is predicting results as planned. Figure 6 shows the percentage of each class in training,
testing, and validation sets.
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5.2. Dataset Processing

The training process was performed on the cloud platform Google Colab, with a GPU
Nvidia K80/T4 ang GPU memory 16 GB with performance 4.1 TFLOPS/8.1 TFLOPS. The
CHV dataset [11] contains three categories: training, validation, and testing. Figure 7 shows
the code written on Google Colab in order to train, validate, and test by cloning up different
YOLO models from [30,32]. The models were trained with 50 training epochs.
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The number of weights a YOLO model learns in a single epoch is greatly increased
when a large number of images are sent to the model concurrently during training. In order
to handle this, datasets are usually split up into smaller batches, with “n” photos in each
batch, and training the model batch by batch. The size of the input image was 640 × 640
with batch size of 16 photos. After training on all batches, the results of each batch are
stored. The memory consumption increases as the number of batches increases. With a
batch size of 16, a momentum value of 0.937 was implemented in the model. Optimization
was carried out using the stochastic gradient descent (SGD) optimizer during the training
process. The learning rate was adjusted at an initial rate of 0.01 and then periodically using
a warm-up approach which applied a decay weight of 0.0005.

6. Metrics for Performance Evaluation

The CHV dataset was benchmarked by using state-of-the-art one-stage object detection
models. The CHV dataset was tested by different YOLO models such as YOLO-v5x,
YOLO-v5l, YOLO-v5m, YOLO-v5s, YOLO-v5n, YOLO-v5x6, YOLO-v5l6, YOLO-v5m6,
YOLO-v5s6, YOLO-v5n6, YOLO-v8x, YOLO-v8l, YOLO-v8m, YOLO-v8s, and YOLO-v8n.

A basic metric to measure the performance of object detection algorithms is intersection
over union (IOU). IOU is the ratio between the overlap of two boxes, ground truth box
(TB) and detection box (DB). It is calculated using Equation (1) [33]. Figure 8 shows the
relationship between the ground truth box (TB) and the detection box (DB).

IOU =
Intersection

Union
=

TB ∩ DB
TB ∪ DB

(1)

After calculating an IOU, the confusion matrix criteria are applied using true positive
(TP), false positive (FP), and true negative (TN). These basic concepts are described to
aid in understanding the following equations, as follows. True positive (TP) is the correct
detection of a ground truth bounding box [33]. False positive (FP) is the incorrect detection
of a nonexistent object [33]. False negative (FN) is an undetected ground truth bounding
box [33]. In object detection, true negative (TN) results do not apply as there are an infinite
number of bounding boxes.
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One of the most important and difficult steps in machine learning is choosing appro-
priate metrics for performance evaluation. ROC curves, F1 score, precision, accuracy, and
recall are frequently used metrics for comparison between different models [34,35]. They
are not suitable for all datasets [36], especially when the positive and negative datasets
are imbalanced [37]. Since accuracy and ROC curves do not accurately reflect the true
classification performance of rare classes, they can be useless performance measures in
unbalanced datasets [38,39]. In the proposed analysis, the precision, recall, F1 score, and
mean average precision (mAP) were used as the evaluation metrics to perform comparison
between YOLO’s different models. Precision is the ability of a model to identify only the
relative objects [33]. Precision shows the percentage of correct positive predictions among
all detections [40], as shown in Equation (2).

Precison =
TP

TP + FP
=

TP
All Detections

(2)

Recall is the ability of the model to find all the relevant cases [33]. Recall shows the
percentage of true positives among all ground truths [41], as shown in Equation (3).

Recall =
TP

TP + FN
=

TP
All Ground Truth

(3)

Moreover, the F1 score is the harmonic mean of precision and recall, as shown in
Equation (4).

F1 score = 2 × Precision × Recall
Precision × Recall

(4)

Additionally, the most common metric used to measure the accuracy of the detection
is mean average precision (mAP). The mAP is a metric used to measure the accuracy of
object detectors over all classes, not only a specific class. The mAP is the score achieved by
comparing the detected bounding box to the ground truth bounding box. If IOU is greater
than or equal to 50%, the detection is counted as TP. The formula of the mAP is given in
Equation (5).

mAP =
1
n∑k=n

k=1 APk (5)

where APk is the average precision of class k and n represents the number of classes. In
this study, n = 6 (person, vest, and four colored helmets).

In addition to assessing the above metrics, multiple metrics such as model layers,
floating-point operations per second (FLOPs), and frames per second (FPS) were used
to evaluate the performance and efficiency of the YOLO models. The complexity of the
model is measured by FLOPs, which express the number of computations of the model. The
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number of frames per second is represented by FPS. These metrics aid in the comprehension
of variables including inference speed, computational cost, and model complexity.

7. Results and Discussion
7.1. YOLO Models Results Comparison

After running the model, precision × recall curves were extracted from the model. For
a precision × recall curve, the accuracy of the model increases when the precision has a
higher value accompanied with increase in the recall. Therefore, the curves which are closer
to the right corners have higher performance. The precision × recall curves for YOLO’s
different models are presented in Figure 9.
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In order to calculate the precision, recall, F1 score, and mean average precision (mAP),
the TP, FP, and FN need to be extracted from the model after validating it. Table 3 shows
the TP, FP, and FN for the ten YOLO-v5 models. Table 4 shows the TP, FP, and FN for the
five YOLO-v8 models. Regarding the person class, YOLO-v5m6 scored the highest TP,
which leads to an increase in precision and recall metrics. YOLO-v5n scored the highest FN,
which leads to a decrease in recall metric. For the vest class, YOLO-v8s scored the highest
TP, while YOLO-v5s6 scored the highest FN. For blue and red helmet classes, YOLO-v5n6
and YOLO-v8s scored the highest TP, while YOLO-v5N scored the highest FN. Other
comparisons can be deduced from Tables 3 and 4.
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Table 3. Performance comparative analysis of YOLO-v5 architectures.

Model Person Vest Blue Helmet Red Helmet White Helmet Yellow Helmet

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

YOLO-v5x 346 27 48 136 20 25 44 9 11 44 9 7 94 7 14 139 13 11
YOLO-v5l 350 26 65 142 15 24 39 7 9 39 7 7 95 6 12 140 17 12

YOLO-v5m 345 24 72 133 12 25 42 5 9 43 7 4 93 11 18 141 8 13
YOLO-v5s 333 28 95 136 13 37 39 7 13 38 4 8 89 8 21 135 8 14
YOLO-v5n 313 31 104 125 12 41 36 7 15 31 12 8 86 8 19 133 10 19
YOLO-v5x6 345 23 50 141 13 33 40 3 11 39 2 5 89 8 16 136 10 14
YOLO-v5l6 348 23 63 139 13 39 40 3 10 41 2 7 90 4 17 143 13 16

YOLO-v5m6 355 30 48 135 16 30 39 2 12 39 3 5 90 9 16 134 15 15
YOLO-v5s6 344 31 68 132 20 45 36 6 21 35 4 7 85 6 26 126 8 19
YOLO-v5n6 346 85 51 135 108 33 44 9 11 44 9 7 82 30 28 139 13 11

Table 4. Performance comparative analysis of YOLO-v8 architectures.

Model Person Vest Blue Helmet Red Helmet White Helmet Yellow Helmet

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

YOLO-v8x 352 44 52 143 14 27 45 7 15 43 3 5 91 8 13 144 11 16
YOLO-v8l 350 36 55 140 17 27 40 5 10 37 5 5 92 7 13 146 15 20

YOLO-v8m 352 34 68 149 13 30 41 5 11 40 1 4 92 5 16 140 16 19
YOLO-v8s 350 47 56 151 26 28 40 3 11 41 4 6 90 7 16 141 17 19
YOLO-v8n 344 54 61 140 15 43 36 6 15 36 2 7 88 8 21 136 12 23

After calculating TP, FP, and FN, the precision, recall, F1 score, and mean average
precision (mAP) can now be calculated by applying Equations (2)–(5). Tables 5–8 show a
comparative analysis between YOLO’s different models. Figures 10–13 elaborate the results
shown in Tables 5–9.

Table 5. Precision comparative analysis for YOLO’s different models.

Model Person Vest Blue Helmet Red Helmet White Helmet Yellow Helmet Overall

YOLO-v5x 0.93 0.87 0.84 0.83 0.93 0.91 0.88
YOLO-v5l 0.93 0.90 0.84 0.84 0.94 0.89 0.89

YOLO-v5m 0.94 0.92 0.89 0.87 0.90 0.95 0.91
YOLO-v5s 0.92 0.91 0.84 0.90 0.91 0.94 0.90
YOLO-v5n 0.91 0.91 0.84 0.73 0.91 0.93 0.87
YOLO-v5x6 0.94 0.92 0.92 0.95 0.91 0.93 0.93
YOLO-v5l6 0.94 0.91 0.93 0.94 0.96 0.92 0.93

YOLO-v5m6 0.92 0.90 0.94 0.93 0.91 0.90 0.92
YOLO-v5s6 0.92 0.87 0.86 0.90 0.94 0.94 0.90
YOLO-v5n6 0.80 0.56 0.83 0.83 0.73 0.91 0.78
YOLO-v8x 0.89 0.91 0.87 0.94 0.92 0.93 0.91
YOLO-v8l 0.91 0.89 0.89 0.89 0.93 0.91 0.90

YOLO-v8m 0.91 0.92 0.89 0.98 0.95 0.90 0.92
YOLO-v8s 0.88 0.85 0.92 0.91 0.93 0.89 0.90
YOLO-v8n 0.87 0.90 0.86 0.96 0.92 0.92 0.90
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Table 6. Recall comparative analysis for YOLO’s different models.

Model Person Vest Blue Helmet Red Helmet White Helmet Yellow Helmet Overall

YOLO-v5x 0.88 0.84 0.81 0.86 0.87 0.93 0.86
YOLO-v5l 0.84 0.86 0.82 0.85 0.89 0.92 0.86

YOLO-v5m 0.83 0.84 0.82 0.92 0.84 0.92 0.86
YOLO-v5s 0.78 0.79 0.75 0.82 0.81 0.91 0.81
YOLO-v5n 0.75 0.75 0.70 0.80 0.82 0.88 0.78
YOLO-v5x6 0.87 0.81 0.79 0.88 0.85 0.91 0.85
YOLO-v5l6 0.85 0.78 0.80 0.86 0.84 0.90 0.84

YOLO-v5m6 0.88 0.82 0.77 0.88 0.85 0.90 0.85
YOLO-v5s6 0.84 0.75 0.64 0.84 0.77 0.87 0.78
YOLO-v5n6 0.87 0.80 0.80 0.86 0.74 0.93 0.83
YOLO-v8x 0.87 0.84 0.75 0.90 0.88 0.90 0.86
YOLO-v8l 0.87 0.84 0.80 0.88 0.87 0.88 0.86

YOLO-v8m 0.84 0.83 0.80 0.90 0.85 0.88 0.85
YOLO-v8s 0.86 0.84 0.79 0.88 0.85 0.88 0.85
YOLO-v8n 0.85 0.77 0.71 0.84 0.81 0.86 0.80

Table 7. F1 score comparative analysis for YOLO’s different models.

Model Person Vest Blue Helmet Red Helmet White Helmet Yellow Helmet Overall

YOLO-v5x 0.90 0.86 0.82 0.84 0.90 0.92 0.87
YOLO-v5l 0.88 0.88 0.83 0.85 0.91 0.91 0.88

YOLO-v5m 0.88 0.88 0.85 0.89 0.87 0.93 0.88
YOLO-v5s 0.84 0.84 0.79 0.86 0.86 0.92 0.85
YOLO-v5n 0.82 0.82 0.76 0.76 0.86 0.90 0.82
YOLO-v5x6 0.90 0.86 0.85 0.91 0.88 0.92 0.89
YOLO-v5l6 0.89 0.84 0.86 0.90 0.90 0.91 0.88

YOLO-v5m6 0.90 0.86 0.85 0.90 0.88 0.90 0.88
YOLO-v5s6 0.87 0.80 0.73 0.87 0.84 0.91 0.84
YOLO-v5n6 0.84 0.66 0.81 0.85 0.74 0.92 0.80
YOLO-v8x 0.88 0.88 0.81 0.92 0.89 0.91 0.88
YOLO-v8l 0.89 0.86 0.84 0.88 0.90 0.89 0.88

YOLO-v8m 0.87 0.87 0.84 0.94 0.90 0.89 0.88
YOLO-v8s 0.87 0.85 0.85 0.90 0.89 0.89 0.87
YOLO-v8n 0.86 0.83 0.78 0.89 0.86 0.89 0.85

Table 8. mAP comparative analysis for YOLO’s different models.

Model Person Vest Blue Helmet Red Helmet White Helmet Yellow Helmet Overall

YOLO-v5x 0.91 0.87 0.84 0.90 0.92 0.95 0.90
YOLO-v5l 0.92 0.88 0.84 0.89 0.94 0.93 0.90

YOLO-v5m 0.91 0.88 0.84 0.91 0.91 0.94 0.90
YOLO-v5s 0.91 0.87 0.77 0.86 0.89 0.93 0.87
YOLO-v5n 0.88 0.84 0.76 0.85 0.87 0.90 0.85
YOLO-v5x6 0.92 0.88 0.83 0.93 0.90 0.93 0.90
YOLO-v5l6 0.92 0.86 0.84 0.90 0.92 0.94 0.90

YOLO-v5m6 0.91 0.86 0.81 0.90 0.91 0.91 0.88
YOLO-v5s6 0.91 0.83 0.71 0.88 0.86 0.89 0.85
YOLO-v5n6 0.89 0.80 0.73 0.73 0.78 0.88 0.80
YOLO-v8x 0.93 0.90 0.83 0.95 0.92 0.92 0.91
YOLO-v8l 0.93 0.90 0.84 0.93 0.92 0.94 0.91

YOLO-v8m 0.91 0.90 0.88 0.96 0.93 0.93 0.92
YOLO-v8s 0.91 0.89 0.86 0.90 0.91 0.91 0.89
YOLO-v8n 0.91 0.88 0.79 0.91 0.88 0.92 0.88
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Table 9. Complexity, FPS, and computational cost for YOLO’s different models.

Model Layers FPS Parameters (Million) FLOPS (Giga)

YOLO-v5x 322 26.32 86.21 203.90
YOLO-v5l 212 52.36 20.87 47.90

YOLO-v5m 267 42.02 46.14 107.70
YOLO-v5s 157 63.69 7.03 15.80
YOLO-v5n 157 84.75 1.77 4.20
YOLO-v5x6 416 21.01 140.02 208.00
YOLO-v5l6 346 32.57 76.16 110.00

YOLO-v5m6 276 46.73 35.28 49.00
YOLO-v5s6 206 63.69 12.33 16.20
YOLO-v5n6 206 87.72 3.10 4.20
YOLO-v8x 268 20.37 68.13 214.55
YOLO-v8l 268 28.49 43.61 125.77

YOLO-v8m 218 41.32 25.84 55.41
YOLO-v8s 168 38.61 68.13 26.06
YOLO-v8n 168 59.17 3.01 6.23

7.2. Analysis of the Results

Regarding detailed comparative analysis of YOLO-based architectures for the de-
tection of personal protective equipment (PPE) on construction sites, key findings were
shown by various performance metrics. Notably, as shown in Table 5, in terms of preci-
sion, three models demonstrated exceptional accuracy in identifying PPE instances within
construction site images. YOLO-v5x6 and YOLO-v5l6 were the top-performing models in
terms of precision. Following them closely was YOLO-v8m. Turning our attention to the
recall metric, the results show that YOLO-v5x, YOLO-v5l, and YOLO-v8m shared identical
recall values. This suggests a comparable ability among these models to effectively capture
instances of personal protective equipment in different construction site scenarios.

The F1 score, harmonic mean of precision, and recall revealed another set of top-
performing models. YOLO-v5x6 stands out with the highest F1 score of 0.89, closely
followed by YOLO-v5l, YOLO-v5m, YOLO-v8m, and YOLO-v8x, all achieving an F1 score
of 0.88. These models demonstrated strong overall performance, balancing precision and
recall effectively. YOLO-v5n6 and YOLO-v5n exhibited slightly lower F1 scores at 0.8 and
0.82, respectively. In general, these YOLO models offer reliable object detection capabilities,
with specific variations in F1 scores that users can consider based on their application
requirements.
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The mAP (mean average precision) comparative analysis for various YOLO models
indicates a consistent level of performance across different configurations. YOLO-v8m
leads the group with the highest mAP of 0.92, closely followed by YOLO-v8x and YOLO-
v8l, both achieving an mAP of 0.91. YOLO-v5x, YOLO-v5l6, YOLO-v5l, and YOLO-v5m
share a common mAP of 0.90, highlighting their comparable precision in object detection.
YOLO-v5s, YOLO-8n, and YOLO-v8s also delivered solid performance, with mAP values
ranging from 0.87 to 0.89. YOLO-v5n6 and YOLO-v5s6 exhibited slightly lower mAPs at
0.8 and 0.85, respectively. Overall, these YOLO models showcase reliable and competitive
mAP scores, with users able to choose based on specific application requirements and
computational considerations.

Considering the values of model layers, YOLO-v5x6 has the highest number of layers
(416), indicating a more complex architecture. YOLO-v5s and YOLO-v5n have the fewest
layers (157), suggesting a simpler architecture. Regarding FPS, YOLO-v5n6 has the highest
FPS (87.72), indicating faster processing of frames per second. YOLO-v5s and YOLO-v5s6
also have high FPS values, suggesting good real-time performance. YOLO-v8x has the
lowest FPS (20.37), indicating slower frame processing. Concerning models’ parameters,
YOLO-v5x6 has the highest number of parameters (140.02 million), signifying a more
complex model. YOLO-v5n has the lowest number of parameters (1.77 million), indicating
a simpler model.

In addition to the abovementioned results, and after comparing computational cost
for different models, it was deduced that YOLO-v8x has the highest FLOPS (214 million),
suggesting higher computational efficiency. YOLO-v5x has the highest FLOPS among
YOLO-v5 models, indicating higher computational load. Moreover, YOLO-v8x has the
highest FLOPS among YOLO-v8 models. YOLO-v5n and YOLO-v5n6 have the lowest
FLOPS (4.20 million), suggesting lower computational load. Accordingly, YOLO-v5n6
stands out for its high FPS and low FLOPS, indicating good real-time performance and
computational efficiency. YOLO-v5x6, while having a high number of parameters, has a
lower FPS, suggesting a trade-off between complexity and processing speed. The other
models fall in between, offering a range of choices based on specific requirements for
model complexity, real-time performance, and computational load. Notwithstanding the
forementioned, the benefit of this detailed analysis is that YOLO-v8m benchmarks against
previous related research studies with an increase of 6.64% advancement in mAP, making
it more reliable and accurate.

8. Conclusions

To sum up, the construction workers have a higher risk of becoming injured. It was
figured out that most of the construction accidents resulted from the construction workers’
negligence in wearing the personal protective equipment (PPE). Hence, the researchers
agreed that the PPE is the main line of defense against any threats that workers may
encounter during their presence on construction sites, as per Delhi et al. [9]. Therefore, the
YOLO-based architectural model was thought to be one of the AI applications in terms of
tracking the workers’ safety on construction sites by detecting the workers’ who are not
wearing the PPE.

In the light of the abovementioned conclusions and after experimenting with the CHV
dataset on YOLO-v5 ten models and YOLO-v8 five models, the precision, recall, F1 score,
mean average precision (mAP), number of layers, number of parameters, FPS, and FLOPS
were calculated to compare between different YOLO models. YOLO-v8m benchmarks
against previous related research studies with an increase of 6.64% advancement in mAP,
making it more suitable for applications where detection performance is the measure
for decision making. These findings collectively help to understand the strengths and
capabilities of each YOLO-based architecture in the context of PPE detection on construction
sites, providing valuable insights for the development and deployment of computer vision
solutions in occupational safety applications.
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In this regard, one drawback of different YOLO models is their difficulty in identifying
small objects at a long distance, especially when there are some huge objects nearby. This
might be resolved by changing or developing the architecture. Additionally, even though
the model was extended to include six distinct PPE classes, it may be expanded more to
detect more PPE sets, such as masks, glasses, and gloves. Regarding future research, our
studies will be expanded to optimize each model and enhance its performance by gathering
original datasets from different actual construction sites, which could help more in the
model training process. This will be reflected in more accurate predictions.
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