
Citation: Kampezidou, S.I.; Tikayat

Ray, A.; Bhat, A.P.; Pinon Fischer, O.J.;

Mavris, D.N. Fundamental

Components and Principles of

Supervised Machine Learning

Workflows with Numerical and

Categorical Data. Eng 2024, 5, 384–416.

https://doi.org/10.3390/eng5010021

Academic Editor: Gian Carlo

Cardarilli

Received: 11 December 2023

Revised: 25 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Fundamental Components and Principles of Supervised Machine
Learning Workflows with Numerical and Categorical Data
Styliani I. Kampezidou 1,* , Archana Tikayat Ray 2 , Anirudh Prabhakara Bhat 3 , Olivia J. Pinon Fischer 1

and Dimitri N. Mavris 1

1 Aerospace Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA; olivia.pinon@asdl.gatech.edu (O.J.P.F.);
dimitri.mavris@aerospace.gatech.edu (D.N.M.)

2 AI Fusion Technologies, Toronto, ON M5V 3Z5, Canada; archanatikayatray@gmail.com
3 Amazon, Toronto, ON M5H 4A9, Canada; anirbhat@amazon.com
* Correspondence: skampezidou@gatech.edu

Abstract: This paper offers a comprehensive examination of the process involved in developing and
automating supervised end-to-end machine learning workflows for forecasting and classification
purposes. It offers a complete overview of the components (i.e., feature engineering and model
selection), principles (i.e., bias–variance decomposition, model complexity, overfitting, model sensi-
tivity to feature assumptions and scaling, and output interpretability), models (i.e., neural networks
and regression models), methods (i.e., cross-validation and data augmentation), metrics (i.e., Mean
Squared Error and F1-score) and tools that rule most supervised learning applications with numerical
and categorical data, as well as their integration, automation, and deployment. The end goal and
contribution of this paper is the education and guidance of the non-AI expert academic community
regarding complete and rigorous machine learning workflows and data science practices, from prob-
lem scoping to design and state-of-the-art automation tools, including basic principles and reasoning
in the choice of methods. The paper delves into the critical stages of supervised machine learning
workflow development, many of which are often omitted by researchers, and covers foundational
concepts essential for understanding and optimizing a functional machine learning workflow, thereby
offering a holistic view of task-specific application development for applied researchers who are
non-AI experts. This paper may be of significant value to academic researchers developing and
prototyping machine learning workflows for their own research or as customer-tailored solutions for
government and industry partners.

Keywords: machine learning workflow; supervised learning; numerical data; categorical data; data
engineering; extraction, loading, transformation; feature engineering; automated feature extraction;
machine learning engineering; training, validation, evaluation; test-driven development; automated
machine learning; model deployment

1. Introduction

Several machine learning applications are implemented as a workflow, which starts
with data collection and ends with a model evaluation and simulations or software devel-
opment. Examples of fields that introduce custom machine learning workflow solutions
include, but are not limited to, malware detection and classification [1], software develop-
ment with adversarial attack classification [2], task fault prediction in workflows developed
with cloud services [3], pipeline optimization [4], the classification of forest stand species
via remote sensing [5], the detection of mechanical discontinuities in materials and the pre-
diction of martensitic transformation peak temperature of alloys [6,7], the optimization of
metabolic pathways and ranking of miRNAs retarding insulin gene transcription in human
islets [8,9], large-scale crop yield forecasting [10], classification and forecasting in chemical

Eng 2024, 5, 384–416. https://doi.org/10.3390/eng5010021 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng5010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0002-9206-1438
https://orcid.org/0000-0003-3400-9014
https://orcid.org/0009-0001-2754-2745
https://orcid.org/0000-0002-2233-1391
https://orcid.org/0000-0001-8783-4988
https://doi.org/10.3390/eng5010021
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng5010021?type=check_update&version=1

Eng 2024, 5 385

engineering [11], predictive modeling in medicine [12], protein engineering/biophysical
screening in pharmaceutical sciences [13], the forecasting of oil uptake in batter for food sci-
ence [14], vegetation height classification, forecasting fractured coal seams, climate-related
forecasting in environmental sciences [15–17], and energy systems controlled by occupancy
detection or energy demand forecasting [18–22], as well as environmental impact estimation
from commercial aviation and aerospace requirements engineering [23–27]. Specifically
in Artificial Intelligence (AI), machine learning frameworks have been proposed for a
variety of data-driven expert systems, such as recommendation systems [28], decision
support systems [29], fault diagnosis [30,31], and crowdsourcing [32], as well as generic
data science [33] and big data [34] applications. Machine learning workflows or workflow
sub-modules are often automated, i.e., automated classification [35], automated machine
learning (AutoML) in healthcare [36], aviation [37,38], biology [39], and agriculture [40,41].

Many researchers, including non-AI experts, develop machine learning workflows
for a specific application as the previous references clearly suggest. Therefore, they could
benefit from guidance on how to develop rigorous and functional end-to-end machine
learning workflows, for their sustainable research or for a government or industry part-
ner, without missing important components or making decisions without considering
fundamental AI principles, and also from understanding the state-of-the-art automation
tools that can optimize their pipeline design and parameterization. Related work, such
as [42–44], addressed critical components of a machine learning workflow, but without a
focus on supervised cases with numerical and categorical data, while they were not very
thorough on the interconnection of the sub-modules, and lacked the explanation of the basic
principles required for the development of the workflow. Moreover, the references of [42]
are mostly websites and blogs, as opposed to scientific papers. On the other hand, relative
books in pipeline development focus more on coding using a specific language and often
lack important concept explanations, such as the bias–variance decomposition [45–47],
or may focus only on a specific part of the workflow, such as feature engineering [48],
lacking to provide a holistic overview of the entire workflow, the importance of every
sub-module and their meaningful, other than random, integration. Other review papers
focus entirely on the automation of a very specific machine learning area, such as time series
forecasting automation [49], and lack the explanation of basic AI principles and workflow
sub-module operation, interconnection and development for the education and guidance
of a non-AI researcher, seeking to understand and complete their manual workflow devel-
opment before automating. Last, there are some machine learning workflow automation
papers [41,50] that focus on a very specific application, i.e., biology or computer networks,
that are, however, relatively incomplete and missing important AI principles, as well as
references of methods outside of what has been published for that specific application
under consideration, making them appropriate to guide researchers only on the specific
application and not on the broader spectrum of supervised learning with numerical and
categorical data.

The contributions of this paper are threefold. First, this work introduces a methodol-
ogy for the development and thorough understanding of end-to-end supervised machine
learning workflows with numerical and categorical data. Second, this methodology is
accompanied by all the workflow sub-modules, methods, principles, models, and algo-
rithms, as well as their integration into the workflow, to guide and inform the non-AI
researcher on developing rigorous pipelines. Third, it provides state-of-the-art tools for
automated machine learning, including but not limited to automated feature engineering,
architecture search, hyperparameter search, etc. A systematic and in-depth explanation of
machine learning workflow sub-modules and interconnection allows researchers and non-
AI professionals to fully comprehend, improve, and excel in machine learning workflow
development and automation.

The rest of this paper is organized as follows. Section 2 provides an overview of
the end-to-end machine learning workflow architecture. Section 3 presents the data-
engineering sub-module, and Section 4 presents the machine learning sub-module, which

Eng 2024, 5 386

includes models and algorithms, as well as training, validation, and evaluation meth-
ods. Section 5 analyzes the model deployment step, Section 6 presents the state-of-the-art
automation methods in machine learning workflows and related coding practices, and
Section 8 provides conclusions.

2. End-to-End Architecture of Machine Learning Workflows

The workflow of every machine learning (ML) project broadly consists of four stages:
scoping of the problem, data engineering, modeling, and deployment of the model. In order
to deploy and maintain machine learning models in production reliably and efficiently, a
set of practices is necessary to automate the machine learning workflow while meeting busi-
ness and regulatory requirements, known as Machine Learning Operations (MLOps) [51].
MLOps is considered to be the cross-section of Development Operations (DevOps), data
engineering, and Machine Learning Engineering [51]. DevOps is another set of practices
that combine software development (Dev) and IT operations (Ops) in order to develop use-
ful software and maintain all data resources in data centers. The core principle of DevOps
is automation, and therefore Continuous Integration Continuous Delivery or Deployment
(CI/CD) is a very important component so that any software updates from developers are
integrated and delivered to the latest software version [52]. CI/CD requires continuous
development, continuous testing (passing a series of predefined tests; see Section 5 for
more details), continuous integration, continuous deployment, and continuous monitoring.
Expertise in all three areas shown in Figure 1 is required for a machine learning workflow
to transition into a product.

Eng 2024, 1 3

includes models and algorithms, as well as training, validation, and evaluation meth-
ods. Section 5 analyzes the model deployment step, Section 6 presents the state-of-the-art
automation methods in machine learning workflows and related coding practices, and
Section 8 provides conclusions.

2. End-to-End Architecture of Machine Learning Workflows

The workflow of every machine learning (ML) project broadly consists of four stages:
scoping of the problem, data engineering, modeling, and deployment of the model. In order
to deploy and maintain machine learning models in production reliably and efficiently, a
set of practices is necessary to automate the machine learning workflow while meeting busi-
ness and regulatory requirements, known as Machine Learning Operations (MLOps) [51].
MLOps is considered to be the cross-section of Development Operations (DevOps), data
engineering, and Machine Learning Engineering [51]. DevOps is another set of practices
that combine software development (Dev) and IT operations (Ops) in order to develop use-
ful software and maintain all data resources in data centers. The core principle of DevOps
is automation, and therefore Continuous Integration Continuous Delivery or Deployment
(CI/CD) is a very important component so that any software updates from developers are
integrated and delivered to the latest software version [52]. CI/CD requires continuous
development, continuous testing (passing a series of predefined tests; see Section 5 for
more details), continuous integration, continuous deployment, and continuous monitoring.
Expertise in all three areas shown in Figure 1 is required for a machine learning workflow
to transition into a product.

Figure 1. MLOps: the cross-section of Machine Learning Engineering, DevOps, and data engineering.

A machine learning workflow begins with scoping the problem to be solved, exam-
ining the available resources, and deciding upon the feasibility of the project. Then, the
objectives and requirements are set, and the project is initiated. As Figure 2 shows, data
engineering, machine learning model engineering, and model development (production
code) are the subsequent stages that will be continuously updated in an automated way
every time new data arrive. This workflow will be incorporated into production code and
be subject to testing (Section 5) before every new version deployment as well as continuous
monitoring and maintenance throughout the entire lifecycle.

Figure 1. MLOps: the cross-section of Machine Learning Engineering, DevOps, and data engineering.

A machine learning workflow begins with scoping the problem to be solved, exam-
ining the available resources, and deciding upon the feasibility of the project. Then, the
objectives and requirements are set, and the project is initiated. As Figure 2 shows, data
engineering, machine learning model engineering, and model development (production
code) are the subsequent stages that will be continuously updated in an automated way
every time new data arrive. This workflow will be incorporated into production code and
be subject to testing (Section 5) before every new version deployment as well as continuous
monitoring and maintenance throughout the entire lifecycle.

Eng 2024, 5 387Eng 2024, 1 4

(a)

(b) (c)

Figure 2. (a) The machine learning workflow, (b) components of feature engineering, and (c) the
testing levels of Test-Driven Development (TDD).

3. Data Engineering

This section provides a detailed explanation of the various data-engineering stages.

3.1. Data Pipeline: Extraction, Loading and Transformation

Data can be extracted and fed into a machine learning workflow from several sources,
including databases (DBs), documents, sensors, and simulations as shown in Figure 2a.
Loading and integrating these data can be challenging, and it is an ongoing process, even
after the machine learning model has been deployed and an initial master database has
been constructed (continuous integration). All these data are in raw format and require
transformation (cleaning), i.e., treating missing values (i.e., imputation [53,54], complete
entry removal, matrix completion [55–59] depending on the randomness in the missing data
pattern or by producing the missing data with simulations [60]), correcting for data formats
(mathematical representation of numbers, time stamps, inconsistent text format, size and
resolution of images, etc.), de-duplicating [61] (with or without a unique key per real-world
entry) or removing redundant data, dealing with contradicting data, removing outliers
(point outliers, collective or contextual outliers), etc. Current industry practices for data
engineering include ELT tools (Extract, Load, Transform) [62], which offer data extraction,
data integration, and data transformation functions via some Application Programming
Interface (API). ELT is currently preferred as opposed to the previously followed approach

Figure 2. (a) The machine learning workflow, (b) components of feature engineering, and (c) the
testing levels of Test-Driven Development (TDD).

3. Data Engineering

This section provides a detailed explanation of the various data-engineering stages.

3.1. Data Pipeline: Extraction, Loading and Transformation

Data can be extracted and fed into a machine learning workflow from several sources,
including databases (DBs), documents, sensors, and simulations as shown in Figure 2a.
Loading and integrating these data can be challenging, and it is an ongoing process, even
after the machine learning model has been deployed and an initial master database has
been constructed (continuous integration). All these data are in raw format and require
transformation (cleaning), i.e., treating missing values (i.e., imputation [53,54], complete
entry removal, matrix completion [55–59] depending on the randomness in the missing data
pattern or by producing the missing data with simulations [60]), correcting for data formats
(mathematical representation of numbers, time stamps, inconsistent text format, size and
resolution of images, etc.), de-duplicating [61] (with or without a unique key per real-world
entry) or removing redundant data, dealing with contradicting data, removing outliers
(point outliers, collective or contextual outliers), etc. Current industry practices for data
engineering include ELT tools (Extract, Load, Transform) [62], which offer data extraction,
data integration, and data transformation functions via some Application Programming

Eng 2024, 5 388

Interface (API). ELT is currently preferred as opposed to the previously followed approach
ETL (Extract, Transform, Load) [63] because the data are integrated and saved before any
transformations occur (data lake implementation). This way, the same data can be accessed
by several analysts, scientists, and engineers before any transformations take place, and
the scalability of transformation scripts, as the data set increases, is no longer an issue.
These transformations are version-controlled, and therefore historical transformations can
be re-created by rolling back commits in ELT, while data and models can be easily tested.
ELT has been growing quickly due to the following enablers: the development of modern
data lakes, access to products that can load code and store data in data lakes, and the
necessity to open the ELT process to anyone who has Structured Query Language (SQL)
knowledge [64].

3.2. Feature Engineering

Feature engineering consists of feature generation, feature transformation, feature
selection, and automated feature extraction for Deep Learning as shown in Figure 2b.

3.2.1. Feature Generation

Feature generation refers to the process of creating new features for the purpose of
improving the success metric, which validates the machine learning model (Figure 2a), and
therefore, it is a very important step in the machine learning workflow. To extract new
features, data visualization and domain expertise [18,65] are necessary, but when unavail-
able or too complicated, Deep Learning neural network architectures can automatically
extract features with additional layers which are trained to simulate the appropriate feature
transformations that optimize training and generalization errors [66,67]. However, for a
researcher with a deeper understanding of the underlying problem, feature engineering
will result in producing features by generating, combining, or transforming existing fea-
tures (feature transformation explained next) in the direction of machine learning model
performance improvement, given an appropriate evaluation metric (Section 4.3). However,
it is important to consider a priori a machine learning model in terms of feature learning
capabilities. For example, linear regression models are able to learn sums and differences
easily but a complex relationship between inputs and outputs would not be learned easily
due to model linearity, and therefore, such a model could benefit from generated features
that explicitly capture that complicated non-linear relationship [68], or by linearizing these
relationships. On the other hand, it is wise to be careful regarding generated features such
as ratios because they can be harder to learn by most machine learning models. Moreover,
trees are more capable of capturing complex relationships between the inputs and outputs
(numerical or categorical) but could still benefit from explicit features generated to capture
those [69]. They can also benefit from group aggregate features, such as counts (features
that count the total number of times a binary value is present), minimum and maximum
feature values, and mean and standard deviation, while they are often used for feature
selection, a by-product of the tree training [70]. However, trees can be sensitive to noisy
inputs, so it is recommended to remove irrelevant input information, either by removing a
feature or by removing a feature’s component (i.e., higher frequency noise) [71].

3.2.2. Feature Transformation

Feature transformation includes feature scaling and the application of deterministic
transformations, and its significance in the machine learning workflow is explained here.
Feature scaling is an important part of the machine learning workflow since models that
are smooth functions of the input, such as linear regression, Logistic Regression (LR),
Neural Networks (NNs), and other matrix-based models can be affected by the feature
scale (values), given that the parameter vector which is updated via the Stochastic Gradient
Descent method will be biased towards specific features [72]. Stochastic Gradient Descent
algorithms also converge faster [73] with scaled feature values and with smaller derivatives
during back-propagation (a by-product of feature scaling). Feature scaling is also necessary

Eng 2024, 5 389

for Principal Component Analysis (PCA), used for dimensionality reduction, which may
also be biased since the direction of maximum variance can be affected by large feature
values. This issue has been bypassed by creating features with unit variance via scaling
with the standard deviation [74]. On the other hand, distance-based algorithms, such as
k-Nearest Neighbors (kNN), k-Means, and Support Vector Machines (SVMs) are mostly
affected by the range of values because they use distances between data points to determine
their similarity; therefore, imposing scaling methods that keep the range the same for
all features, such as Min-Max, can provide improved results [75]. Moreover, tree-based
supervised algorithms such as Classification and Regression Trees (CARTs), Random
Forests (RFs), and Gradient Boosted Decision Trees [71], are not affected by either the
scale or the range of the feature values [48] because most splitting criteria utilize one
feature at a time, and monotonic feature transformations do not affect the order of the data
points [71]. Hence, the same data point (threshold) will eventually be selected to split the
specific node of the tree, whether the data points are scaled or not [48]. Last, graphical
classifiers like Naive Bayes or Fisher Linear Discriminant Analysis (LDA) that rely on
variable distributions also do not require feature scaling. The most common feature-scaling
methods are summarized in Table 1, where x ∈ Rn is some feature. For an example of
the effect of different scaling methods on different supervised classification models and
algorithms, the reader is referred to [75], which provides performance index values for
a heart disease data set using different scaling methods on different machine learning
models and algorithms. It is up to the researcher to evaluate the impact of different scaling
methods on the workflow and decide the best way to move forward based on Table 1
recommendations, as well as by following a similar approach to the heart disease example
in [75].

Table 1. Summary of the most common numerical feature-scaling methods.

Scaling Method Scaled Feature Scaling Effect ML Algorithm/Model

Min-Max x′ = x−xmin

xmax−xmin x′ ∈ [0, 1] k-Means, kNN, SVM

Standardization (z-score) x′ = x−x
σ x′ = 0, σ = 1 Linear/Logistic

Regression, NN
l2-Normalization x′ = x

∥x∥2
∥ x′ ∥2= 1 Vector Space Model

To better understand the effect of scaling methods, it is worth mentioning that the
principle behind any scaling method in Table 1 that divides by a normalization constant
is that the feature is scaled without changing the shape of the single-feature distribution
(see Figures 2–18 in [48]). For example, if the data distribution is not Gaussian before
standardization, then it will not become Gaussian after. It will, however, have a mean of
0 and a standard deviation of 1 as mentioned in [48]. The interested researcher, however,
should be careful in choosing a scaling method in terms of sparsity in the original features.
For example, although Min-Max scaling bounds the scaled feature in the [0, 1] range, that is
not the case with standardization and l2-normalization. Min-Max and standardization both
subtract a value from the original feature, which may or may not be zero. In the case where
the original feature is sparse, doing so may result in a dense scaled feature if the subtracted
value is not zero, and that may further burden a classifier model [48].

Feature transformation also includes the application of deterministic, usually invert-
ible, transformations on numerical data. Following data visualization, transformations can
be applied to improve feature interpretability (for example, removing high-frequency noise,
introducing lag features, feature derivatives, etc. [49]) or conform with the assumptions of
machine learning models, such as linear regression (linearity, residual independence, ho-
moscedasticity, and residual normality). For example, in order for a researcher to use linear
regression models, a linear relationship between the independent variable and the target
variable is required, something not necessary if a neural network architecture was selected.
If that relationship is visualized to be non-linear, then a transformation can be decided to

Eng 2024, 5 390

improve the linearity between the transformed independent variable and the target [76]. A
common family of such transformations is the power transformations (power monotonic
functions), with special cases of the log transformation, the square root transformation, and
the multiplicative inverse transformation (reciprocal transformation), all for non-zero data.
The power transformations are parameterized by a non-negative value λ, which can be
found via statistical estimation methods. When feature values vary in both the positive and
negative range, other transformations, such as the multiplicative inverse transformation,
the Yeo–Johnson transformation [77], and the inverse hyperbolic sine transformation can be
applied. However, for transformations that assume non-negative data, constant offsets can
be applied first to the feature values to shift all values in the positive reals. Another reason
behind feature transformation is the principle of variance stabilization, which removes
the dependency of a population variance from the population mean (for examples, the
reader is referred to Figures 2–11 in [48]). Common variance stabilizing transformations
are the Fisher transformation [78] for the sample correlation coefficient, the square root
transformation or Anscombe transform [79] for Poisson data (count data), the Box–Cox
transformation [80] for regression analysis, and the arcsine square root transformation or
angular transformation for proportions (binomial data) [81].

Feature transformation is also required for categorical features for the same range and
value size reasons as in the numerical data case above. The most common transformation
techniques for categorical features are summarized in Table 2, and their advantages and
disadvantages are stated here. Researchers should be cautious in using Ordinal Encoding
because of its disadvantage in generating ordered numerical features when no order is
present in the original categorical data, which may affect the machine learning algorithm
or model [48]. On the other hand, One-Hot Encoding does not have that effect; it clearly
assigns one value to each category, leaving the 0 category free for missing data. However,
it has a sum of 1 amongst the k new features, which implies a linear dependency between
those transformed features. That can lead to issues with training linear models since
different linear combinations of the dependent features can produce the same predicted
target value [48]. By removing one of the degrees of freedom, One-Hot Encoding becomes
Dummy Encoding, where the reference category (missing category) is represented by all
zeros, which does not allow for easy missing data representation. Moreover, in terms
of interpretation, if a linear regression model is used, in the case of One-Hot Encoding,
the intercept represents the target variable’s mean, while with Dummy Encoding, the
intercept refers to the mean value of the target variable for the reference category [48].
Last, with Effect Coding, the resulting linear regression models are easier to interpret
because the intercept represents the mean of the target variable. On the other hand, the
dense −1 representation of the reference category can be expensive in terms of storage
and computation. Since all the aforementioned encoding methods are not scalable for
large data sets, scalability is only possible via feature compression. Feature compression
is translated into either feature hashing (linear and kernel models) or bin counting (linear
models and trees), where instead of the categorical feature, the conditional probability of
the target variable under that value is used. The back-off method [48] or the count-min
sketch [82] methods are available in the literature for rare categories in large data sets that
were previously transformed with bin counting [48].

To summarize the feature transformation sub-module, the interested researcher is
encouraged to also consider multivariate feature transformations, which transform several
features at a time and may have superior performance in specific circumstances where, for
example, the features are correlated [83] and high correlation can lead to feature redundancy.
One such example is whitening transformations (linear) which lead to uncorrelated features
with an identity covariance matrix [83]. The covariance matrix may first be expressed in a
decomposed form via, for example, Cholesky decomposition [84], before the whitening
transformation is applied. Other similar transformations include decorrelation, which
removes the correlations but leaves variances intact [83]; standardization, which sets the
variances to 1 but leaves the correlations intact; and coloring, which turns a random a

Eng 2024, 5 391

vector of white random variables (with identity covariance) into a random vector with a
pre-specified covariance matrix.

Table 2. Summary of most common methods for encoding categorical features.

Encoding Method Original Feature Transformed Features Result

Ordinal Encoding string1, string2, . . . 1, 2, . . . Nonordinal categorical data becomes ordinal
One-Hot Encoding string1, string2, . . . 001, 010, . . . k features for k categories, only one bit is “on”
Dummy Encoding string1, string2, . . . 001, 010, . . ., (000) k − 1 features for k categories, reference category is 0

Effect Encoding string1, string2, . . . 001, 010, . . ., (-1-1-1) k features for k categories, reference category is −1

3.2.3. Feature Selection

Feature selection is another crucial sub-module of the machine learning workflow,
often omitted for brevity or due to lack of expertise in this area. However, the lack of features
can lead to machine learning model underfitting and redundancy to overfitting, and
therefore proper feature selection is important [72], following the feature generation and
transformation steps. Feature selection can remove redundant features that are irrelevant to
the target variables (adding “noise”) by either selecting a subset of the features or by creating
a lower-dimensional representation (embedding) of the feature set, which adequately
summarizes the necessary information contained in the original feature space [48] but
unfortunately without the physical interpretation of the original features (dimensionality
reduction is traded for interpretability). Moreover, feature selection serves the purpose
of dimensionality reduction [85], which can remove the computational burden from the
machine learning model by removing linearly dependent features. A very common method
of dimensionality reduction is PCA, which is also a whitening transformation in the sense
that the transformed features are no longer correlated [48]. In PCA, the dimensionality k of
the embedding is subject to user choice, but the operational cost of PCA can be very high
for over a thousand features since it involves Singular Value Decomposition (SVD) of the
original feature matrix [48]. A very interesting application of PCA is anomaly detection
in time series data [86]. Since PCA projects the features to a linear subspace via linear
projection, it is not ideal when the data lie in a nonlinear manifold. It is also not ideal when
feature interpretability is necessary. In contrast, k-Means can perform feature selection
when data lie in a nonlinear manifold, by clustering features together and selecting one
feature to survive from each cluster (representative), while the rest are being discarded [48].
Another approach to dimensionality reduction is autoencoders [87], which, however, suffer
from a lack of feature interpretability as well. Common unsupervised and supervised
feature selection methods are summarized in Figure 3.

Unsupervised feature selection methods can be categorized as follows (a taxonomy is
provided in Figure 1 of [88]). Attention is required to determine whether the method can
directly incorporate categorical features or not.

1. Filter methods [88–90]: In this category of methods, feature selection is a pre-processing
step to the machine learning model training, and these methods are time-efficient:

(a) Statistical/information-based: These methods maximize feature relevance by
maximizing a dependence measure, such as variance, covariance, entropy [90],
linear correlation [91], Laplacian score [92], and mutual information. Represen-
tative methods include Feature Selection with Feature Similarity (FSFS) [91]
based on Maximal Information Compression Index (MICI) and Relevance Re-
dundancy Feature Selection (RRFS) [93]. Fisher’s criterion [94] is only used in
supervised learning.

(b) Spectral/sparsity learning: These methods perform spectral analysis or com-
bine spectral analysis with spectral learning. They find a trade-off between
Goodness-of-Fit and a feature similarity measure. Representative methods
include Multi-Cluster Feature Selection (MCFS) [95], Unsupervised Discrimi-

Eng 2024, 5 392

native Feature Selection (UDFS) [96], and Non-negative Discriminative Feature
Selection (NDFS) [89].

2. Wrapper methods [88–90]: In this category, feature selection is intertwined with the
machine learning model training and hence evaluated by the model performance.
These methods are more accurate than filter methods but less time-efficient:

(a) Sequential methods: These methods perform clustering on each feature subset
and evaluate the clustering results based on some criterion. They can be based
on Expectation Maximization or the Trace Criterion [97], or on the min/max of
intra/inter-cluster variance [98] and a decision can be made based on a score
that provides feature ranking. Another alternative is the Simplified Silhouette
Sequential Forward Selection (SS-SFS) proposed in [99].

(b) Iterative methods: Ref. [100] performs clustering and feature selection si-
multaneously by evaluating feature weights called feature saliences. Other
iterative methods include Local Learning-based Clustering with Feature Selec-
tion (LLC-fs) [101], Embedded Unsupervised Feature Selection (EUFS) [102],
and Dependence Guided Unsupervised Feature Selection (DGUFS) [103].

3. Embedded methods: In this category, feature selection is part of the machine learning
model training process [104].

Eng 2024, 1 9

native Feature Selection (UDFS) [96], and Non-negative Discriminative Feature
Selection (NDFS) [89].

2. Wrapper methods [88–90]: In this category, feature selection is intertwined with the
machine learning model training and hence evaluated by the model performance.
These methods are more accurate than filter methods but less time-efficient:

(a) Sequential methods: These methods perform clustering on each feature subset
and evaluate the clustering results based on some criterion. They can be based
on Expectation Maximization or the Trace Criterion [97], or on the min/max of
intra/inter-cluster variance [98] and a decision can be made based on a score
that provides feature ranking. Another alternative is the Simplified Silhouette
Sequential Forward Selection (SS-SFS) proposed in [99].

(b) Iterative methods: Ref. [100] performs clustering and feature selection si-
multaneously by evaluating feature weights called feature saliences. Other
iterative methods include Local Learning-based Clustering with Feature Selec-
tion (LLC-fs) [101], Embedded Unsupervised Feature Selection (EUFS) [102],
and Dependence Guided Unsupervised Feature Selection (DGUFS) [103].

3. Embedded methods: In this category, feature selection is part of the machine learning
model training process [104].

Figure 3. Taxonomy of feature selection methods.

Supervised feature selection methods include the deployment of a supervised machine
learning model when target variables are available. After training a supervised machine
learning model, a feature-ranking process is used to select the most important features that
adequately describe the outputs (one or more target variables). Three main approaches in
supervised feature selection are explained below. A more thorough overview of feature
selection methods can be found in the book [104] and in chapter 19 of the book [105].

1. Shrinkage-based methods [106]: Single-output or multi-output regression models with
L1- or L2-regularization can be trained via k-fold cross-validation (CV) to optimize
a shrinkage parameter λ which trades-off model bias for variance. Penalization of
the model weights with an l1 norm is appropriate for feature selection because it can
introduce feature sparsity (Lasso estimator [107]) when penalization with an l2 norm
(Ridge Regression [69]) does not force feature weights to zero. The combination of
the two is called Elastic Net, which is useful when there is a group of features with
high pairwise correlations [108]. Multi-output regression models perform better when
outputs are correlated, i.e., when multi-task learning is desired, instead of independent
task learning [109,110]. Multi-output models utilize an l2,1 norm penalization term,
which either includes or excludes a feature from the model for all outputs [111]. In the
multi-output case, the average weight of a feature across all outputs is obtained, and

Figure 3. Taxonomy of feature selection methods.

Supervised feature selection methods include the deployment of a supervised machine
learning model when target variables are available. After training a supervised machine
learning model, a feature-ranking process is used to select the most important features that
adequately describe the outputs (one or more target variables). Three main approaches in
supervised feature selection are explained below. A more thorough overview of feature
selection methods can be found in the book [104] and in chapter 19 of the book [105].

1. Shrinkage-based methods [106]: Single-output or multi-output regression models with
L1- or L2-regularization can be trained via k-fold cross-validation (CV) to optimize
a shrinkage parameter λ which trades-off model bias for variance. Penalization of
the model weights with an l1 norm is appropriate for feature selection because it can
introduce feature sparsity (Lasso estimator [107]) when penalization with an l2 norm
(Ridge Regression [69]) does not force feature weights to zero. The combination of
the two is called Elastic Net, which is useful when there is a group of features with
high pairwise correlations [108]. Multi-output regression models perform better when
outputs are correlated, i.e., when multi-task learning is desired, instead of independent
task learning [109,110]. Multi-output models utilize an l2,1 norm penalization term,
which either includes or excludes a feature from the model for all outputs [111]. In the
multi-output case, the average weight of a feature across all outputs is obtained, and
then these average weights are normalized in the [0, 1] range (relative importance)

Eng 2024, 5 393

with the min-max scaling method so that a rank of feature relative importance is
derived [23].

2. Tree-based methods: CART can be trained in a supervised sense and provide feature
ranking as a byproduct of the training process [71] in single-output or multi-output
Decision Trees (DTs) [112]. DTs are over-sensitive to the training set, irrelevant infor-
mation, and noise; therefore, prior unsupervised feature selection is strongly encour-
aged via one of the methods proposed above. Moreover, DTs are known to overfit,
and hence, ensembles of DTs [112], such as Bagging (bootstrap aggregation) [113],
Boosted Trees [114] and Rotation Forests, are constructed to cope with overfitting.
The RF, a characteristic example of Bagging, can generate diverse trees by bootstrap
sampling and/or randomly selecting a subset of the features during learning [115,116].
Although an RF is faster and easier to train than a boosted tree [117–119], it is less
accurate and sacrifices the intrinsic interpretability (explanation of output value and
feature ranking) present in DTs [69]. In particular, feature selection happens inherently
in single-output and multi-output DTs as the tree is being constructed since the split-
ting criteria used at each node select the feature which performs the most successful
separation of the remaining examples [71]. Therefore, in RFs, feature ranking is either
impurity-based, such as the Mean Decrease in Impurity (MDI), or permutation-based,
such as Permutation Importance [115]. MDI is also known as Mean Decrease Gini or
Gini Importance.

3. Permutation Importance [115] is not only useful in RFs which have lost the inherent
feature-ranking mechanism of the tree but in other supervised machine learning
models as well. Permutation Importance is better than MDI because it is not computed
on the training set but on the Out-of-Bag (OoB) sample and is, therefore, more useful
to inform the feature importance for predictions [115]. Moreover, MDI significantly
favors numerical features over categorical ones as well as high-cardinality categorical
features (many categories) over low-cardinality ones [115], something that does not
happen with Permutation Importance. The Permutation Importance of a feature is
calculated as the difference between the original error and the average permuted error
of this feature, over a number of specified repetitions [115]. The permuted error of each
feature (the OoB error) occurs when that feature is permuted (shuffled). Permutation is
a mechanism that breaks the relationship between that feature and the target variables,
revealing the importance of a feature to the model training accuracy [120]. In trees and
other supervised methods which use a feature-ranking approach to feature selection,
the least-performing features in terms of relative importance can be excluded from
the feature set.

3.2.4. Automated Feature Extraction

An important note on feature engineering is that as the number of features and sam-
ples increases, data engineering, feature engineering, and Machine Learning Engineering
methods require scaling and modification to adjust to the new challenges. This concept
was first introduced by Richard Bellman, as the Curse of Dimensionality (CoD) [121]. This
principle is important to understand the need behind automated feature engineering.

CoD is associated with several challenges. First, the data representation in higher
dimensions can be very sparse since the data tend to concentrate in lower-dimensional
spaces, and therefore the sample size necessary for learning a statistical or machine learning
model grows exponentially [122]. Second, the pairwise distances of the data points in
higher-dimensional spaces increase, and they become more homogeneous; hence, observa-
tions may appear to be equally distanced from each other [123]. Two additional challenges
related to CoD arise in the case of high-dimensional data clustering and anomaly detec-
tion. Those are the relevant attribute identification, i.e., the difficulty of describing the
relevant quantitative locality of data instances in the high-dimensional space, and hubness,
which refers to the tendency of high-dimensional data to contain data points that appear
frequently in nearest neighbor clusters, known as hubs [124].

Eng 2024, 5 394

Table 3. Summary of most common automated feature engineering tools for high-dimensional data
(FE = feature engineering).

Automated FE Tool Operation Tool Tested On Developer Paper

ExploreKit Feature generation and ranking DT, SVM, RF UC Berkeley [125]
One Button Machine Feature discovery in relational DBs RF, XGBOOST IBM [126]

AutoLearn Feature generation and selection kNN, LR, SVM, RF,
Adaboost, NN, DT IIIT [127]

GeP Feature
Construction Feature generation from GeP on DTs kNN, DT, Naive Bayes Wellington University [128]

Cognito Feature generation and selection N/A IBM [129]
RLFE Feature generation and selection RF IBM [130]
LFE Feature transformation LR, RF IBM [131]

The last component of feature engineering is automated feature extraction, which
removes human intervention. This component is very useful in high-dimensional data that
suffer from CoD, big data, and Deep Learning. Common examples of high-dimensional
big data are time series, images (Chapter 8 in [48]), video data [132], and finance ap-
plications [133,134], while extracted features are saved and organized in feature stores
(structured data in Figure 2a) for accessibility and re-usability. Core approaches in auto-
mated feature extraction include Multi-Relational Decision Tree Learning (MRDTL) [135],
Deep Feature Synthesis (DFS) [136] and methods/models such as Deep Neural Networks
(DNNs) [137], Adaptive Linear Approximation (ALA), PCA, extraction of Best Fourier
Coefficients (BFCs) and Best Daubechies Wavelet Coefficients (BDWs), and statistical mo-
ments [138]. Once the features are extracted, then feature selection can be performed via an
unsupervised or supervised method, appropriate for the problem dimensions. Recursive
Feature Elimination Support Vector Machines (REFSVMs) and RELIEFF algorithms are
proposed in [138] for feature selection, and they can take into account feature interaction
(correlation) for up to 500 features. For more features, the Pearson correlation coefficient is
used to remove highly correlated features before any of the two aforementioned algorithms
is applied. Other methods for automated feature extraction are Genetic Programming
(GeP) [139], Reconstruction Independent Component Analysis (RICA) [140], which gen-
erates sparse representations of whitened data, Sparse Filtering [141], which minimizes
an objective function via a standard limited memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) quasi-Newton optimizer [142] and Wavelet–Scattering networks [143–146], which
apply wavelet and scattering filters to produce low-variance features from time series
and image data in Deep Learning applications. Features extracted by Wavelet–Scattering
networks are insensitive to input translations on an invariance scale in the 1-D case [145],
and insensitive to rotations in the 2-D case. Invariance to input transformations, such as
measurement noise and image rotation and translation, is desired so that the performance
of the machine learning model is unaffected. The interested reader is also encouraged
to review additional automated feature engineering tools, such as ExploreKit [125], One
Button Machine [126], AutoLearn [127], GeP Feature Construction [128], Cognito [129],
RLFE [130], and LFE [131] (Table 3).

4. Machine Learning Engineering
4.1. Models and Algorithms for Supervised Learning with Numerical and Categorical Data

Since the area of machine learning models and algorithms is very broad, it would
be impossible to cover in one paper, and therefore, this section focuses only on some
basic supervised models and algorithms for the purposes of representing this workflow
sub-module and its integration with the others. Supervised learning is possible when target
variable values are present in regression (continuous range target values) or classification
problems (pre-specified target values indicative of a class). Machine learning models are
characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning

Eng 2024, 5 395

models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm complex-
ity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model; d—nodes
in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that complexity varies
with architecture (neurons, layers, connections, and activation function [147]) and algorithm (type,
epochs). Typically, Gradient Descent has a running complexity of O

(
n2 p

)
.

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS)

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
np2 + p3), O(p), O(p) [148]

Kernel Ridge Regression

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
n3), -, O

(
n2) [149]

Lasso Regression (LARS)

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
np2 + p3), -, - [150]

Elastic Net

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
np2 + p3), -, - [108]

Logistic Regression

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O(np), O(p), O(p) [151]
GP Regression

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
n3), -, O

(
n2) [152]

Multi-Layer Perceptron

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ [153,154]
RNN/LSTM

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ -
CNN

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ -
Transformers

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ -
Radial Basis Function NN

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ -
DNN

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ -
Naive Bayes Classifier

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O(np), O(p), O(nq) [155]
Bayesian Network

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ [156]
Bayesian Belief Network

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

⋆ -
SVM

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
n2), O(sp), O(np) [157]

PCA

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
np min(n, p) + p3), -, O(np) [158]

kNN

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O(knp), O(np), O(np) [159,160]
CART

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O(n· log n·p), O(p), O(treedepth) [161]
RF

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O(n· log n·pk), O(pk), O(treedepth·k) [162]
Gradient Boost Decision Tree

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O(n· log n·pk), O(dk + γ), O(treedepth·k) [163]
LDA

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

Eng 2024, 1 12

characterized as parametric if they have a specific function form with parameters, whose
values can be determined by a data set [122]. The most commonly used machine learning
models and algorithms for supervised learning are summarized in Table 4. Note that
DNN can be modeled as Gaussian Processes (GPs) [67] and hence are considered non-
parametric as well. The choice of the problem model or algorithm is not trivial and highly
depends on the scalability desired as well as the features collected (dimensionality, linearity,
signal-to-noise ratio, probabilistic assumptions, correlation, etc.) as explained in the feature-
engineering section. Often, researchers will experiment with multiple models/algorithms,
but it is wise to narrow down the search for practical purposes. Table 4 summarizes
basic criteria for guiding the choice of a model/algorithm, with each individual having
additional assumptions that need to be taken into consideration.

Table 4. Summary of common supervised machine learning models and standard algorithm com-
plexity. Symbols: n—samples; p—features; s—support vectors; k—neighbors or trees in a model;
d—nodes in a tree; q—maximum number of bins; and γ—constant. The star ⋆ indicates that com-
plexity varies with architecture (neurons, layers, connections, and activation function [147]) and
algorithm (type, epochs). Typically, Gradient Descent has a running complexity of O(n2 p).

ML Model/Algorithm Parametric Linear Train, Test, Space Complexity Paper

Ordinary Least Squares (OLS) ✓ ✓ O(np2 + p3), O(p), O(p) [148]
Kernel Ridge Regression ✓ ✓ O(n3), -, O(n2) [149]
Lasso Regression (LARS) ✓ ✓ O(np2 + p3), -, - [150]

Elastic Net ✓ ✓ O(np2 + p3), -, - [108]
Logistic Regression ✓ ✓ O(np), O(p), O(p) [151]

GP Regression ✗ ✗ O(n3), -, O(n2) [152]
Multi-Layer Perceptron ✓ ✗ ⋆ [153,154]

RNN/LSTM ✓ ✗ ⋆ -
CNN ✓ ✗ ⋆ -

Transformers ✓ ✗ ⋆ -
Radial Basis Function NN ✗ ✗ ⋆ -

DNN ✓ ✗ ⋆ -
Naive Bayes Classifier ✓ ✓ O(np), O(p), O(nq) [155]

Bayesian Network ✗ ✗ ⋆ [156]
Bayesian Belief Network ✓ ✗ ⋆ -

SVM ✗ ✓ O(n2), O(sp), O(np) [157]
PCA ✗ ✓ O(np min(n, p) + p3), -, O(np) [158]
kNN ✗ ✗ O(knp), O(np), O(np) [159,160]

CART ✗ ✗ O(n · log n · p), O(p), O(tree depth) [161]
RF ✗ ✗ O(n · log n · pk), O(pk), O(tree depth · k) [162]

Gradient Boost Decision Tree ✗ ✗ O(n · log n · pk), O(dk + γ), O(tree depth · k) [163]
LDA ✓ ✓ O(npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are

O
(
npt + t3), -, O(np + nt + pt), t = min(n, p) [164]

4.2. Model Training and Validation

It is important to ensure that the machine learning model is not overfitting during
the training process so that better model generalization is achieved in the testing phase
and future use of this model. Common approaches to prevent model overfitting include
validation, CV [165], data augmentation, removal of features, early stopping of training
before optimality, regularization, and ensembling (Bootstrap [166], Bootstrap Aggregating,
also known as Bagging [113,167] and Boosting [168]). Although CV and Bootstrap include
efficient sample re-use [69], other validation methods can be analytical, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description
Length (MDL), and Structural Risk Minimization (SRM) [69]. Different validation methods
provide a different test error estimate, which can be a more or less unbiased estimate of the
true underlying test error as mentioned by the authors in [69].

To explain the model validation principle and the model complexity choice better to
applied researchers developing pipelines in their field, train and test error estimates are
summarized in Figure 4a. The light blue and red lines correspond to the train and test
error estimates for different data sets of equal size. The dark blue and red lines are the

Eng 2024, 5 396

averages of the train and test error estimates of the light red and blue lines. The left half of
Figure 4a (left of the red line minimum point) corresponds to higher error bias and lower
error variance and is a sign of model underfitting due to the limited model’s capacity. The
right half of the same figure refers to higher model complexity, with higher error variance
and lower error bias. That is the region of overfitting and happens when random noise
in the data is modeled. The middle part which corresponds to the minimum of the test
error (red line), is the ideal model complexity so that the best model generalization is
achieved. The test error estimate is further decomposed into its components in Figure 4b.
In supervised learning, the test error estimate is calculated by comparing the model’s
predictive capability with the ground truth. In unsupervised learning, model selection is
often conducted by selecting the point of maximum absolute second derivative on the train
error curve, also known as the elbow method [169], commonly used in k-Means. For other
validation and evaluation metrics, including CV in unsupervised learning, the interested
researcher is referred to the following papers [170–172].

Eng 2024, 1 13

summarized in Figure 4a. The light blue and red lines correspond to the train and test error
estimates for different data sets of equal size. The dark blue and red lines are the averages
of the train and test error estimates of the light red and blue lines. The left half of Figure
4a (left of the red line minimum point) corresponds to higher error bias and lower error
variance and is a sign of model underfitting due to the limited model’s capacity. The right
half of the same figure refers to higher model complexity, with higher error variance and
lower error bias. That is the region of overfitting and happens when random noise in the
data is modeled. The middle part which corresponds to the minimum of the test error (red
line), is the ideal model complexity so that the best model generalization is achieved. The
test error estimate is further decomposed into its components in Figure 4b. In supervised
learning, the test error estimate is calculated by comparing the model’s predictive capability
with the ground truth. In unsupervised learning, model selection is often conducted by
selecting the point of maximum absolute second derivative on the train error curve, also
known as the elbow method [169], commonly used in k-Means. For other validation and
evaluation metrics, including CV in unsupervised learning, the interested researcher is
referred to the following papers [170–172].

(a) (b)
Figure 4. Train error and test error estimates: (a) behavior of train and test error estimates as the
model complexity varies, figure imported and modified from [69], (b) decomposition of test error
estimate in its components, according to Equation (1).

All the errors in Figure 4a are estimates based on some data set. Since the bias–variance
decomposition is the most fundamental principle in machine learning, this section will pro-
vide the proof behind the results shown in Figure 4a,b, and help the interested researcher un-
derstand the role this concept plays in every decision made across the pipeline, from choos-
ing a metric to using CV, regularization, feature selection, etc. The test error is decomposed
in Figure 4b, according to Equation (1). Assume for simplicity that y = f (x) + ϵ, where
y ∈ R is the target variable, f (x) ∈ R is the machine learning model, x ∈ R is the model
input, ϵ ∈ R is noise with mean E[ϵ] = 0 and variance σ2

ϵ , and f̂ (x) ∈ R is the fitted model
to a specific training set. Then, the expected test error is decomposed as follows, with the
help of the identity (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca:

Expected test error(x) =

=E[(y − f̂ (x))2] = E[(f (x) + ϵ − f̂ (x))2] = E[(f (x) + ϵ − f̂ (x) +E[f̂ (x)]−E[f̂ (x)])2]

=E[ϵ2] +E[(f (x)−E[f̂ (x)])2] +E[(E[f̂ (x)]− f̂ (x))2] + 2E[(f (x)−E[f̂ (x)])ϵ] + 2E[ϵ(E[f̂ (x)]− f̂ (x))]

+ 2E[(E[f̂ (x)]− f̂ (x))(f (x)−E[f̂ (x)])]

=E[(ϵ − 0)2] + (f (x)−E[f̂ (x)])2 +E[(E[f̂ (x)]− f̂ (x))2] = E[(ϵ −E[ϵ])2] + (f (x)−E[f̂ (x)])2 + Var[f̂ (x)]

=σ2
ϵ + Bias2[f̂ (x)] + Var[f̂ (x)] = irreducible error + Bias2[f̂ (x)] + Var[f̂ (x)],

(1)

Figure 4. Train error and test error estimates: (a) behavior of train and test error estimates as the
model complexity varies, figure imported and modified from [69], (b) decomposition of test error
estimate in its components, according to Equation (1).

All the errors in Figure 4a are estimates based on some data set. Since the bias–variance
decomposition is the most fundamental principle in machine learning, this section will
provide the proof behind the results shown in Figure 4a,b, and help the interested re-
searcher understand the role this concept plays in every decision made across the pipeline,
from choosing a metric to using CV, regularization, feature selection, etc. The test er-
ror is decomposed in Figure 4b, according to Equation (1). Assume for simplicity that
y = f (x) + ϵ, where y ∈ R is the target variable, f (x) ∈ R is the machine learning model,
x ∈ R is the model input, ϵ ∈ R is noise with mean E[ϵ] = 0 and variance σ2

ϵ , and f̂ (x) ∈ R
is the fitted model to a specific training set. Then, the expected test error is decomposed as
follows, with the help of the identity (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca:

Expectedtesterror(x) =

=E
[(

y − f̂ (x)
)2

]
= E

[(
f (x) + ϵ − f̂ (x)

)2
]
= E

[(
f (x) + ϵ − f̂ (x) +E

[
f̂ (x)

]
−E

[
f̂ (x)

])2
]

=E
[
ϵ2
]
+E

[(
f (x)−E

[
f̂ (x)

])2
]
+E

[(
E
[

f̂ (x)
]
− f̂ (x)

)2
]
+ 2E

[(
f (x)−E

[
f̂ (x)

])
ϵ
]
+ 2E

[
ϵ
(
E
[

f̂ (x)
]
− f̂ (x)

)]
+2E

[(
E
[

f̂ (x)
]
− f̂ (x)

)(
f (x)−E

[
f̂ (x)

])]
=E

[
(ϵ − 0)2

]
+

(
f (x)−E

[
f̂ (x)

])2
+E

[(
E
[

f̂ (x)
]
− f̂ (x)

)2
]
= E

[
(ϵ −E[ϵ])2

]
+

(
f (x)−E

[
f̂ (x)

])2
+ Var

[
f̂ (x)

]
=σ2

ϵ + Bias2
[

f̂ (x)
]
+ Var

[
f̂ (x)

]
= irreducibleerror + Bias2

[
f̂ (x)

]
+ Var

[
f̂ (x)

]
,

(1)

Eng 2024, 5 397

where the cross-terms are zero due to f (x) being deterministic, i.e., f (x) = E[f (x)], the
independence of ϵ and f̂ (x) and the assumption that E[ϵ] = 0,

Cross − terms =

= 2E
[(

f (x)−E
[

f̂ (x)
])

ϵ
]
+ 2E

[
ϵ
(
E
[

f̂ (x)
]
− f̂ (x)

)]
+ 2E

[(
E
[

f̂ (x)
]
− f̂ (x)

)(
f (x)−E

[
f̂ (x)

])]
= 2

(
f (x)−E

[
f̂ (x)

])
E[ϵ] + 2E[ϵ]E

[
E
[

f̂ (x)
]
− f̂ (x)

]
+ 2E

[
E
[

f̂ (x)
]
− f̂ (x)

](
f (x)−E

[
f̂ (x)

])
= 2

(
E
[

f̂ (x)
]
−E

[
f̂ (x)

])(
f (x)−E

[
f̂ (x)

])
= 0.

The first term in (1), corresponds to the variance of the target variable around its true
mean sinceE

[
ϵ2] = E

[
(ϵ − 0)2

]
= E

[
(ϵ −E[ϵ])2

]
= E

[
(y − f (x)− (E[y]−E[f (x)]))2

]
=

E
[
(y − f (x)−E[y] +E[f (x)])2

]
= E

[
(y − f (x)−E[y] + f (x))2

]
= E[y −E[y]] = Var(y)

and cannot be avoided. The second term, the squared bias, shows how the average of the

estimate differs from the true mean, i.e.,
(

f (x)−E
[

f̂ (x)
])2

=
(
E[f (x)]−E

[
f̂ (x)

])2
. The

third term describes the variance of f̂ (x), i.e., the expected squared deviation of f̂ (x) from
its mean [69].

Having observed the behavior of the expected test error on testing data in Figure 4b, it
is suggested to perform model selection on the best bias–variance trade-off point. Another
set, the validation set, that was not used for training, is used for model selection, and
the model performance is then evaluated on the testing set as explained in Section 4.3.
Common ways of splitting the data set are 70% or 50% for the train set, 20% or 25% for
the validation set, and 10% or 25% for the test set [69]. When splitting includes random
sampling, then the model may generalize better. However, it is advised to avoid random
sampling (shuffling) in time series data because of the signal autocorrelation. Moreover,
it is suggested to use stratified training data in the case of classification to ensure that all
classes are equally represented in the training set so that the classifier is not biased towards
a specific class. Although in the case of big data or Deep Learning, the previous splitting
approach would be sufficient (Chapter 7 in [69]), in small data sets with a higher danger of
overfitting, it would not. Hence, different forms of CV are suggested to prevent bias and
overfitting by re-using the data set multiple times. CV is avoided in Deep Learning because
training can become computationally intractable, and therefore overfitting is managed in
different ways. In big data sets, following training, the model performance is evaluated on
the validation set. The validation set is used to tune model hyperparameters and prevent
overfitting by early stopping, regularization, etc. The model performance is tested on the
testing set that was not used for training or validation.

In cases where the data set is small, some form of CV is utilized as a way to avoid
overfitting to that particular data set (Table 5). The first category of CV is Exhaustive CV.
The data set of size n is split into a training set of size n − p and a validation set of size p,
in all possible ways. Every time, a model is fit and a validation error occurs. The average
validation error across all validation sets is estimated for each hyperparameter value so
that the optimal value can be selected at the minimum average error. Other variations of
Exhaustive CV include the p = 1 case, which is less computationally heavy than the p case,
or p = 2, which is an almost unbiased method for estimating the area under the Receiver
Operating Characteristic (ROC) curve for binary classifiers [173].

The second category of CV includes the Non-Exhaustive methods, an approximation
of the Exhaustive Leave-p-out CV, which is computationally tractable. The most popular
method, k-fold CV, requires splitting the data set randomly in k sets, and keeping a different
set for validation every time as shown in Figure 5. Again, the average error is calculated and
utilized for hyperparameter estimation, by constructing a plot of average kfold CV error vs
hyperparameter values. Popular choices for k are 5, 10, and 20. It is worth mentioning that
the Leave-1-out CV has low bias and high variance, whereas the kfold CV with k = 5 or

Eng 2024, 5 398

k = 10, is a better compromise [174,175]. The next type of Non-Exhaustive CV method is
the Holdout method, which randomly assigns p points in the training set and n − p points
in the testing set. It involves a single iteration and may be considered the same as the
simple validation approach [175,176]. The last Non-Exhaustive CV method is the Repeated
Random Sub-Sampling Validation, also known as Monte Carlo CV, which is similar to the
k-fold CV process, only with random validation sets, which means that some observations
may never be part of the validation set [105].

Table 5. Summary of CV methods.

CV Category Specific CV Method Result

Exhaustive CV Leave-p-out CV Cn
p = n!

(n−p)!p! models trained
Leave-one-out CV Cn

1 = n models trained
Non-Exhaustive CV k-fold CV k models trained

Holdout 1 model trained
Repeated Random Sub-Sampling k models trained
Validation (also known as Monte

Carlo CV)
Nested CV k*l-fold CV k·l models trained

k-fold CV with validation and test
set k models trained with test set

Eng 2024, 1 15

simple validation approach [175,176]. The last Non-Exhaustive CV method is the Repeated
Random Sub-Sampling Validation, also known as Monte Carlo CV, which is similar to the
k-fold CV process, only with random validation sets, which means that some observations
may never be part of the validation set [105].

Table 5. Summary of CV methods.

CV Category Specific CV Method Result

Exhaustive CV · Leave-p-out CV Cn
p=

n!
(n−p)!p! models trained

· Leave-one-out CV Cn
1=n models trained

Non-Exhaustive CV · k-fold CV k models trained
· Holdout 1 model trained

· Repeated Random
Sub-Sampling k models trained

Validation (also known as
Monte Carlo CV)

Nested CV · k*l-fold CV k · l models trained
· k-fold CV with validation

and test set k models trained with test set

Figure 5. Overview of k-fold CV method, for k = 5.

The third category of CV methods is the Nested CV, where CV is used for hyperpa-
rameter tuning and error estimation simultaneously. Nested CV methods consider a testing
set, in addition to the training and validation sets of the previous categories. The k*l-fold
CV splits the data set into k sets and iteratively, each of the k sets is split into l sets, where
l − 1 are used for training and the other for validation. The inner sets are used to train the
model and tune its hyperparameters and the outer is used for testing in order to provide
an unbiased evaluation of the model fit. A special case of k*l-fold CV is the k-fold CV with
validation and testing sets for l = k − 1. One by one, a testing set is selected, and one by
one, one of the remaining sets is used as a validation set while the other k − 2 sets are used
as training sets until all possible combinations have been evaluated.

4.3. Model Evaluation

Following the training and tuning of the model on the training and validation sets
explained in Section 4.2 comes model evaluation. This step includes methods and metrics
to evaluate that the model indeed performs adequately for the purpose for which it was de-
veloped. This step includes utilizing a training set based on which prediction is performed
and the evaluation of performance indices. Moreover, evaluation refers to the verification
of the model’s assumptions after the predicted values are collected. One such example is
linear regression models, the assumptions of which are summarized below [177]:

Figure 5. Overview of k-fold CV method, for k = 5.

The third category of CV methods is the Nested CV, where CV is used for hyperpa-
rameter tuning and error estimation simultaneously. Nested CV methods consider a testing
set, in addition to the training and validation sets of the previous categories. The k*l-fold
CV splits the data set into k sets and iteratively, each of the k sets is split into l sets, where
l − 1 are used for training and the other for validation. The inner sets are used to train the
model and tune its hyperparameters and the outer is used for testing in order to provide
an unbiased evaluation of the model fit. A special case of k*l-fold CV is the k-fold CV with
validation and testing sets for l = k − 1. One by one, a testing set is selected, and one by
one, one of the remaining sets is used as a validation set while the other k − 2 sets are used
as training sets until all possible combinations have been evaluated.

4.3. Model Evaluation

Following the training and tuning of the model on the training and validation sets
explained in Section 4.2 comes model evaluation. This step includes methods and metrics
to evaluate that the model indeed performs adequately for the purpose for which it was de-
veloped. This step includes utilizing a training set based on which prediction is performed
and the evaluation of performance indices. Moreover, evaluation refers to the verification

Eng 2024, 5 399

of the model’s assumptions after the predicted values are collected. One such example is
linear regression models, the assumptions of which are summarized below [177]:

1. Linear relationship between each feature and each target variable: this assumption
can be verified in the testing set by constructing scatter plots of each output vs
each feature.

2. Homoscedasticity, i.e., constant residual variance for all the values of a feature: this
assumption can be verified by plotting the residuals vs. each feature in the testing set.

3. Independence of residual observations, which is the same as the independence of
target variable observations (commonly violated in time series data): this can be
verified by checking that the autocorrelation of the residual observations is non-zero
with the Durbin–Watson test since that would indicate sample dependence.

4. Normality of the target variable observations: this can be verified by constructing QQ
plots of the residuals against the theoretical normal distribution and observing the
straightness of the produced line.

It is worth mentioning that if some of the above assumptions do not hold, feature
transformations can be applied to satisfy them, such as the ones explained in Section 3.2 of
this dissertation. For additional solutions, in order to conform with the linear regression
model assumptions, the reader is referred to [177]. After model training, the assumptions
above should also be verified on the testing set.

Supervised regression and classification models are not only evaluated based on their
modeling assumptions but also based on performance metrics. Some commonly used
performance indices in supervised learning are summarized in Table 6, where the following
shortcuts are used: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). TPs/TNs are when the model predicts an observation to belong/not belong
to a class and it does/does not indeed belong to that class. Equivalently, FPs/FNs are
when the model predicts that an observation belongs/does not belong to a class and it does
not/does belong to that class. Note that N is the number of samples, k is the number of
independent variables, yi is an observed value, ŷi is a predicted value, and y is the sample
average of the observed data.

Table 6. Summary of most common performance indices commonly used to evaluate the performance
of regression and classification models.

Performance Index Formula Purpose

Mean Squared Error (MSE) ∑N
i=1(yi−ŷi)

2

N
Regression

Root Mean Squared Error (RMSE)
√

∑N
i=1(yi−ŷi)

2

N
Regression

Mean Absolute Error (MAE) ∑N
i=1

|yi−ŷi |
N

Regression

Mean Absolute Percentage Error (MAPE) ∑N
i=1

|yi−ŷi |
N ·100 Regression

Coefficient of Determination (R2) 1 − ∑N
i=1(yi−ŷi)

2

∑N
i=1(yi−yi)

2
Regression

Adjusted Coefficient of Determination (A-R2) 1 −
(

N−1
N−k−1

)(
1 − R2) Regression

Confusion Matrix TP, TN, FP, FN Classification

Accuracy TP+TN
TP+TN+FP+FN Classification

Balanced Accuracy Precision+Recall
2 Classification

Misclassification FP+FN
TP+TN+FP+FN Classification

F1-Score 2·Precision·Recall
Precision+Recall Classification

F-Score
(
1 + β2) Precision·Recall

β2Precision+Recall Classification

Receiver Operating Characteristic (ROC) Graphical Classification
Area Under Curve (AUC) Graphical Classification

Total Operating Characteristic (TOC) Graphical Classification

Eng 2024, 5 400

The choice of the evaluation metric is of great importance, as the wrong choice can
lead to the optimization of an irrelevant objective or the introduction of bias as, for example,
in the case of using accuracy instead of balanced accuracy when the data set is unbalanced
in terms of number of data points from each class [178]. The interested researcher may look
into [179] for an empirical analysis of different model performance criteria.

5. Model Deployment

The final phase in the machine learning workflow of Figure 2a is the model deploy-
ment where businesses aim to harness its value. As model deployment is, for the most
part, a task for software developers in the industry, this section is introduced here for
completion purposes. Often, non-AI expert academics work closely with the industry to
develop customer-tailored ML workflows, which are then deployed by in-house software
developers. However, on the academic side, researchers first test their ideas in prototype
code with industry data, very often performing unit testing before sharing their code with
the industry partner. A short overview of the model deployment steps to follow provides
non-AI expert academics with an insight into how their prototype code can be developed
more efficiently for integration with other code and extensive testing.

The model deployment process encompasses a series of steps undertaken before,
during, and after the model is put into production, effectively facilitating the productization
of the model. Model deployment steps include implementing best practices for deploying
a model to production, which involves the standardization of code (TDD [180], Object-
Oriented Programming (OOP) or Functional Programming paradigms, and the application
of Design Patterns [181,182]), rigorous testing (bug identification, performance testing,
integration testing, robustness testing, A/B testing [183], etc.), and ensuring the security
(deploying in a private network or Virtual Private Cloud (VPC) [184]) and monitoring of
the deployed ML model (for the model or data drifts, bugs, failures, etc.). Subsequently,
the deployment undergoes continuous updates, which include the integration of new
data, additional data resources, transformations, models, etc., into the workflow, with
new model versions being continuously delivered and deployed into the product. The
inherent complexity of large-scale systems necessitates the implementation of workflows
with sound design principles and robust testing. The next subsections provide all the steps
involved in transitioning a model into a production environment.

5.1. Testing

This subsection describes the different types of testing that are performed before a
model is put into production.

5.1.1. Unit Testing

Testing is a very important component of a machine learning workflow deployment
into production for industry purposes and begins with unit testing. Unit testing verifies that
software subprograms function as expected in isolation [185] and focuses on scrutinizing
components within the software stack rather than predicting the model’s output, given its
inherent unpredictability. Various testing frameworks like Pytest [186], Unittest [187], JU-
nit [188], Mockito [189], etc., can help generate dummy data sets and test expected outputs.
Multiple scripted scenarios, encompassing both success and failure cases, are executed in
the programming language to assess functionality and identify bugs. A comprehensive
suite of unit tests is run during each deployment to ensure the code behaves as intended.

5.1.2. Performance Testing

In addition to unit testing, performance testing is frequently employed to assess the
time required for training and gather details about the hardware configurations involved in
the training process. This information has been proven to be crucial for future development
and testing endeavors. Performance tests also evaluate the model’s response time under
normal and peak loads, ensuring adherence to the Service Level Agreement (SLA) [190]

Eng 2024, 5 401

and preventing compromise in availability due to request timeouts. Collecting statistics
on the ML model’s responsiveness under varying workloads aids in identifying potential
issues and guarantees that the system performs within specified operational parameters.

5.1.3. Integration Testing

The next level of testing is integration testing, a vital component of CI/CD, which
tests the integration of a new or updated ML model and the rest of the code within the
software stack before promoting it to production. Integration testing verifies the interaction
between software components [185] by testing them together based on functional threads or
exhaustively all with all (also known as "big bang" testing). For example, an ML model that
predicts the number of neighborhood houses sold must seamlessly interact with gateways,
web servers, databases, and other networking layers [191]. Therefore, integration tests
would be performed in this case to ensure that the interaction of the model with these
services goes as expected. This rigorous integration testing helps identify and rectify
potential issues, reducing the risk of disruptions in the live system.

5.1.4. System Testing

Most functional failures must have been identified during the unit and integration
testing. System testing examines the behavior of the entire system for the purposes of
system security, speed, accuracy, and reliability (non-functional requirements) and for
proper interfacing with other applications, utilities, hardware devices, and the operating
environment [185]. Installation testing is one form of system testing that may appear in
software systems that host an ML model [185]. System and acceptance testing are tests
used across software engineering, whether ML is involved or not, but they are not always
present in the ML pipeline testing process.

5.1.5. Acceptance Testing

Acceptance testing checks the system behavior against the customer’s requirements,
and the customers undertake, or specify, typical tasks to check that their requirements have
been met or that the organization has identified these for the software’s target market. The
developers of the system may or may not be involved in this testing level [185].

5.1.6. A/B Testing

Organizations derive value from making data-driven decisions regarding a model’s
real-world performance. A/B testing [192] serves the understanding of the relationship
between changes made to the model and the actual outcomes observed in user behavior.
The model users are divided into the control group A and the treatment group B. The
control group responds to the existing model and the treatment group to the new/modified
model. User responses are recorded, and metrics are subsequently computed and compared.
This comparison helps to assess the model’s performance before deploying it to the entire
user base.

5.2. Model Deployment

After successfully completing various tests in the CI/CD pipeline, the approved
changes are deployed to the production environment. The deployed model can be executed
either through a scheduled process or triggered by certain events. Scheduled model
execution, for example, includes generating an overnight report predicting sales for the
next day, which runs to provide up-to-date predictions for business planning. Trigger-
based execution, on the other hand, involves responding to specific events, such as user
recommendations triggered by a user’s search keywords, in order to deliver real-time,
personalized results, thus enhancing the user’s experience.

Eng 2024, 5 402

5.3. Monitoring and Maintenance

The consideration of model and data drift is of paramount importance during the
protracted phases of model monitoring and maintenance. Model drift [193], driven by
alterations in the statistical properties of the target variable over time, can result in a
degradation of the model’s predictive performance. Simultaneously, data drift [194] per-
tains to variations in the distribution of input features, posing challenges to the model’s
generalization capabilities. In the lifecycle of an ML model after deployment, sustained
vigilance entails regular assessment of performance metrics, and juxtaposing them against
benchmarks established during the model’s training phase. In the context of contemporary
MLOps, the automation of drift detection and response mechanisms is increasingly pivotal
to upholding model efficacy and alignment with evolving data dynamics.

5.4. Security Considerations

The infrastructure in which the ML model operates often faces threats, attacks, and
risks that can jeopardize assets and availability. Therefore, it is imperative to assess and
prepare for these scenarios by regularly applying software patches to known vulnerabilities.
Organizations conduct thorough audits of open-source code for any vulnerabilities before
incorporating it into production. A recommended strategy to mitigate risk is the creation
of internally approved repositories for various versions of software used in building the
model and the overall software stack. This centralized control over software versions
ensures that only vetted and secure components are employed, reducing the likelihood of
vulnerabilities compromising the system. If the ML model is exclusively serving customers
within the organization, it is advisable to deploy the code in a private network or a VPC
when hosted in the cloud. Adhering to the Principle of Least Privilege (PoLP) [195] is crucial
when configuring both the software and ML model, regardless of whether the audience
is internal or external. By implementing PoLP, access permissions are restricted to the
minimum necessary for users or systems to perform their intended tasks. This helps reduce
the potential attack surface and enhances overall security. In addition, monitoring usage
patterns helps detect and mitigate any potential Distributed Denial-of-Service (DDoS) [196]
attacks on the system. By closely observing network traffic and user interactions, abnormal
patterns indicative of a DDoS attack can be identified and appropriate measures can be
taken to ensure the continued availability and performance of the ML model.

To conclude, model production code is developed via TDD, which continuously creates
tests to fail the system’s operation and then upgrades the system to pass the test [180]. This
is a slow process, but it leads to fewer bugs and re-usable code through various levels of
testing [185,197] as shown in Figure 2c. Testing, deployment, monitoring, maintenance, and
security follow the development. For comprehensive insights into both static and dynamic
testing, the book by Lewis [198] is highly recommended. For guidance on adhering to good
coding practices, it is advised to consult the works of Martin [199] and Thomas et al. [200].
These references offer valuable resources for researchers seeking in-depth knowledge in
the domains of coding and testing practices for software development.

6. Automation in Machine Learning Workflows

Section 3.2.4 analyzed the automation of feature extraction. This section focuses on
the automation of the entire machine learning workflow and optimization of pipeline
hyperparameters and is often referred to as AutoML. According to [201], AutoML makes
decisions in a data-driven, objective, and automated way, with the user only providing the
data, and AutoML automatically determining the best approach. AutoML is particularly
useful for domain scientists who do not focus on learning in-depth machine learning
practices, as well as big data and Deep Learning applications [201]. The automation of
AI expert systems, i.e., AI software with task-specific machine learning workflow for
decision-making in the place of a human, is also possible via AutoML. The focal points
of automation encompass various facets such as data engineering, feature engineering,
model selection, ensembling, algorithm selection, and hyperparameter optimization, as

Eng 2024, 5 403

well as considerations of time, memory, and complexity constraints within the pipeline.
Additionally, automation extends to the determination of evaluation and validation metrics.
It is noteworthy that while certain aspects are more commonly automated, the spectrum
of automated processes is diverse, catering to the nuanced requirements of the machine
learning pipeline.

6.1. AutoML Methods

AutoML methods are utilized for tuning machine learning workflow hyperparameters,
also known as Automated Hyperparameter Optimization (AHO), including those decided
before training and those decided during training. For example, the number of layers
and neurons in a NN is tuned before training, while the NN weights are tuned during
training. Although hyperparameter optimization has been considered an art, AutoML
aims to automate this part of the machine learning workflow to make machine learning
more accessible to non-technical professionals [36], and help optimize the functionality of
developed pipelines.

According to [201], AHO can be very useful because it reduces the human effort neces-
sary for machine learning and improves machine learning algorithm performance [202,203]
and the reproducibility of scientific results [204,205]. Hyperparameter optimization is a
very challenging problem because (a) function evaluations can be extremely expensive for
large models (i.e., DNN), large data sets, or very complex machine learning workflows,
(b) the configuration space can be complex (continuous, discrete, conditional hyperpa-
rameters) and high-dimensional, (c) access to the loss function’s gradient with respect to
the hyperparameters is often impossible, and (d) generalized optimization is not possi-
ble, as it depends on the data set size which varies [36]. The most common methods for
hyperparameter optimization are summarized below.

1. Black-box hyperparameter optimization:

(a) Model-free black-box optimization methods include grid search in a finite
range, which, however, suffers from the CoD and random search, where
random search samples configurations at random until a certain budget for
the search is exhausted [206]. This works better than grid search when some
hyperparameters are much more important than others, which is very often the
case [206]. Covariance Matrix Adaption Evolutionary Strategy (CMA-ES) [207],
is one of the most competitive black-box optimization algorithms.

(b) Bayesian optimization has gained interest due to DNN tuning for image classi-
fication [203,208], speech recognition [209] and neural language modeling [202].
For an in-depth introduction to Bayesian optimization, the interested reader is
referred to [210,211]. Many recent advances in Bayesian optimization do not
treat hyperparameter tuning as a black-box anymore, i.e., multi-fidelity hyper-
parameter turning, Bayesian optimization with meta-learning, and Bayesian
optimization taking the pipeline structure into account [212,213].

2. Multi-fidelity optimization: These methods are less costly than black-box optimiza-
tion methods, which approximately assess the quality of hyperparameter settings.
Multi-fidelity methods introduce heuristics inside an algorithm, using low-fidelity
approximations of the actual loss function to reduce runtime. Such heuristics include
hyperparameter tuning on a small data subset or feature subset and training for a
few iterations by using CV or down-sampled images. Learning curve-based pre-
diction for early stopping is used, as well as Bandit-based (successive halving [214]
and Hyperband [215]) algorithms for algorithm selection based on low-fidelity algo-
rithm approximations. Moreover, Bayesian Optimization Hyperband (BOHB) [216]
combines Bayesian optimization and HyperBand to achieve a combination of strong
anytime performance (quick improvements in the beginning by using low fidelities
in HyperBand) and strong final performance (good performance in the long run
by replacing HyperBand’s random search by Bayesian optimization). For adaptive
fidelity options, see [36].

Eng 2024, 5 404

Another AutoML family of methods, besides AHO, is meta-learning. This family
aims to systematize the developer’s experience based on which a new model is built.
First, meta-data need to be collected that describe previously learned tasks and models
and include algorithm configurations and hyperparameter values, workflow architectures,
model evaluations (accuracy and training time), optimal model parameters, and meta-
features. Second, learning from meta-data needs to take place in order to extract knowledge
that can guide future optimal models and tasks. Examples of such methods are transfer
learning [217] and few-shot learning [218]. For more related content on learning from
model evaluations, task properties, and prior models, please see [36]. A very popular
example of AutoML and the aforementioned methods is neural architecture search (NAS),
which aims to automate the discovery of new NN architectures [219]. Core approaches to
NAS can be found in Table 7.

Table 7. Overview of main NAS methods in AutoML.

Method Approach to Speed-Up Paper

Lower fidelity estimates Less epochs, data subsets, downscaled models/data, etc. [215,216,220–223]
Learning curve extrapolation Performance extrapolated after few epochs [224–227]

Weight inheritance/network morphisms Models warm-started with inherited weights [228–232]
One-Shot models/weight sharing One-shot model’s weights shared across architectures [233–238]

The scalability of AHO is an open-ended research topic that seems to concern multi-
fidelity optimization, gradient-based methods, and meta-learning methods [36]. Parallel
computing is expected to play an important role in the scalability of AHO, with par-
allel Bayesian optimization already implemented [239]. With the only exception being
DNN [203,208,210,216,240–243], Bayesian optimization has not yet been applied success-
fully to data sets larger than a few thousand data points. For solutions related to overfitting,
generalization, and arbitrary pipeline sizes, the reader is referred to [36]. State-of-the-art
approaches to scalable AutoML with data privacy include federated learning [244].

6.2. AutoML Systems

AutoML systems, also known as pipeline optimizers, are popular software that try to
automate the machine learning workflow. An overview of available AutoML systems is
provided in Table 8. For a complete overview of machine learning algorithms and coding
languages supported by these systems, the reader is referred to [245]. Semi-automated
pipeline optimizers AutoComplete [246] and PennAI are also mentioned in [245]. A perfor-
mance comparison for AutoML systems is provided in [247].

Table 8. Overview of available AutoML systems (DE = data engineering, FE = feature engineering).

Software Problem Automated AutoML Method Paper

Auto-WEKA CASH Bayesian optimization [248]
Auto-WEKA 2.0 CASH with parallel runs Bayesian optimization [249]

Hyperopt-Sklearn Space search of random hyperparameters Bayesian otimization [250]
Auto-Sklearn Improved CASH with algorithm ensembles Bayesian optimization [251,252]

TPOT Classification with FE GeP [253]
Auto-Net Automates DNN tuning Bayesian optimization [36]

Auto-Net 2.0 Automates DNN tuning BOHB [36]
Automatic Statistician Automates data science Various [36]

AutoPytorch Algo. selection, ensemble constr., hyperpar.
tuning Bayesian opt., meta-learn. [254]

AutoKeras NAS, hyperpar. tuning in DNN Bayesian opt. guides network
morphism [255]

Eng 2024, 5 405

Table 8. Cont.

Software Problem Automated AutoML Method Paper

NNI NAS, hyperpar. tuning, model compression, FE One-shot modes, etc. [256,257]
TPOT Hyperpar. tuning, model selection GeP [253]

AutoGluon Hyperpar. tuning - [258]

H2O DE, FE, hyperpar. tuning, ensemble model
selection

Random grid search, Bayesian
opt. [259]

FEDOT Hyperparameter tuning Evolutionary algorithms -
Auto-Sklearn 2 Model selection Meta-learning, bandit strategy [252]

FLAML Algorithm selection, hyperpar. tuning Search strategies [260]
AutoGluon-TS Ensemble constr. for time-series forecasting Probabilistic time-series [261]

AutoTS Time-series data analysis Various [262]

7. A Supervised Classification Workflow Example

An example of supervised classification machine learning workflow, based on this
paper’s methodology, is presented in Figure 6 and describes the approach taken by the
IARPA-funded researchers in [18] to classify a room as occupied or empty (binary classifica-
tion) from one CO2 and one temperature sensor measurement. Applications include energy
efficiency, indoor air quality, emergency evacuation, and other applications. The data
streams collected from the two sensors were saved locally, where the data-engineering code
treated the incoming values for missing data and timestamp consistency. Target variable
values (occupancy class 0 or 1) were collected from the humans involved in the experiment,
for model training and validation. Following that, a new feature, the HVAC state, was
generated from the application of a domain-expertise deterministic transformation on the
CO2 and temperature data, which helps enrich the input–output correlations by intro-
ducing additional information to this poor-input experiment (limited sensors and limited
data set challenge). Additional feature transformation took place by locally smoothing
high-frequency noise on the CO2 data with a Savitky–Golay (FIR) filter [263], and feature
extraction by producing the numerical derivatives of the smoothed CO2 signal and lagged
inputs in real-time. All the input invariant features were utilized for training a supervised
binary classifier, thus skipping any feature selection, in this feature-poor application, where
all features were proved highly important. Although the automated feature extraction
methods proposed in this paper may have revealed better features, or the extraction of
the same features with less human labor, this opportunity was not taken advantage of in
the [18] project, and will remain as future work for the authors. A feed-forward neural
network was trained on all the aforementioned features, with its architecture optimized
manually via the tracking of the training, validation, and testing errors, according to the
bias–variance decomposition principle analyzed in this paper as opposed to the AutoML
methods now available and presented in Section 6. The model evaluation took place via
several classification metrics, including accuracy, balanced accuracy, F1-score, and custom
application-related metrics (success rate, average detection delay, etc.). Model deployment
is missing from this academic project. A rigorous methodology similar to the one presented
in this paper was followed in [18], and resulted in highly accurate and mathematically
rigorous results.

Eng 2024, 5 406Eng 2024, 1 23

Figure 6. Machine learning workflow example developed by academic researchers for occupancy
detection, based on the methodology proposed in this paper. Model deployment and automation
were not part of this academic work [18].

8. Discussion

This work provides an all-inclusive supervised machine learning workflow devel-
opment and automation methodology for numerical and categorical data, along with
an adequate literature review and associated industry practices. The machine learning
workflow is analyzed from the early project brainstorming and scoping stage to data engi-
neering, feature engineering, machine learning model engineering, workflow automation,
and model deployment. Guidance is provided to the non-AI expert academic on how
to develop and integrate the pieces of a rigorous, complete, functional, and optimized
machine learning workflow for their application, without missing important sub-modules,
whether it is for their own research or for a government or industry partner. Important AI
principles (i.e., bias–variance decomposition, curse of dimensionality, model complexity,
overfitting, model sensitivity to feature assumptions and scaling, output interpretability,
etc.) are explained, and their utilization in making important algorithm or tuning choices in
the workflow is emphasized. State-of-the-art tools on feature extraction automation, neural
architecture search, model selection, hyperparameter tuning, algorithm selection, model
compression, etc., are provided and explained (i.e., Bayesian optimization, Genetic Pro-
gramming, and random grid search) for the optimization of the machine learning workflow
under development.

Author Contributions: Conceptualization: S.I.K. and D.N.M.; methodology: S.I.K.; investigation:
S.I.K. and A.T.R.; writing: S.I.K., A.T.R. and A.P.B.; visualization: S.I.K.; supervision: O.J.P.F. and
D.N.M.; project administration: D.N.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Please add.

Informed Consent Statement: Please add.

Data Availability Statement: Please add.

Conflicts of Interest: Author Archana Tikayat Ray was employed by the company AI Fusion Tech-
nologies. Author Anirudh Prabhakara Bhat was employed by the company Amazon. The remaining

Figure 6. Machine learning workflow example developed by academic researchers for occupancy
detection, based on the methodology proposed in this paper. Model deployment and automation
were not part of this academic work [18].

8. Discussion

This work provides an all-inclusive supervised machine learning workflow devel-
opment and automation methodology for numerical and categorical data, along with
an adequate literature review and associated industry practices. The machine learning
workflow is analyzed from the early project brainstorming and scoping stage to data engi-
neering, feature engineering, machine learning model engineering, workflow automation,
and model deployment. Guidance is provided to the non-AI expert academic on how
to develop and integrate the pieces of a rigorous, complete, functional, and optimized
machine learning workflow for their application, without missing important sub-modules,
whether it is for their own research or for a government or industry partner. Important AI
principles (i.e., bias–variance decomposition, curse of dimensionality, model complexity,
overfitting, model sensitivity to feature assumptions and scaling, output interpretability,
etc.) are explained, and their utilization in making important algorithm or tuning choices in
the workflow is emphasized. State-of-the-art tools on feature extraction automation, neural
architecture search, model selection, hyperparameter tuning, algorithm selection, model
compression, etc., are provided and explained (i.e., Bayesian optimization, Genetic Pro-
gramming, and random grid search) for the optimization of the machine learning workflow
under development.

Author Contributions: Conceptualization: S.I.K. and D.N.M.; methodology: S.I.K.; investigation:
S.I.K. and A.T.R.; writing: S.I.K., A.T.R. and A.P.B.; visualization: S.I.K.; supervision: O.J.P.F. and
D.N.M.; project administration: D.N.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Eng 2024, 5 407

Conflicts of Interest: Author Archana Tikayat Ray was employed by the company AI Fusion
Technologies. Author Anirudh Prabhakara Bhat was employed by the company Amazon. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AHO Automated Hyperparameter Optimization
AIC Akaike Information Criterion
ALA Adaptive Linear Approximation
API Application Programming Interface
AUC Area Under Curve
Auto-WEKA Automatic Model Selection and Hyperparameter Optimization
BDW Best Daubechies Wavelet Coefficients
BFC Best Fourier Coefficients
BIC Bayesian Information Criterion
BOHB Bayesian Optimization Hyperband
CART Classification and Regression Tree
CASH Combined Algorithm Selection and Hyperparameter optimization
CI/CD Continuous Integration Continuous Delivery or Deployment
CMA-ES Covariance Matrix Adaption Evolutionary Strategy
CoD Curse of Dimensionality
CV Cross-Validation
DB Database
DDoS Distributed Denial-of-Service
DevOps Development Operations
DFS Deep Feature Synthesis
DGUFS Dependence Guided Unsupervised Feature Selection
DNN Deep Neural Network
DT Decision Tree
ELT Extract, Load, Transform
ETL Extract, Transform, Load
EUFS Embedded Unsupervised Feature Selection
FIR Finite Impulse Response
FN False Negative
FP False Positive
FSFS Feature Selection with Feature Similarity
GeP Genetic Programming
GP Gaussian Process
HVAC Heating Ventilation and Air Conditioning
IARPA Intelligence Advanced Research Projects Activity
KDD Knowledge Discovery from Data
kNN k-Nearest Neighbors
LARS Lasso Regression
LBFGS Broyden–Fletcher–Goldfarb–Shanno
LDS Linear Discriminant Analysis
LLC-fs Local Learning-based Clustering with feature selection
LR Logistic Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCFS Multi-Cluster Feature Selection
MDI Mean Decrease in Impurity
MDL Minimum Description Length
MICI Maximal Information Compression Index
ML Machine Learning
MLOps Machine Learning Operations

Eng 2024, 5 408

MRDTL Multi-Relational Decision Tree Learning
MSE Mean Squared Error
NAS Neural Automated Search
NDFS Non-negative Discriminative Feature Selection
NN Neural Network
NNI Neural Network Intelligence
OLS Ordinary Least Squares
OoB Out-of-Bag
OOP Object Oriented Programming
PoLP Principle of Least Privilege
PCA Principal Component Analysis
REFSVM Recursive Feature Elimination Support Vector Machines
RF Random Forest
RICA Reconstruction Independent Component Analysis
RMSE Root Mean Squared Error
ROC Receiver Operating Characteristic
RRFS Relevance Redundancy Feature Selection
SLA Service Level Agreement
SQL Structured Query Language
SRM Structural Risk Minimization
SS-SFS Simplified Silhouette Sequential Forward Selection
SVD Singular Value Decomposition
SVM Support Vector Machines
TDD Test-Driven Development
TN True Negative
TOC Total Operating Characteristic
TP True Positive
TPOT Tree-based Pipeline Optimization Tool
UDFS Unsupervised Discriminative Feature Selection
VPC Virtual Private Cloud

References
1. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,

trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]
2. Bravo-Rocca, G.; Liu, P.; Guitart, J.; Dholakia, A.; Ellison, D.; Falkanger, J.; Hodak, M. Scanflow: A multi-graph framework for

Machine Learning workflow management, supervision, and debugging. Expert Syst. Appl. 2022, 202, 117232. [CrossRef]
3. Bala, A.; Chana, I. Intelligent failure prediction models for scientific workflows. Expert Syst. Appl. 2015, 42, 980–989. [CrossRef]
4. Quemy, A. Two-stage optimization for machine learning workflow. Inf. Syst. 2020, 92, 101483. [CrossRef]
5. Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of machine learning algorithms for forest stand species mapping using

Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [CrossRef]
6. Liu, R.; Misra, S. A generalized machine learning workflow to visualize mechanical discontinuity. J. Pet. Sci. Eng. 2022, 210,

109963. [CrossRef]
7. He, S.; Wang, Y.; Zhang, Z.; Xiao, F.; Zuo, S.; Zhou, Y.; Cai, X.; Jin, X. Interpretable machine learning workflow for evaluation of

the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Mater. Des. 2023, 225, 111513. [CrossRef]
8. Zhou, Y.; Li, G.; Dong, J.; Xing, X.h.; Dai, J.; Zhang, C. MiYA, an efficient machine-learning workflow in conjunction with the

YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.
Metab. Eng. 2018, 47, 294–302. [CrossRef] [PubMed]

9. Wong, W.K.; Joglekar, M.V.; Saini, V.; Jiang, G.; Dong, C.X.; Chaitarvornkit, A.; Maciag, G.J.; Gerace, D.; Farr, R.J.; Satoor, S.N.;
et al. Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. Iscience 2021, 24,
102379. [CrossRef] [PubMed]

10. Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine learning for large-scale
crop yield forecasting. Agric. Syst. 2021, 187, 103016. [CrossRef]

11. Haghighatlari, M.; Hachmann, J. Advances of machine learning in molecular modeling and simulation. Curr. Opin. Chem. Eng.
2019, 23, 51–57. [CrossRef]

12. Reker, D. Practical considerations for active machine learning in drug discovery. Drug Discov. Today Technol. 2019, 32, 73–79.
[CrossRef] [PubMed]

13. Narayanan, H.; Dingfelder, F.; Butté, A.; Lorenzen, N.; Sokolov, M.; Arosio, P. Machine learning for biologics: Opportunities for
protein engineering, developability, and formulation. Trends Pharmacol. Sci. 2021, 42, 151–165. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.eswa.2022.117232
https://doi.org/10.1016/j.eswa.2014.09.014
https://doi.org/10.1016/j.is.2019.101483
https://doi.org/10.1016/j.rse.2020.112103
https://doi.org/10.1016/j.petrol.2021.109963
https://doi.org/10.1016/j.matdes.2022.111513
https://doi.org/10.1016/j.ymben.2018.03.020
https://www.ncbi.nlm.nih.gov/pubmed/29627507
https://doi.org/10.1016/j.isci.2021.102379
https://www.ncbi.nlm.nih.gov/pubmed/33981968
https://doi.org/10.1016/j.agsy.2020.103016
https://doi.org/10.1016/j.coche.2019.02.009
https://doi.org/10.1016/j.ddtec.2020.06.001
https://www.ncbi.nlm.nih.gov/pubmed/33386097
https://doi.org/10.1016/j.tips.2020.12.004
https://www.ncbi.nlm.nih.gov/pubmed/33500170

Eng 2024, 5 409

14. Jeong, S.; Kwak, J.; Lee, S. Machine learning workflow for the oil uptake prediction of rice flour in a batter-coated fried system.
Innov. Food Sci. Emerg. Technol. 2021, 74, 102796. [CrossRef]

15. Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning
by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163.
[CrossRef]

16. Lv, A.; Cheng, L.; Aghighi, M.A.; Masoumi, H.; Roshan, H. A novel workflow based on physics-informed machine learning to
determine the permeability profile of fractured coal seams using downhole geophysical logs. Mar. Pet. Geol. 2021, 131, 105171.
[CrossRef]

17. Gharib, A.; Davies, E.G. A workflow to address pitfalls and challenges in applying machine learning models to hydrology. Adv.
Water Resour. 2021, 152, 103920. [CrossRef]

18. Kampezidou, S.I.; Ray, A.T.; Duncan, S.; Balchanos, M.G.; Mavris, D.N. Real-time occupancy detection with physics-informed
pattern-recognition machines based on limited CO2 and temperature sensors. Energy Build. 2021, 242, 110863. [CrossRef]

19. Fu, H.; Kampezidou, S.; Sung, W.; Duncan, S.; Mavris, D.N. A Data-driven Situational Awareness Approach to Monitoring
Campus-wide Power Consumption. In Proceedings of the 2018 International Energy Conversion Engineering Conference,
Cincinnati, OH, USA, 9–11 July 2018; p. 4414.

20. Kampezidou, S.; Wiegman, H. Energy and power savings assessment in buildings via conservation voltage reduction. In
Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC,
USA, 23–26 April 2017; pp. 1–5.

21. Kampezidou, S.I.; Romberg, J.; Vamvoudakis, K.G.; Mavris, D.N. Scalable Online Learning of Approximate Stackelberg Solutions
in Energy Trading Games with Demand Response Aggregators. arXiv 2023, arXiv:2304.02086.

22. Kampezidou, S.I.; Romberg, J.; Vamvoudakis, K.G.; Mavris, D.N. Online Adaptive Learning in Energy Trading Stackelberg Games
with Time-Coupling Constraints. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28
May 2021; pp. 718–723.

23. Gao, Z.; Kampezidou, S.I.; Behere, A.; Puranik, T.G.; Rajaram, D.; Mavris, D.N. Multi-level aircraft feature representation and
selection for aviation environmental impact analysis. Transp. Res. Part C Emerg. Technol. 2022, 143, 103824. [CrossRef]

24. Tikayat Ray, A.; Cole, B.F.; Pinon Fischer, O.J.; White, R.T.; Mavris, D.N. aeroBERT-Classifier: Classification of Aerospace
Requirements Using BERT. Aerospace 2023, 10, 279. [CrossRef]

25. Tikayat Ray, A.; Pinon Fischer, O.J.; Mavris, D.N.; White, R.T.; Cole, B.F. aeroBERT-NER: Named-Entity Recognition for Aerospace
Requirements Engineering using BERT. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27
January 2023. [CrossRef]

26. Tikayat Ray, A. Standardization of Engineering Requirements Using Large Language Models. Ph.D. Thesis, Georgia Institute of
Technology, Atlanta, GA, USA, 2023. [CrossRef]

27. Tikayat Ray, A.; Cole, B.F.; Pinon Fischer, O.J.; Bhat, A.P.; White, R.T.; Mavris, D.N. Agile Methodology for the Standardization of
Engineering Requirements Using Large Language Models. Systems 2023, 11, 352. [CrossRef]

28. Shrivastava, R.; Sisodia, D.S.; Nagwani, N.K. Deep neural network-based multi-stakeholder recommendation system exploiting
multi-criteria ratings for preference learning. Expert Syst. Appl. 2023, 213, 119071. [CrossRef]

29. van Dinter, R.; Catal, C.; Tekinerdogan, B. A decision support system for automating document retrieval and citation screening.
Expert Syst. Appl. 2021, 182, 115261. [CrossRef]

30. Li, X.; Zheng, J.; Li, M.; Ma, W.; Hu, Y. One-shot neural architecture search for fault diagnosis using vibration signals. Expert Syst.
Appl. 2022, 190, 116027. [CrossRef]

31. Kim, J.; Comuzzi, M. A diagnostic framework for imbalanced classification in business process predictive monitoring. Expert Syst.
Appl. 2021, 184, 115536. [CrossRef]

32. Jin, Y.; Carman, M.; Zhu, Y.; Xiang, Y. A technical survey on statistical modelling and design methods for crowdsourcing quality
control. Artif. Intell. 2020, 287, 103351. [CrossRef]

33. Boeschoten, S.; Catal, C.; Tekinerdogan, B.; Lommen, A.; Blokland, M. The automation of the development of classification models
and improvement of model quality using feature engineering techniques. Expert Syst. Appl. 2023, 213, 118912. [CrossRef]

34. Zhang, Y.; Kwong, S.; Wang, S. Machine learning based video coding optimizations: A survey. Inf. Sci. 2020, 506, 395–423.
[CrossRef]

35. Moniz, N.; Cerqueira, V. Automated imbalanced classification via meta-learning. Expert Syst. Appl. 2021, 178, 115011. [CrossRef]
36. Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare.

Artif. Intell. Med. 2020, 104, 101822. [CrossRef]
37. Kefalas, M.; Baratchi, M.; Apostolidis, A.; van den Herik, D.; Bäck, T. Automated machine learning for remaining useful life

estimation of aircraft engines. In Proceedings of the 2021 IEEE International Conference on Prognostics and Health Management
(ICPHM), Detroit, MI, USA, 7–9 June 2021; pp. 1–9.

38. Tikayat Ray, A.; Bhat, A.P.; White, R.T.; Nguyen, V.M.; Pinon Fischer, O.J.; Mavris, D.N. Examining the Potential of Generative
Language Models for Aviation Safety Analysis: Case Study and Insights Using the Aviation Safety Reporting System (ASRS).
Aerospace 2023, 10, 770. [CrossRef]

39. Hayashi, M.; Tamai, K.; Owashi, Y.; Miura, K. Automated machine learning for identification of pest aphid species (Hemiptera:
Aphididae). Appl. Entomol. Zool. 2019, 54, 487–490. [CrossRef]

https://doi.org/10.1016/j.ifset.2021.102796
https://doi.org/10.1016/j.jag.2020.102163
https://doi.org/10.1016/j.marpetgeo.2021.105171
https://doi.org/10.1016/j.advwatres.2021.103920
https://doi.org/10.1016/j.enbuild.2021.110863
https://doi.org/10.1016/j.trc.2022.103824
https://doi.org/10.3390/aerospace10030279
https://doi.org/10.2514/6.2023-2583
https://doi.org/10.13140/RG.2.2.17792.40961
https://doi.org/10.3390/systems11070352
https://doi.org/10.1016/j.eswa.2022.119071
https://doi.org/10.1016/j.eswa.2021.115261
https://doi.org/10.1016/j.eswa.2021.116027
https://doi.org/10.1016/j.eswa.2021.115536
https://doi.org/10.1016/j.artint.2020.103351
https://doi.org/10.1016/j.eswa.2022.118912
https://doi.org/10.1016/j.ins.2019.07.096
https://doi.org/10.1016/j.eswa.2021.115011
https://doi.org/10.1016/j.artmed.2020.101822
https://doi.org/10.3390/aerospace10090770
https://doi.org/10.1007/s13355-019-00642-0

Eng 2024, 5 410

40. Espejo-Garcia, B.; Malounas, I.; Vali, E.; Fountas, S. Testing the Suitability of Automated Machine Learning for Weeds Identification.
AI 2021, 2, 34–47. [CrossRef]

41. Koh, J.C.; Spangenberg, G.; Kant, S. Automated machine learning for high-throughput image-based plant phenotyping. Remote
Sens. 2021, 13, 858. [CrossRef]

42. Warnett, S.J.; Zdun, U. Architectural design decisions for the machine learning workflow. Computer 2022, 55, 40–51. [CrossRef]
43. Khalilnejad, A.; Karimi, A.M.; Kamath, S.; Haddadian, R.; French, R.H.; Abramson, A.R. Automated pipeline framework for

processing of large-scale building energy time series data. PLoS ONE 2020, 15, e0240461. [CrossRef]
44. Michael, N.; Cucuringu, M.; Howison, S. OFTER: An Online Pipeline for Time Series Forecasting. arXiv 2023, arXiv:2304.03877.

[CrossRef]
45. Hapke, H.; Nelson, C. Building Machine Learning Pipelines; O’Reilly Media: Sebastopol, CA, USA, 2020.
46. Kolodiazhnyi, K. Hands-On Machine Learning with C++: Build, Train, and Deploy End-To-End Machine Learning and Deep Learning

Pipelines; Packt Publishing Ltd.: Burmingham, UK, 2020.
47. El-Amir, H.; Hamdy, M. Deep Learning Pipeline: Building a Deep Learning Model with TensorFlow; Apress: New York, NY, USA, 2019.
48. Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists; O’Reilly Media, Inc.:

Sebastopol, CA, USA, 2018.
49. Meisenbacher, S.; Turowski, M.; Phipps, K.; Rätz, M.; Müller, D.; Hagenmeyer, V.; Mikut, R. Review of automated time series

forecasting pipelines. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1475. [CrossRef]
50. Wang, M.; Cui, Y.; Wang, X.; Xiao, S.; Jiang, J. Machine learning for networking: Workflow, advances and opportunities. IEEE

Netw. 2017, 32, 92–99. [CrossRef]
51. Kreuzberger, D.; Kühl, N.; Hirschl, S. Machine learning operations (mlops): Overview, definition, and architecture. IEEE Access

2023, 11, 31866–31879. [CrossRef]
52. di Laurea, I.S. MLOps-Standardizing the Machine Learning Workflow. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2021.
53. Allison, P.D. Missing Data; Sage Publications: Los Angeles, CA, USA, 2001.
54. Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data; John Wiley & Sons: Hoboken, NJ, USA, 2019; Volume 793.
55. Candes, E.; Recht, B. Exact matrix completion via convex optimization. Commun. ACM 2012, 55, 111–119. [CrossRef]
56. Candès, E.J.; Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 2010, 56, 2053–2080.

[CrossRef]
57. Candes, E.J.; Plan, Y. Matrix completion with noise. Proc. IEEE 2010, 98, 925–936. [CrossRef]
58. Johnson, C.R. Matrix completion problems: A survey. In Proceedings of the Matrix Theory and Applications; American Mathematical

Society: Providence, RI, USA, 1990; Volume 40, pp. 171–198.
59. Recht, B. A simpler approach to matrix completion. J. Mach. Learn. Res. 2011, 12, 3413–3430.
60. Kennedy, A.; Nash, G.; Rattenbury, N.; Kempa-Liehr, A.W. Modelling the projected separation of microlensing events using

systematic time-series feature engineering. Astron. Comput. 2021, 35, 100460. [CrossRef]
61. Elmagarmid, A.K.; Ipeirotis, P.G.; Verykios, V.S. Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng. 2006, 19, 1–16.

[CrossRef]
62. Hlupić, T.; Oreščanin, D.; Ružak, D.; Baranović, M. An overview of current data lake architecture models. In Proceedings of

the 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija,
Croatia, 23–27 May 2022; pp. 1082–1087.

63. Vassiliadis, P. A survey of extract–transform–load technology. Int. J. Data Warehous. Min. 2009, 5, 1–27. [CrossRef]
64. Vassiliadis, P.; Simitsis, A. Extraction, Transformation, and Loading. In Encyclopedia of Database Systems; Springer: Boston, MA,

USA, 2009; Volume 10.
65. Dash, T.; Chitlangia, S.; Ahuja, A.; Srinivasan, A. A review of some techniques for inclusion of domain-knowledge into deep

neural networks. Sci. Rep. 2022, 12, 1040. [CrossRef] [PubMed]
66. Dara, S.; Tumma, P. Feature extraction by using deep learning: A survey. In Proceedings of the 2018 Second International

Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp.
1795–1801.

67. Lee, J.; Bahri, Y.; Novak, R.; Schoenholz, S.S.; Pennington, J.; Sohl-Dickstein, J. Deep neural networks as gaussian processes. arXiv
2017, arXiv:1711.00165.

68. Benoit, K. Linear regression models with logarithmic transformations. Lond. Sch. Econ. 2011, 22, 23–36.
69. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;

Springer: New York, NY, USA, 2009; Volume 2.
70. Piryonesi, S.M.; El-Diraby, T.E. Role of data analytics in infrastructure asset management: Overcoming data size and quality

problems. J. Transp. Eng. Part B Pavements 2020, 146, 04020022. [CrossRef]
71. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Abingdon, UK, 2017.
72. Grus, J. Data Science from Scratch: First Principles with Python; O’Reilly Media: Sebastopol, CA, USA, 2019.
73. Sharma, V. A Study on Data Scaling Methods for Machine Learning. Int. J. Glob. Acad. Sci. Res. 2022, 1, 23–33. [CrossRef]
74. Leznik, M.; Tofallis, C. Estimating Invariant Principal Components Using Diagonal Regression; University of Hertfordshire: Hatfield,

UK, 2005.

https://doi.org/10.3390/ai2010004
https://doi.org/10.3390/rs13050858
https://doi.org/10.1109/MC.2021.3134800
https://doi.org/10.1371/journal.pone.0240461
https://doi.org/10.2139/ssrn.4413028
https://doi.org/10.1002/widm.1475
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/ACCESS.2023.3262138
https://doi.org/10.1145/2184319.2184343
https://doi.org/10.1109/TIT.2010.2044061
https://doi.org/10.1109/JPROC.2009.2035722
https://doi.org/10.1016/j.ascom.2021.100460
https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.4018/jdwm.2009070101
https://doi.org/10.1038/s41598-021-04590-0
https://www.ncbi.nlm.nih.gov/pubmed/35058487
https://doi.org/10.1061/JPEODX.0000175
https://doi.org/10.55938/ijgasr.v1i1.4

Eng 2024, 5 411

75. Ahsan, M.M.; Mahmud, M.P.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms
and model performance. Technologies 2021, 9, 52. [CrossRef]

76. Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; Marshall University: Untington, WV,
USA, 1996.

77. Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959.
[CrossRef]

78. Fisher, R.A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population.
Biometrika 1915, 10, 507–521. [CrossRef]

79. Anscombe, F.J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 1948, 35, 246–254. [CrossRef]
80. Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [CrossRef]
81. Holland, S. Transformations of Proportions and Percentages. 2015. Available online: http://stratigrafia.org/8370/rtips/

proportions.html (accessed on 10 December 2023).
82. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms

2005, 55, 58–75. [CrossRef]
83. Kessy, A.; Lewin, A.; Strimmer, K. Optimal whitening and decorrelation. Am. Stat. 2018, 72, 309–314. [CrossRef]
84. Higham, N.J. Analysis of the Cholesky Decomposition of a Semi-Definite Matrix; University of Manchester: Manchester, UK, 1990.
85. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37.

[CrossRef]
86. Lakhina, A.; Crovella, M.; Diot, C. Diagnosing network-wide traffic anomalies. ACM SIGCOMM Comput. Commun. Rev. 2004, 34,

219–230. [CrossRef]
87. Han, K.; Wang, Y.; Zhang, C.; Li, C.; Xu, C. Autoencoder inspired unsupervised feature selection. In Proceedings of the 2018

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp.
2941–2945.

88. Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A review of unsupervised feature selection methods. Artif.
Intell. Rev. 2020, 53, 907–948. [CrossRef]

89. Li, Z.; Yang, Y.; Liu, J.; Zhou, X.; Lu, H. Unsupervised feature selection using nonnegative spectral analysis. In Proceedings of the
AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; Volume 26, pp. 1026–1032.

90. Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 856–863.

91. Mitra, P.; Murthy, C.; Pal, S.K. Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2002,
24, 301–312. [CrossRef]

92. He, X.; Cai, D.; Niyogi, P. Laplacian score for feature selection. In Proceedings of the 18th International Conference on Neural
Information Processing Systems, Vancouver, BC, Canada, 5–8 December 2005; Volume 18.

93. Ferreira, A.J.; Figueiredo, M.A. An unsupervised approach to feature discretization and selection. Pattern Recognit. 2012, 45,
3048–3060. [CrossRef]

94. Park, C.H. A feature selection method using hierarchical clustering. In Proceedings of the Mining Intelligence and Knowledge
Exploration, Tamil Nadu, India, 18–20 December 2013; pp. 1–6.

95. Cai, D.; Zhang, C.; He, X. Unsupervised feature selection for multi-cluster data. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 333–342.

96. Yang, Y.; Shen, H.T.; Ma, Z.; Huang, Z.; Zhou, X. ℓ 2, 1-norm regularized discriminative feature selection for unsupervised
learning. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.

97. Dy, J.G.; Brodley, C.E. Feature selection for unsupervised learning. J. Mach. Learn. Res. 2004, 5, 845–889.
98. Breaban, M.; Luchian, H. A unifying criterion for unsupervised clustering and feature selection. Pattern Recognit. 2011, 44,

854–865. [CrossRef]
99. Hruschka, E.R.; Covoes, T.F. Feature selection for cluster analysis: An approach based on the simplified Silhouette criterion.

In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and
International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria,
28–30 November 2005; Volume 1, pp. 32–38.

100. Law, M.H.; Figueiredo, M.A.; Jain, A.K. Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern
Anal. Mach. Intell. 2004, 26, 1154–1166. [CrossRef] [PubMed]

101. Zeng, H.; Cheung, Y.m. Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Pattern Anal. Mach.
Intell. 2010, 33, 1532–1547. [CrossRef]

102. Wang, S.; Pedrycz, W.; Zhu, Q.; Zhu, W. Unsupervised feature selection via maximum projection and minimum redundancy.
Knowl. Based Syst. 2015, 75, 19–29. [CrossRef]

103. Guo, J.; Zhu, W. Dependence guided unsupervised feature selection. In Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

104. Liu, H.; Motoda, H. Feature Extraction, Construction and Selection: A Data Mining Perspective; Springer: New York, NY, USA, 1998;
Volume 453.

105. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26.

https://doi.org/10.3390/technologies9030052
https://doi.org/10.1093/biomet/87.4.954
https://doi.org/10.2307/2331838
https://doi.org/10.1093/biomet/35.3-4.246
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
http://stratigrafia.org/8370/rtips/proportions.html
http://stratigrafia.org/8370/rtips/proportions.html
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1109/34.824819
https://doi.org/10.1145/1030194.1015492
https://doi.org/10.1007/s10462-019-09682-y
https://doi.org/10.1109/34.990133
https://doi.org/10.1016/j.patcog.2011.12.008
https://doi.org/10.1016/j.patcog.2010.10.006
https://doi.org/10.1109/TPAMI.2004.71
https://www.ncbi.nlm.nih.gov/pubmed/15742891
https://doi.org/10.1109/TPAMI.2010.215
https://doi.org/10.1016/j.knosys.2014.11.008

Eng 2024, 5 412

106. Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical learning with sparsity. Monogr. Stat. Appl. Probab. 2015, 143, 143.
107. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [CrossRef]
108. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [CrossRef]
109. Obozinski, G.; Taskar, B.; Jordan, M. Multi-Task Feature Selection; Technical Report; Department of Statistics, University of

California: Berkeley, CA, USA, 2006; Volume 2.
110. Argyriou, A.; Evgeniou, T.; Pontil, M. Multi-task feature learning. In Proceedings of the Advances in Neural Information

Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; Volume 19.
111. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2006, 68, 49–67.

[CrossRef]
112. Kocev, D.; Vens, C.; Struyf, J.; Džeroski, S. Ensembles of multi-objective decision trees. In Proceedings of the European Conference

on Machine Learning, Warsaw, Poland, 17–21 September 2007; pp. 624–631.
113. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
114. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]
115. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
116. Kocev, D.; Džeroski, S.; White, M.D.; Newell, G.R.; Griffioen, P. Using single-and multi-target regression trees and ensembles to

model a compound index of vegetation condition. Ecol. Model. 2009, 220, 1159–1168. [CrossRef]
117. Hastie, T.; Tibshirani, R.; Friedman, J. Boosting and additive trees. In The Elements of Statistical Learning; Springer: New York, NY,

USA, 2009; pp. 337–387.
118. Madeh Piryonesi, S.; El-Diraby, T.E. Using machine learning to examine impact of type of performance indicator on flexible

pavement deterioration modeling. J. Infrastruct. Syst. 2021, 27, 04021005. [CrossRef]
119. Piryonesi, S.M.; El-Diraby, T.E. Data analytics in asset management: Cost-effective prediction of the pavement condition index. J.

Infrastruct. Syst. 2020, 26, 04019036. [CrossRef]
120. Segal, M.; Xiao, Y. Multivariate random forests. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 80–87. [CrossRef]
121. Bellman, R. Adaptive Control Processes: A Guided Tour. J. R. Stat. Soc. Ser. A 1962, 125, 161–162. [CrossRef]
122. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
123. Gao, Z. Representative Data and Models for Complex Aerospace Systems Analysis. Ph.D. Thesis, Georgia Institute of Technology,

Atlanta, GA, USA, 2022.
124. Thudumu, S.; Branch, P.; Jin, J.; Singh, J.J. A comprehensive survey of anomaly detection techniques for high dimensional big

data. J. Big Data 2020, 7, 42. [CrossRef]
125. Katz, G.; Shin, E.C.R.; Song, D. Explorekit: Automatic feature generation and selection. In Proceedings of the 2016 IEEE 16th

International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 979–984.
126. Lam, H.T.; Thiebaut, J.M.; Sinn, M.; Chen, B.; Mai, T.; Alkan, O. One button machine for automating feature engineering in

relational databases. arXiv 2017, arXiv:1706.00327.
127. Kaul, A.; Maheshwary, S.; Pudi, V. Autolearn: Automated feature generation and selection. In Proceedings of the 2017 IEEE

International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 217–226.
128. Tran, B.; Xue, B.; Zhang, M. Genetic programming for feature construction and selection in classification on high-dimensional

data. Memetic Comput. 2016, 8, 3–15. [CrossRef]
129. Khurana, U.; Turaga, D.; Samulowitz, H.; Parthasrathy, S. Cognito: Automated feature engineering for supervised learning.

In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15
December 2016; pp. 1304–1307.

130. Khurana, U.; Samulowitz, H.; Turaga, D. Feature engineering for predictive modeling using reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

131. Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, E.B.; Turaga, D.S. Learning Feature Engineering for Classification. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August
2017; Volume 17, pp. 2529–2535.

132. Li, H.; Chutatape, O. Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng.
2004, 51, 246–254. [CrossRef] [PubMed]

133. Dang, D.M.; Jackson, K.R.; Mohammadi, M. Dimension and variance reduction for Monte Carlo methods for high-dimensional
models in finance. Appl. Math. Financ. 2015, 22, 522–552. [CrossRef]

134. Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math Challenges Lect. 2000, 1, 32.
135. Atramentov, A.; Leiva, H.; Honavar, V. A multi-relational decision tree learning algorithm–implementation and experiments. In

Proceedings of the International Conference on Inductive Logic Programming, Szeged, Hungary, 29 September–1 October 2003;
pp. 38–56.

136. Kanter, J.M.; Veeramachaneni, K. Deep feature synthesis: Towards automating data science endeavors. In Proceedings of the 2015
IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015; pp. 1–10.

137. Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of deep convolutional neural network architectures for automated feature
extraction in industrial inspection. CIRP Ann. 2016, 65, 417–420. [CrossRef]

138. Schneider, T.; Helwig, N.; Schütze, A. Industrial condition monitoring with smart sensors using automated feature extraction and
selection. Meas. Sci. Technol. 2018, 29, 094002. [CrossRef]

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1007/BF00058655
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ecolmodel.2009.01.037
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000602
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
https://doi.org/10.1002/widm.12
https://doi.org/10.2307/2343225
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.1007/s12293-015-0173-y
https://doi.org/10.1109/TBME.2003.820400
https://www.ncbi.nlm.nih.gov/pubmed/14765697
https://doi.org/10.1080/1350486X.2015.1110492
https://doi.org/10.1016/j.cirp.2016.04.072
https://doi.org/10.1088/1361-6501/aad1d4

Eng 2024, 5 413

139. Laird, P.; Saul, R. Automated feature extraction for supervised learning. In Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEEWorld Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June 1994; pp.
674–679.

140. Le, Q.; Karpenko, A.; Ngiam, J.; Ng, A. ICA with reconstruction cost for efficient overcomplete feature learning. In Proceedings of
the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24.

141. Ngiam, J.; Chen, Z.; Bhaskar, S.; Koh, P.; Ng, A. Sparse filtering. In Proceedings of the 24th International Conference on Neural
Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24.

142. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 1999.
143. Mallat, S. Group invariant scattering. Commun. Pure Appl. Math. 2012, 65, 1331–1398. [CrossRef]
144. Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886.

[CrossRef]
145. Andén, J.; Mallat, S. Deep scattering spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. [CrossRef]
146. Mallat, S. Understanding deep convolutional networks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150203.

[CrossRef]
147. Rizk, Y.; Hajj, N.; Mitri, N.; Awad, M. Deep belief networks and cortical algorithms: A comparative study for supervised

classification. Appl. Comput. Inform. 2019, 15, 81–93. [CrossRef]
148. Rifkin, R.M.; Lippert, R.A. Notes on Regularized Least Squares; MIT Press: Cambridge, MA, USA, 2007.
149. Yin, R.; Liu, Y.; Wang, W.; Meng, D. Sketch kernel ridge regression using circulant matrix: Algorithm and theory. IEEE Trans.

Neural Netw. Learn. Syst. 2020, 31, 3512–3524. [CrossRef]
150. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [CrossRef]
151. Bulso, N.; Marsili, M.; Roudi, Y. On the complexity of logistic regression models. Neural Comput. 2019, 31, 1592–1623. [CrossRef]
152. Belyaev, M.; Burnaev, E.; Kapushev, Y. Exact inference for Gaussian process regression in case of big data with the Cartesian

product structure. arXiv 2014, arXiv:1403.6573.
153. Serpen, G.; Gao, Z. Complexity analysis of multilayer perceptron neural network embedded into a wireless sensor network.

Procedia Comput. Sci. 2014, 36, 192–197. [CrossRef]
154. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [CrossRef]
155. Fleizach, C.; Fukushima, S. A Naive Bayes Classifier on 1998 KDD Cup; Technical Report; Department of Computer Science and

Engineering, University of California: Los Angeles, CA, USA, 1998.
156. Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs; Springer: New York, NY, USA, 2007; Volume 2.
157. Claesen, M.; De Smet, F.; Suykens, J.A.; De Moor, B. Fast prediction with SVM models containing RBF kernels. arXiv 2014,

arXiv:1403.0736.
158. Cardot, H.; Degras, D. Online principal component analysis in high dimension: Which algorithm to choose? Int. Stat. Rev. 2018,

86, 29–50. [CrossRef]
159. Veksler, O. Nonparametric Density Estimation Nearest Neighbors, KNN; Haifa University: Haifa, Israel, 2013.
160. Raschka, S. STAT 479: Machine Learning Lecture Notes. Available online: https://pages.stat.wisc.edu/~sraschka/teaching/stat4

79-fs2019/ (accessed on 10 December 2023).
161. Sani, H.M.; Lei, C.; Neagu, D. Computational complexity analysis of decision tree algorithms. In Proceedings of the Artificial

Intelligence XXXV: 38th SGAI International Conference on Artificial Intelligence, AI 2018, Cambridge, UK, 11–13 December 2018;
pp. 191–197.

162. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutorials 2015, 18, 1153–1176. [CrossRef]

163. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
Volume 30.

164. Cai, D.; He, X.; Han, J. Training linear discriminant analysis in linear time. In Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; pp. 209–217.

165. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. In Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009;
Volume 5, pp. 532–538.

166. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994.
167. Efron, B. Bootstrap methods: Another look at the jackknife. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp.

569–593.
168. Breiman, L. Bias, Variance, and Arcing Classifiers; Technical Report; Department of Statistics, University of California: Berkeley, CA,

USA, 1996.
169. Syakur, M.; Khotimah, B.; Rochman, E.; Satoto, B.D. Integration k-means clustering method and elbow method for identification

of the best customer profile cluster. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Surabaya,
Indonesia, 9 November 2017; Volume 336, p. 012017.

170. Palacio-Niño, J.O.; Berzal, F. Evaluation metrics for unsupervised learning algorithms. arXiv 2019, arXiv:1905.05667.
171. Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering validation techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [CrossRef]
172. Perry, P.O. Cross-Validation for Unsupervised Learning; Stanford University: Stanford, CA, USA, 2009.

https://doi.org/10.1002/cpa.21413
https://doi.org/10.1109/TPAMI.2012.230
https://doi.org/10.1109/TSP.2014.2326991
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1016/j.aci.2018.01.004
https://doi.org/10.1109/TNNLS.2019.2944959
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1162/neco_a_01207
https://doi.org/10.1016/j.procs.2014.09.078
https://doi.org/10.1109/2.485891
https://doi.org/10.1111/insr.12220
https://pages.stat.wisc.edu/~sraschka/teaching/stat479-fs2019/
https://pages.stat.wisc.edu/~sraschka/teaching/stat479-fs2019/
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1023/A:1012801612483

Eng 2024, 5 414

173. Airola, A.; Pahikkala, T.; Waegeman, W.; De Baets, B.; Salakoski, T. An experimental comparison of cross-validation techniques
for estimating the area under the ROC curve. Comput. Stat. Data Anal. 2011, 55, 1828–1844. [CrossRef]

174. Breiman, L.; Spector, P. Submodel selection and evaluation in regression. The X-random case. Int. Stat. Rev. 1992, 60, 291–319.
[CrossRef]

175. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 14, pp. 1137–1145.

176. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [CrossRef]
177. McCulloch, C.E.; Searle, S.R. Generalized, Linear, and Mixed Models; John Wiley & Sons: Hoboken, NJ, USA, 2004.
178. Kühl, N.; Hirt, R.; Baier, L.; Schmitz, B.; Satzger, G. How to conduct rigorous supervised machine learning in information systems

research: The supervised machine learning report card. Commun. Assoc. Inf. Syst. 2021, 48, 46. [CrossRef]
179. Caruana, R.; Niculescu-Mizil, A. Data mining in metric space: An empirical analysis of supervised learning performance criteria.

In Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA,
USA, 22–25 August 2004; pp. 69–78.

180. Beck, K. Test-Driven Development: By Example; Addison-Wesley Professional: Boston, MA, USA, 2003.
181. Washizaki, H.; Uchida, H.; Khomh, F.; Guéhéneuc, Y.G. Studying Software Engineering Patterns for Designing Machine Learning

Systems. In Proceedings of the 2019 10th International Workshop on Empirical Software Engineering in Practice (IWESEP), Tokyo,
Japan, 13–14 December 2019; pp. 49–495. [CrossRef]

182. Gamma, E.; Helm, R.; Johnson, R.; Johnson, R.E.; Vlissides, J.; Booch, G. Design Patterns: Elements of Reusable Object-Oriented
Software; Addison-Wesley Professional: Boston, MA, USA, 1995.

183. Kohavi, R.; Longbotham, R. Online Controlled Experiments and A/B Testing. Encycl. Mach. Learn. Data Min. 2017, 7, 922–929.
184. Rajasoundaran, S.; Prabu, A.; Routray, S.; Kumar, S.S.; Malla, P.P.; Maloji, S.; Mukherjee, A.; Ghosh, U. Machine learning based

deep job exploration and secure transactions in virtual private cloud systems. Comput. Secur. 2021, 109, 102379. [CrossRef]
185. Abran, A.; Moore, J.W.; Bourque, P.; Dupuis, R.; Tripp, L. Software Engineering Body of Knowledge; IEEE: Piscataway, NJ, USA, 2004;

p. 25.
186. Pytest: Helps You Write Better Programs. Available online: https://docs.pytest.org/en/7.4.x/ (accessed on 10 December 2023).
187. Unittest: Unit Testing Framework. Available online: https://docs.python.org/3/library/unittest.html (accessed on 10 December

2023).
188. JUnit. Available online: https://junit.org/junit5 (accessed on 10 December 2023).
189. Mockito. Available online: https://site.mockito.org/ (accessed on 10 December 2023).
190. Ardagna, C.A.; Bena, N.; Hebert, C.; Krotsiani, M.; Kloukinas, C.; Spanoudakis, G. Big Data Assurance: An Approach Based on

Service-Level Agreements. Big Data 2023, 11, 239–254. [CrossRef]
191. Mili, A.; Tchier, F. Software Testing: Concepts and Operations; John Wiley & Sons: Hoboken, NJ, USA, 2015.
192. Li, P.L.; Chai, X.; Campbell, F.; Liao, J.; Abburu, N.; Kang, M.; Niculescu, I.; Brake, G.; Patil, S.; Dooley, J.; et al. Evolving software

to be ML-driven utilizing real-world A/B testing: Experiences, insights, challenges. In Proceedings of the 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Madrid, Spain, 25–28 May 2021;
pp. 170–179.

193. Manias, D.M.; Chouman, A.; Shami, A. Model Drift in Dynamic Networks. IEEE Commun. Mag. 2023, 61, 78–84. [CrossRef]
194. Wani, D.; Ackerman, S.; Farchi, E.; Liu, X.; Chang, H.w.; Lalithsena, S. Data Drift Monitoring for Log Anomaly Detection Pipelines.

arXiv 2023, arXiv:2310.14893.
195. Schneider, F. Least privilege and more [computer security]. IEEE Secur. Priv. 2003, 1, 55–59. [CrossRef]
196. Mahjabin, T.; Xiao, Y.; Sun, G.; Jiang, W. A survey of distributed denial-of-service attack, prevention, and mitigation techniques.

Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717741463. [CrossRef]
197. Certified Tester Foundation Level (CTFL) Syllabus. Technical Report, International Software Testing Qualifications Board, Version

2018 v3.1.1. Available online: https://astqb.org/assets/documents/CTFL-2018-Syllabus.pdf (accessed on 10 December 2023).
198. Lewis, W.E. Software Testing and Continuous Quality Improvement; Auerbach Publications: Boca Raton, FL, USA, 2004.
199. Martin, R.C. Clean Code: A Handbook of Agile Software Craftsmanship; Pearson Education: Upper Saddle River, NJ, USA, 2009.
200. Thomas, D.; Hunt, A. The Pragmatic Programmer: Your Journey to Mastery; Addison-Wesley Professional: Boston, MA, USA, 2019.
201. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer: New York, NY, USA,

2019.
202. Melis, G.; Dyer, C.; Blunsom, P. On the state of the art of evaluation in neural language models. arXiv 2017, arXiv:1707.05589.
203. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the 25th

International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.
204. Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for

vision architectures. In Proceedings of the International Conference on Machine Learning. PMLR, Atlanta, GA, USA, 16–21 June
2013; pp. 115–123.

205. Sculley, D.; Snoek, J.; Wiltschko, A.; Rahimi, A. Winner’s curse? On pace, progress, and empirical rigor. In Proceedings of the 6th
International Conference on Learning Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018.

206. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.

https://doi.org/10.1016/j.csda.2010.11.018
https://doi.org/10.2307/1403680
https://doi.org/10.1214/09-SS054
https://doi.org/10.17705/1CAIS.04845
https://doi.org/10.1109/IWESEP49350.2019.00017
https://doi.org/10.1016/j.cose.2021.102379
https://docs.pytest.org/en/7.4.x/
https://docs.python.org/3/library/unittest.html
https://junit.org/junit5
https://site.mockito.org/
https://doi.org/10.1089/big.2021.0369
https://doi.org/10.1109/MCOM.003.2200306
https://doi.org/10.1109/MSECP.2003.1236236
https://doi.org/10.1177/1550147717741463
https://astqb.org/assets/documents/CTFL-2018-Syllabus.pdf

Eng 2024, 5 415

207. Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation: Advances in the
Estimation of Distribution Algorithms; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–102.

208. Snoek, J.; Rippel, O.; Swersky, K.; Kiros, R.; Satish, N.; Sundaram, N.; Patwary, M.; Prabhat, M.; Adams, R. Scalable bayesian
optimization using deep neural networks. In Proceedings of the International Conference on Machine Learning. PMLR, Lille,
France, 6–11 July 2015; pp. 2171–2180.

209. Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 8609–8613.

210. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian
optimization. Proc. IEEE 2015, 104, 148–175. [CrossRef]

211. Brochu, E.; Cora, V.M.; De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:1012.2599.

212. Zeng, X.; Luo, G. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.
Health Inf. Sci. Syst. 2017, 5, 2. [CrossRef]

213. Zhang, Y.; Bahadori, M.T.; Su, H.; Sun, J. FLASH: Fast Bayesian optimization for data analytic pipelines. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francsisco, CA, USA, 13–17
August 2016; pp. 2065–2074.

214. Jamieson, K.; Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Proceedings of the
Artificial Intelligence and Statistics. PMLR, Cadiz, Spain, 9–11 May 2016; pp. 240–248.

215. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter
optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

216. Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and efficient hyperparameter optimization at scale. In Proceedings of the
International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1437–1446.

217. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
218. Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the International Conference on Learning

Representations, Toulon, France, 24–26 April 2017.
219. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
220. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.
221. Zela, A.; Klein, A.; Falkner, S.; Hutter, F. Towards automated deep learning: Efficient joint neural architecture and hyperparameter

search. arXiv 2018, arXiv:1807.06906.
222. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Aging evolution for image classifier architecture search. In Proceedings of the AAAI

Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 2, p. 2.
223. Runge, F.; Stoll, D.; Falkner, S.; Hutter, F. Learning to design RNA. arXiv 2018, arXiv:1812.11951.
224. Swersky, K.; Snoek, J.; Adams, R.P. Freeze-thaw Bayesian optimization. arXiv 2014, arXiv:1406.3896.
225. Domhan, T.; Springenberg, J.T.; Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by

extrapolation of learning curves. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, 25–31 July 2015.

226. Klein, A.; Falkner, S.; Springenberg, J.T.; Hutter, F. Learning curve prediction with Bayesian neural networks. In Proceedings of
the International Conference on Learning Representations, Diego, CA, USA, 7–9 May 2015.

227. Baker, B.; Gupta, O.; Raskar, R.; Naik, N. Accelerating neural architecture search using performance prediction. arXiv 2017,
arXiv:1705.10823.

228. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-scale evolution of image classifiers. In
Proceedings of the International Conference on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 2902–2911.

229. Elsken, T.; Metzen, J.H.; Hutter, F. Simple and efficient architecture search for convolutional neural networks. arXiv 2017,
arXiv:1711.04528.

230. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv 2018,
arXiv:1804.09081.

231. Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; Wang, J. Efficient architecture search by network transformation. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

232. Cai, H.; Yang, J.; Zhang, W.; Han, S.; Yu, Y. Path-level network transformation for efficient architecture search. In Proceedings of
the International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 678–687.

233. Saxena, S.; Verbeek, J. Convolutional neural fabrics. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, Barcelona, Spain, 5–10 December 2016; Volume 29.

234. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the
International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4095–4104.

235. Bender, G.; Kindermans, P.J.; Zoph, B.; Vasudevan, V.; Le, Q. Understanding and simplifying one-shot architecture search. In
Proceedings of the International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 550–559.

236. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.

https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1007/s13755-017-0023-z
https://doi.org/10.1109/TKDE.2009.191

Eng 2024, 5 416

237. Cai, H.; Zhu, L.; Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv 2018, arXiv:1812.00332.
238. Xie, S.; Zheng, H.; Liu, C.; Lin, L. SNAS: Stochastic neural architecture search. arXiv 2018, arXiv:1812.09926.
239. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th

International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24.
240. Desautels, T.; Krause, A.; Burdick, J.W. Parallelizing exploration-exploitation tradeoffs in gaussian process bandit optimization. J.

Mach. Learn. Res. 2014, 15, 3873–3923.
241. Ginsbourger, D.; Le Riche, R.; Carraro, L. Kriging is well-suited to parallelize optimization. In Computational Intelligence in

Expensive Optimization Problems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–162.
242. Hernández-Lobato, J.M.; Requeima, J.; Pyzer-Knapp, E.O.; Aspuru-Guzik, A. Parallel and distributed Thompson sampling for

large-scale accelerated exploration of chemical space. In Proceedings of the International Conference on Machine Learning.
PMLR, Sydney, Australia, 6–11 August 2017; pp. 1470–1479.

243. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Parallel algorithm configuration. In Proceedings of the Learning and Intelligent
Optimization: 6th International Conference, LION 6, Paris, France, 16–20 January 2012; pp. 55–70.

244. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl. Based Syst. 2021, 216, 106775. [CrossRef]
245. Nagarajah, T.; Poravi, G. A review on automated machine learning (AutoML) systems. In Proceedings of the 2019 IEEE 5th

International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–6.
246. Thakur, A.; Krohn-Grimberghe, A. Autocompete: A framework for machine learning competition. arXiv 2015, arXiv:1507.02188.
247. Ferreira, L.; Pilastri, A.; Martins, C.M.; Pires, P.M.; Cortez, P. A comparison of AutoML tools for machine learning, deep learning

and XGBoost. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22
July 2021; pp. 1–8.

248. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Chicago, IL, USA, 11–14 August 2013; pp. 847–855.

249. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic model selection and hyperparameter
optimization in WEKA. In Automated Machine Learning: Methods, Systems, Challenges; Springer: Cham, Switzerland, 2019; pp.
81–95.

250. Komer, B.; Bergstra, J.; Eliasmith, C. Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn. In Proceedings
of the ICML Workshop on AutoML, Austin, TX, USA, 6–12 July 2014; Volume 9, p. 50.

251. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and robust automated machine learning.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2015.

252. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: Hands-free automl via meta-learning. J. Mach.
Learn. Res. 2020, 23, 1–61.

253. Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Proceedings of the
Workshop on Automatic Machine Learning. PMLR, Cadiz, Spain, 9–11 May 2016; pp. 66–74.

254. Zimmer, L.; Lindauer, M.; Hutter, F. Auto-pytorch: Multi-fidelity metalearning for efficient and robust autodl. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 43, 3079–3090. [CrossRef] [PubMed]

255. Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956.

256. Peng, H.; Du, H.; Yu, H.; Li, Q.; Liao, J.; Fu, J. Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture
Search. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada,
6–12 December 2020.

257. Microsoft Research. NNI Related Publications. Available online: https://nni.readthedocs.io/en/latest/notes/research_
publications.html (accessed on 10 December 2023).

258. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. Autogluon-tabular: Robust and accurate automl for
structured data. arXiv 2020, arXiv:2003.06505.

259. Pandey, P. A Deep Dive into H2O’s AutoML. Available online: https://h2o.ai/blog/2019/a-deep-dive-into-h2os-automl/
(accessed on 10 December 2023).

260. Wang, C.; Wu, Q.; Weimer, M.; Zhu, E. Flaml: A fast and lightweight automl library. Proc. Mach. Learn. Syst. 2021, 3, 434–447.
261. Shchur, O.; Turkmen, C.; Erickson, N.; Shen, H.; Shirkov, A.; Hu, T.; Wang, Y. AutoGluon-TimeSeries: AutoML for Probabilistic

Time Series Forecasting. arXiv 2023, arXiv:2308.05566.
262. Khider, D.; Zhu, F.; Gil, Y. autoTS: Automated machine learning for time series analysis. In Proceedings of the AGU Fall Meeting

Abstracts, San Francisco, CA, USA, 9–13 December 2019; Volume 2019, p. PP43D–1637.
263. Schafer, R.W. What is a Savitzky-Golay filter? [lecture notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1109/TPAMI.2021.3067763
https://www.ncbi.nlm.nih.gov/pubmed/33750687
https://nni.readthedocs.io/en/latest/notes/research_publications.html
https://nni.readthedocs.io/en/latest/notes/research_publications.html
https://h2o.ai/blog/2019/a-deep-dive-into-h2os-automl/
https://doi.org/10.1109/MSP.2011.941097

	Introduction
	End-to-End Architecture of Machine Learning Workflows
	Data Engineering
	Data Pipeline: Extraction, Loading and Transformation
	Feature Engineering
	Feature Generation
	Feature Transformation
	Feature Selection
	Automated Feature Extraction

	Machine Learning Engineering
	Models and Algorithms for Supervised Learning with Numerical and Categorical Data
	Model Training and Validation
	Model Evaluation

	Model Deployment
	Testing
	Unit Testing
	Performance Testing
	Integration Testing
	System Testing
	Acceptance Testing
	A/B Testing

	Model Deployment
	Monitoring and Maintenance
	Security Considerations

	Automation in Machine Learning Workflows
	AutoML Methods
	AutoML Systems

	A Supervised Classification Workflow Example
	Discussion
	References

