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Abstract: Although the link between gut microbiota and obesity is increasingly reported, the patho-
physiological mechanisms and clinical outcomes are still under debate. This overview of human and
animal data addresses several pathophysiologic mechanisms, dietary habits, exercise and probiotic
and symbiotic supplementation in the fields of gut microbiota and obesity. Overall, obesity impairs
gut microbiota composition due to factors that may be linked to the onset of the disease, such as ex-
cessive consumption of high-energy foods, sugars and fats, as well as a low fiber intake and physical
inactivity. Conversely, low-energy diets, physical exercise, and probiotic and prebiotic supplementa-
tions can enhance gut microbiota in patients with obesity, in addition to improving cardiometabolic
markers. As for perspectives, further research is warranted to ascertain proper dietary manipulation,
physical exercise protocols and dosing regimens of probiotics. Regarding the latter, the effects on
indicators of obesity are clinically modest, and hence skepticism must be exercised.
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1. Introduction

Obesity is a disease characterized by excess body fat and is associated with an increased
risk of developing type 2 diabetes mellitus (T2DM), dyslipidemia, cardiovascular diseases
(CVD), respiratory disorders, joint diseases, gastrointestinal diseases and some types of
cancer [1,2]. According to WHO data [3], more than 1.9 billion adults worldwide were
classified as overweight in 2016, of which more than 650 million suffered from obesity. In
the United States, the trends of obesity indicate that nearly one in two adults will develop
obesity by 2030, such that the prevalence will exceed 50% in 29 states [4]. Globally, the
number of subjects who are overweight and obese will be approximately 1.35 billion and
573 million individuals by 2030, respectively [5].

Obesity is a multicausal disease in which lifestyle, environment, genetics and social,
cultural, economic, psychological and physiological factors are some triggering factors [6].
Furthermore, gut microbiota seems to contribute to adiposity and influences the develop-
ment and progression of obesity, since patients with obesity have an altered microbiome
compared to lean individuals [7,8].

In addition to participating in the digestive and absorptive processes, gut microbiota
plays an important role in immune response, metabolism, gene expression, vitamin syn-
thesis and energy harvest from food [9]. A symbiotic relationship between bacteria in
the intestinal lumen and the host promotes the renewal of cells present in the villi, the
maintenance of the absorption surface, an increase in the content of microorganisms, and a
reduction in intestinal transit time [10].

Disorders in the composition of gut microbiota may influence many physiological
aspects [11]. The integrity of the intestinal barrier is affected by high-fat diets and entails
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an elevated concentration of antigens, subsequently stimulating the immune system and
developing insulin resistance [12]. A high-fiber diet—mostly from plant sources—in turn, is
strongly associated with stimulating the diversity of beneficial bacteria and contributing to
reducing the risk of chronic diseases [13]. Moreover, physical exercise and supplementation
with probiotics and/or prebiotics can enhance gut microbiota in subjects with obesity.

Despite a myriad of research studies, further attention is needed to unify the mechanis-
tic and clinical backgrounds of non-pharmacological strategies in the circles of obesity and
gut microbiota. That said, this article aims to provide an overview of the crosstalk between
obesity and gut microbiota by exploring putative mechanisms and clinical environments
in an attempt to elucidate the causal relationship. Taken together, pathophysiological
mechanisms, dietary habits, exercise and probiotic and symbiotic supplementation are
addressed in this regard.

2. Materials and Methods

An overview of human and animal studies was carried out through a search for articles
in databases Pubmed (Medline), Embase and Google Scholar with the terms (and respective
entry terms) “Obesity”, “Gut microbiota/Gut microbiome” and “Microbiota/microbiome”
published until the search period of November 2022. Studies with observational design
(cross-sectional or cohort) or clinical trials, published in English and Portuguese and
published in the last 20 years were included. Animal studies were included to improve
the physiological background as well; however, in vitro studies, case reports and editorials
were excluded.

We included articles that associated being obese or overweight with the principal
themes of the present study, such as physical activity, sedentary habits, lifestyle, foods,
dietary patterns, gut microbiota, probiotics and prebiotics.

3. Results

A total of 6915 results were found, of which 695 were observational studies, 509 were
clinical trials and 2322 were studies with animals. The articles were first selected by reading
the titles and/or abstracts. After that, the studies were filtered by reading the complete
manuscript, with 40 human studies (observational and clinical trials) and 25 experimental
studies on animals remaining.

A summary of several studies reporting the link between gut microbiota and obesity in
humans can be seen in Tables 1 and 2, and those in animals in Table 3. Collectively, weight
loss induced by low-energy diets alone or combined with physical exercise or bariatric
surgery is sharply associated with improved gut microbiota. Probiotic and prebiotic
supplementations can also enhance gut microbiota, but their effects on indicators of obesity
are modest and cannot be overrated. Weight loss strategies alone or combined with
probiotics and/or prebiotics can not only improve gut microbiota but also cardiometabolic
markers. However, high-fat, high-calorie diets along with a low-complex carbohydrate
(CHO) pattern can be detrimental to gut microbiota. Finally, a couple of research studies
shed light on the role of fecal transplantation in modulating gut microbiota.

Further physiological and clinical backgrounds can be seen in the topics below.
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Table 1. Clinical trials that evaluated gut microbiota and obesity in humans.

Author (Year) Type of Study Population N Intervention Control Time (Weeks) Results

Crovesy, El-Bacha
and Rosado [14]

Clinical trial,
randomized,
double-blind

Obese women 32 Hypocaloric diet + probiotic or
symbiotic supplementation

Placebo
supplementation 8

No differences in anthropometry between groups
of intervention

After the dietary intervention, all groups showed changes in the
metabolic profile associated with the reduction in inflammation

Dong et al. [15] Clinical trial,
randomized

Overweight or
obese adults and

older adults
80

Hypoproteic diet, initially
normocaloric and after with

caloric reduction

Diet with normal
content of PTN 8

No significant differences between weight loss in all groups
Differences in microbiota composition between individuals

according to higher or lower fiber consumption
↑ α diversity and abundance of 6 genera of bacteria in the

intervention group

Gøbel et al. [16]
Clinical trial,
randomized,
double-blind

Obese adolescents 50 Probiotic supplementation with
Lactobacillus salivarius Ls-33

Placebo
supplementation 12

No changes in inflammatory markers after intervention (fasting
glucose, insulin, HOMA-IR, C-peptide)

↓ fasting insulin, HOMA-IR and C-peptide in the placebo group

Gomes, Hoffmann
and Mota [17]

Clinical trial,
randomized,
double-blind

Overweight or
obese women 32 Probiotic supplementation Placebo

supplementation 12

Best lipid profile showed ↑ Prevotella, Collinsella, Paraprevotella
Enterococcus, Clostridiaceaee Veillonella, while the worst lipid

profile showed ↑ phylum TM7, Lachnospiraceae and Roseburia
Alterations in microbial composition in the intervention group:

↑ Firmicutes and ↓ Bacteroidetes

Haro, Borrego
et al. [18]

Clinical trial,
randomized Obese men 20 Mediterranean diet

Low-lipid
high-complex

CHO diet
48

↑ insulin sensitivity in all groups
↑ genera Prevotella and F. prausnitzii + ↓ Roseburia in low-lipid

high-complex CHO diet
↑ genera Roseburia and Oscillospira in Mediterranean diet

Both diets promoted changes in abundance of T2DM-related
bacterial abundance, promoting a protective effect

Jian et al. [19] Clinical trial,
randomized

Overweight or
obese individuals 38

(1) Hypocaloric
high-saturated-fat diet

(2) Hypocaloric
high-unsaturated-fat diet

(3) Hypocaloric
high-sugar diet

- 3

↑ phylum Proteobacteria in high-saturated-fat diet
↑ Lactococcus and Escherichia coli in a high-sugar diet
↑ butyrate producers in high-unsaturated-fat diet

↑ proportion of Firmicute to Bacteroidetes in non-alcoholic fatty
liver disease

↑ BMI in all groups
No differences between the richness of microbial genes and α

diversity, comparing all groups

Kanazawa
et al. [20]

Clinical trial,
randomized

Obese and DM2
individuals 88 Symbiotic supplementation

No type of
symbiotic,

probiotic or
prebiotic

supplementation

24

↑ fasting glucose and HbA1c in the symbiotic group, followed
by normalization

No differences in HbA1c, BMI, lipid profile and IL-6 between all
groups at the end of the study

↑ Bifidobacterium, cluster Atopobium, total lactobacilli and
Lactobacillus, Lacticaseibacillus and Limosilactobacillus in

symbiotic group at the end of the study
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Table 1. Cont.

Author (Year) Type of Study Population N Intervention Control Time (Weeks) Results

Leber et al. [21] Clinical trial,
randomized

Individuals with
metabolic

syndrome or
healthy

38
Supplementation with probiotic

fermented milk (Lactobacillus
casei Shirota)

No type of
supplementation 12

Individuals with metabolic syndrome showed greater intestinal
permeability in comparison to healthy individuals

The probiotic showed no changes in the parameters tested in
the study

Leong et al. [22]
Clinical trial,
randomized,
double-blind

Obese adolescents
(14–18 years) 87

Fecal microbiota transplantation
of eutrophic individuals by oral

capsules
Placebo capsules 26

↑ microbial diversity six weeks post-intervention in women. No
differences were found in men

↓ android/gnoid fat ratio, particularly in women
Resolution of metabolic syndrome in most individuals

after intervention

Ley et al. [23] Clinical trial,
randomized Obese individuals 12

(1) Hypocaloric low-fat diet
(2) Hypocaloric

low-sugar diet
- 48

Before intervention: ↑ Firmicutes and ↓ Bacteroidetes
After intervention: ↑ Bacteroidetes and ↓ Firmicutes
↑ Bacteroidetes was associated with weight loss

Marungruang et al.
[24]

Clinical trial,
randomized

Older individuals
(50–73 years) with

BMI between
25 and 33 kg/m2

47

Diet with biomarkers related to
cardiometabolic risk (foods with

anti-inflammatory potential,
antioxidants and anti-

anti-hypercholesterolemic, like
omega-3, polyphenols,

dietary fiber)

Conventional diet
without

biomarkers
8

Weight loss in both diets
Improvement in lipid profile in the intervention group

No differences in diversity α and taxonomic levels of phyla and
genera in the microbiome between the groups
↑ ratio Prevotella/Bacteroides after intervention in

multifunctional diet

Meslier et al. [25] Clinical trial,
randomized

Overweight or
obese individuals 82 Mediterranean diet without

energy restriction Habitual diet 8

↓ plasma cholesterol and HDL cholesterol
↓ fecal bile acids

Changes in the composition of microbiota in the first week of
intervention

Greater microbial gene richnesses observed at low levels of PCR

Muralidharan et al.
[26]

Clinical trial,
randomized

Overweight or
obese individuals 343

Mediterranean diet with energy
restriction and physical

activity promotion

Mediterranean
diet without

energy restriction
48

↓ weight, ↑ Bacteroidetes and ↓ Firmicutes in the
intervention group

No significant differences in α and β diversity in all groups
↓ BMI, waist circumference, TG levels, glucose and HbA1c in

the intervention group

Neyrinck
et al. [27]

Clinical trial,
randomized,
double-blind

Obese individuals 24
Inulin prebiotic

supplementation +
hypocaloric diet

Placebo
supplementation 12

No changes between the groups in zonulin
↓marker for intestinal inflammation after intervention

↑ SCFAs in both groups, but not significant
Modification in β diversity, ↑ Actinobacteria, families

Bifidobacteriaceae and
Lachnospiraceae, Lactobacillaceae and genera Bifidobacterium

after intervention
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Table 1. Cont.

Author (Year) Type of Study Population N Intervention Control Time (Weeks) Results

Nicolucci
et al. [28]

Clinical trial,
randomized,
double-blind

Overweight or
obese children

(7–12 years)
38

Prebiotic supplementation with
inulin enriched

with oligofructose

Placebo
supplementation 16

↓ weight gain and % body fat in the intervention group
Four individuals with insulin resistance were no longer

classified as such after prebiotic intervention
↑ fecal bile acids in the placebo group

↑ Bifidobacterium spp. in the intervention group

Sergeev
et al. [29] Clinical trial Overweight or

obese individual 20 Hypocaloric diet + symbiotic
supplementation

Hypocaloric diet
+ placebo

supplementation
12

No significant differences between the groups in body
composition

↓ HbA1C, ↑ relative abundance of gut bacteria and ↓microbial
genera associated with inflammation in the intervention group

Van Son et al. [30] Cohort

Overweight or
obese men and

post-menopause
women

107 - - 284
A positive correlation was found between PLm and diastolic BP
No significant differences in Plm between insulin-resistant and

-sensitive individuals

Vrieze et al. [31]
Clinical trial,
randomized,
double-blind

Adult men with
metabolic
syndrome

18 Fecal transplantation of
microbiota by duodenal tube

Fecal
transplantation of

own feces
collected and

processed

6

No significant changes were found in energy expenditure at rest
↑ gut microbiota diversity

↓ fecal SCFAs
↑ peripheral insulin sensitivity

Tendency to improve hepatic sensitivity

Yu et al. [32]
Clinical trial,
randomized,
double-blind

Obese adults with
insulin resistance 24 Fecal transplantation

by capsules
Placebo

supplementation 12

Comparing the intervention group and the control group, no
differences were found in HOMA-IR, weight, fasting lipids or

energy expenditure at rest
A modest reduction in HbA1c in the intervention group

BMI: body mass index; HbA1c: glycated hemoglobin; PTN: proteins; CHO: carbohydrates; LIP: lipids; SCFA: short-chain fatty acids; BP: blood pressure; PCR: C-reactive protein;
T2DM: type 2 diabetes mellitus; IL-6: interleukin 6; LPS: lipopolysaccharides; TG: triglycerides; ImP: imidazole propionate; ObMH: obese metabolically healthy; ObMUH: metabolically
unhealthy; EuMH: eutrophic metabolically healthy; OvMH: overweight metabolically healthy; MH: metabolically healthy; MUH: metabolically unhealthy; SIBO: small intestine bacterial
overgrowth; rRNA: ribosomal RNA; qPCR: real-time quantitative PCR; Ob/Ov: obesity/overweight.
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Table 2. Observational studies that associated gut microbiota and obesity in humans.

Author (Year) Type of Study Population n Time (Weeks) Results

Bervoets et al. [33] Cross-sectional Children and
adolescents 53 -

↑ Firmicutes/Bacteroidetes ratio in obese children compared to control
↑ Staphylococcus spp. was associated with ↑ energy consumption

↓ Bacteroides vulgatus in obese subjects
Lactobacillus spp. concentrations were associated with CRP levels

Cho [34] Cohort Children and
adolescents 36 48

Pre-dietary intervention:
↓ Bacteroidetes in the weight-gain group, in comparison to control

↓ richness of microbial genes
Post-dietary intervention:

↑ Firmicutes, ↓ Bacteroidetes, ↓ richness of genes in the fat-loss group
↓ Firmicutes, ↑ Actinobacteria, ↓ class Clostridia in the weight-gain group

Romboutsia, Ruminococcaeceae _UCG_013, Eubacterium coprostanollgenes-group and Parabacteroides are
important to microbial changes in the weight-gain group

Romboutsia genera, Eubacterium_halli_ group and Clostridium_sensu_stricto are important in microbial
changes and interaction in the fat gain group

Haro, Borrego
et al. [35]

Clinical trial,
randomized Obese men 20 48

↑ insulin sensitivity in all groups
↑ genera Prevotella and F. prausnitzii + ↓ Roseburia in low-lipid high-complex CHO diet

↑ genera Roseburia and Oscillospira in Mediterranean diet
Both diets promoted changes in abundance of T2DM-related bacterial abundance, promoting a

protective effect

Haro, Zúñiga et al. [18] Cohort Adults 75 240

Microbiota composition seems to be different according to sex and seems to be influenced by BMI
↑ Firmicutes in women independent of BMI
↑ Firmicutes in men with BMI > 33 kg/m2

↓ Bacteroides in men with a BMI of 33 kg/m2

Jumpertz et al. [36] Cohort Lean or obese adults 21 -

Firmicutes→ associated with increasing nutrient absorption
Bacteroidetes→ associated with a decrease in nutrient absorption (−150 kcal)

No differences in caloric excretion in feces of eutrophic or obese with 2.400 kcal/d diet
Eutrophic individuals lost less energy in feces with 3.400 kcal/d diet

No differences in caloric excretion in feces of obese subjects between two diets

Kim et al. [37] Cohort Overweight or obese
individuals 747 16

↓ diversity α in MUH
No differences in α diversity between the healthy control group and MH

↑ genera Oscillospira and Clostridium, ↑ family Coriobacteriaceae and Leuconostocaceae in MH
↑ Fusobacteria in MUH

No differences in ratio Firmicutes/Bacteroidetes between MUH and MH
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Table 2. Cont.

Author (Year) Type of Study Population n Time (Weeks) Results

Kong et al. [38] Cross-sectional Lean, overweight or
obese individuals 45 -

↓ Clostridia leptum, Clostridia coccoides and Bacteroides/Prevotella in individuals that were overweight
or obese

↑ richness and diversity of microbial genes in individuals with higher consumption of fruits,
yogurts, soups and lower consumption of sugar and sugary drinks

The worst food pattern was associated with alterations in lipid profile

Menni et al. [39] Cross-sectional Healthy women 1.632 -

↓ α diversity in weight-gain group
Dietary fiber intake was related to microbiota diversity and lower weight gain

Firmicutes were related to a lower risk of weight gain
Bacteroides was related to an increased risk of weight gain

Navarro
et al. [40] Cross-sectional Adults, healthy 68 336 ↑ acetate concentrations, ↓ Bacteroides in obese subjects

Lactobacillus was related as a risk factor for obesity

Olivares
et al. [41] Cross-sectional Adults 109 -

↓microbial diversity and ↓ ratio Firmicutes/Bacteroidetes in ObMUH
↑ Bifidobacterium in eutrophic EuMH

↑ family Prevotellaceae and genera Eubacterium rectale and Faecalibacterium in people ObMH and
OvMH compared to EuMH

↑ Coprococcus and Ruminococcus in OvMH

Orsso et al. [42] Cross-sectional Obese children 21 80
Increased HOMA-IR was associated with ↓ richness of microbial genes, ↓ species richness of

Firmicutes and ↓ diversity of Proteobacteria
↓ α diversity was associated with ↑ PCR in obese subjects

Peters et al. [43] Cross-sectional Lean, overweight or
obese individuals 599 -

↓ richness of microbial genes in obese compared to eutrophic
No differences in α diversity between overweight and eutrophic

↑ families Streptococcaceae, Lactobacillaceae, Veillonellaceae Gemellaceae and ↓ Christensenellaceae,
Clostridiaceae, Dehalobacteriaceae in obese

↑ Lactobacillaceae, Streptococcaceae and ↓ Christensenellaceae, Clostridiaceae, Dehalobacteriaceae in
overweight subjects

Roland et al. [44] Cohort prospective Individuals with
suspicion of SIBO 30 24

Obese people showed a prevalence of SIBO
↑ small intestine transit time and ↑ gastric and small intestine pH in SIBO

↓ α diversity, ↓ genera Parabacteriodes, Oscillospira and families Bacteroidaceae, Lachnospiraceae in obese
with SIBO compared to eutrophic with SIBO
↑ Firmicutes ↓ Bacteroidetes in obese

Stefura et al. [45] Cohort prospective Lean or grade III obese
individuals 96 48

Eutrophic and obese showed phylum Firmucutes elevated compared Bacteroidetes
↑ genera Bacteroides, Odoribacter, Blautia in obese

↑ Ruminococcus, Christensenella, Faecalibacterium in eutrophic
↑ Romboutsia, Lactobacillus, Flavonifractor in BMI ≥ 50 kg/m2
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Table 2. Cont.

Author (Year) Type of Study Population n Time (Weeks) Results

Shen et al. [46] Cohort Post-bariatric surgery
individuals 26 48

No differences in ratio Firmicutes/Bacteroidetes pre- and post-surgery
Post-bariatric surgery: ↑ α diversity, improvement in microbial metabolites and markers related to

insulin resistance and DCV
Several aspects of microbiota have been modified (composition, diversity) quickly (3–6 months)

after the procedure. However, there was a reduction 12 m after surgery

Silva, Monteil and Davis
[47] Cohort Children 51 -

↓ family Bifidobacteriaceae and phylum Bifidobacterium, ↑ Lactobacillus and Firmicutes in
overweight/obese children compared to eutrophic

↓ phylogenetic diversity in Ob/Ov

Van Son
et al. [30] Cohort

Overweight or obese
men and

post-menopause
women

107 284 A positive correlation was found between PLm and diastolic BP
No significant differences in Plm between insulin-resistant and -sensitive individuals

Yun et al. [48] Cross-sectional Adults 1274 16

↓ α diversity in obese
No differences in ratio Firmicutes/Bacteroidetes between obese, overweight and eutrophic

Depletion in lipid metabolism, biodegradation of xenobiotics, ↑ gene-related to purine metabolism
and oxidative phosphorylation, alterations in the immune response, ↓metabolism of CHO, pyruvate

and some amino acids in obese individuals
In a taxonomic analysis separated by BMI, bacteria from obese individuals were not influenced by

the dietary confounder

Yuan et al. [49] Cohort Obese children and
adolescents 86 28

↑ α and β diversity in ObMH and the control group
↑ genera Anaerostipes, Oscillospir, Odoribacter, Gemmiger, Parabacteroides, Alistipes in ObMH and the

control group
↑ genera Bacteroides in ObMH
↑ Fusobacterium in ObMUH

Zeng et al. [50] Cohort
retrospective

Lean, overweight or
obese adults 1.914 - ↑ bacterial diversity in obese subjects without metabolic alterations compared to eutrophic

Gradual changes in the microbiota with the aggravation of obesity

Zeng et al. [51] Cohort Obese individuals 383 -

↑microbial diversity and gene count, ↓ ratio Firmicutes/Bacteroidetes in ObMH compared
to ObMUH

↑ Alistipes, Bifidobacterium, Eubacterium, Faecalibacterium, Ruminococcus, Subdoligranulum and ↓
phylum Fusobacteria in ObMH

↑ Escherichia, Clostridium, Fusobacterium and Megamonas in ObMUH
↑microbial genes associated with LPS biosynthesis in ObMUH

BMI: body mass index; HbA1c: glycated hemoglobin; PTN: proteins; CHO: carbohydrates; LIP: lipids; SCFA: short-chain fatty acids; BP: blood pressure; PCR: C-reactive protein; T2DM:
type 2 diabetes mellitus; IL-6: interleukin 6; LPS: lipopolysaccharides; TG: triglycerides; ImP: imidazole propionate; ObMH: obese metabolically healthy; ObMUH: metabolically
unhealthy; EuMH: eutrophic metabolically healthy; OvMH: overweight metabolically healthy; MH: metabolically healthy; MUH: metabolically unhealthy; SIBO: small intestine bacterial
overgrowth; rRNA: ribosomal RNA; qPCR: real-time quantitative PCR; Ob/Ov: obesity/overweight.



Obesities 2023, 3 304

Table 3. Studies that evaluated gut microbiota and obesity in animals.

Author
(Year)

Type of
Study Population n Intervention Control Time

(Weeks) Results

Bo et al.
[52] EXP C57BL/6J

mice 36
(1) High-fat diet (HFD)
(2) High-fat diet + Bifidobacterium

pseudolongum supplementation
Standard diet 8

↓ glucose toleration and ↑ lipid profile markers in HFD
↓ visceral fat, ↑ Bacteroidetes,

↓ Firmicutes, ↑ Butyricimonas, Bifidobacterium and Odoribacter in obese mice using
B. pseudolongum

No differences between the groups in α and β diversity

Denou
et al. [53] EXP Mice 16

(1) Normal diet + physical activity HIIT
(2) HFD + physical activity HIIT

Without
physical
activity

12

↓ ratio Bacteroidetes/Firmicutes and ↓ α diversity in Ob/HFD
↑ α diversity, ↑ ratio Bacteroidetes/Firmicutes after HIIT in Ob/HFD

Ob/HFD mice showed insulin and glucose intolerance
No reduction in body mass or fasting glucose, but improved insulin sensitivity after

HIIT in Ob/HFD

Evans
et al. [54] EXP

Male
C57BL/6

mice
48

(1) Low-fat diet (LFD) sedentary
(2) High-fat diet (HFD) sedentary
(3) LFD + physical activity in hamster

wheel
(4) HFD + physical activity

- 14

↑ weight and body fat, change in glucose metabolism in group 2
↓ Firmicules ↑ Bacteroidetes, ↑ families Lachnospiraceae Ruminococcaceae and S24-7, ↓

Lactobacillaceae and Turicibacteraceae in physical activity independent of diet
↑ Actinobacteria in group 1

↑ families Clostridiaceae, Lachnospiraceae and Ruminococcaceae, ↓ Turicibacteraceae and
S24-7, tendency ↑ Proteobacteria in HFD

Everard
et al. [55] EXP C57BL/6J

mice 40

(1) Control diet + PREB oligofructose
(2) High-fat diet (HFD) to

diet-induced obesity
(3) HFD + PREB oligofructose

Control diet 8

HFD + PREB: ↓ ratio Firmicutes/Bacteroidetes, ↓ proportion of Tenericutes,
Cianobactérias and Verrucomicrobia, ↓ Bilophila, Butyrivibrio, LE30 and Oribacterium, ↑

Allobacullum and Prevotella, ↓ hepatic LBP, ↓ inflammatory markers
↑ SCFA and ↓ insulin resistance in using PREB in both diets

PREB had a greater impact on HFD than the control diet

Fjære
et al. [56] EXP

Male
C57BL/6J

mice
70

(1) High-fat sucrose diet (HFSD)
(2) Low-fat, high-protein diet

(LFPD)—salmon and casein
(3) Low-fat, high-protein diet

(LFPD)—spare ribs and casein
All animals had diet-induced obesity
by HFD previously

- 16

No differences in α diversity between the groups
↑ phylum Verrucomicrobia and ↓ Proteobacteria, ↓ families Rikenellaceae,

Desulfovibrionaceae and Clostridiaceae in LFD
↑ bacterial genes related to bile acids biosynthesis in sedentary animals in HFSD
↑ gene related to the transport of sugar in animals authorized to exercise voluntarily

in HFSD

Gu et al.
[57] EXP

Male
C57BL/6J

mice
22 High-fat diet (HFD) Standard diet 8

↑ Firmicutes, Bacteroidetes and Proteobacteria in the control groups and
obesity-resistant mice

↑ Bacteroidetes ↓ Firmicutes in obesity-prone mice
Metabolic profile and gut microbiota profile were different between obesity-resistant

and obesity-prone mice
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Table 3. Cont.

Author
(Year)

Type of
Study Population n Intervention Control Time

(Weeks) Results

Guirro
et al. [58] EXP Male mice 8

(1) High-fat diet (HFD)
(2) Low-fat diet (LFD) - 14

↑ ratio Bacteroidetes/Firmicutes in HFD compared to LFD
Differences were identified between the families of microorganisms that colonize the

microbiome in both diets
In tests with antibiotics, the cecal microbial content was reduced. In a later test with

fecal microbiota transplantation, the biodiversity of the microbiome was restored

Hussain
et al. [59] EXP

Male
C57BL/6J
mice with

diet-induced
obesity

18

(1) High-fat diet (HFD)
(2) HFD + simvastatin
(3) HFD + Lactobacillus plantarum LB818

supplementation

Normal diet 16

↓ body weight using LB818
↓ body weight in group 2, compared to group 1

↓ TG, LDL, fasting glucose and fat deposition in the liver, ↑ HDL in groups 2 and 3
↑ Firmicutes in HFD compared to control

↑ species Akkermanasia and Bifidobacteria and ↓ Firmicutes using LB818
↑ ratio Bacteroidetes/Firmicutes in groups 2 and 3

Ji et al.
[60] EXP

Male
C57BL/6

mice
48

High-fat diet (HFD) + coarse cereal mix
(millet, corn, oats, soybeans and

purple potatoes)

Feed + coarse
cereal mix 8

↓ weight gain and fat accumulation, ↑ SCFA in HFD + cereal mix
↑ glucose tolerance and improvement in lipid profile, ↑ diversity and microbial

richness of microbiome, ↓ liberation of pro-inflammatory cytokines using cereal mix
↑ phylum Bacteroidetes and Actinobacterias, ↑ genera Bifidobacterium, Lactobacillus,

Holdemanella, Barnesiella, Okibacterium and Streptophyta, ↓ ratio
Firmicutes/Bacteroidetes using cereal mix

Joung
et al. [61] EXP

Male
C57BL/6J

mice
40

(1) High-fat diet (HFD)
(2) HFD + Lactobacillus rhamnosus

GG (LGG)
(3) HFD + Lactobacillus plantarum

K50 (LK50)

Normal diet 12

↓ weight gain, fat accumulation, and slight improvement in intestinal permeability
induced by HFD using LK50

↓ TG, fasting glucose, ALT, AST, ↑ HDL, insulin improvement, ↓ ratio
Firmicutes/Bacteroidetes, ↑ α and β diversity, ↓ liberation of pro-inflammatory

cytokines using LK50
↓ Actinobacteria and

Erysipelotrichia, ↑ Lactobacillus using LK50

Ke et al.
[62] EXP

Germ-free
male

C57BL/6J
mice

60

(1) Normal diet
(2) High-fat diet (HFD) + PROB

(Bifidobacterium animalis subsp. lactis
and Lactobacillus paracasei subsp.
paracasei DSM 46331)

(3) HFD + PREB (oat β-glucan)
(4) HFD + symbiotic (mix of 2 and 3)

(1) Normal
diet +
placebo

(2) HFD +
placebo

12

PREB/symbiotic results after changes caused by HFD:
↓ weight gain, ↓ fasting insulin and cholesterol and improvement in HOMA-IR.

PROB results: ↓ fasting insulin and slight weight reduction
Symbiotic results: more efficient in ↓ fasting glucose
↑microbial richness and ↑ SFCA using supplements

↓ bile acids and improvement in functional activities of the intestinal ecosystem
from symbiotics

Kiilerich
et al. [63] EXP

Females
C57BL/6JBomTac

mice
150

(1) Low-fat diet (LFD)
(2) High-fat and sucrose diet (HFSD)
(3) High-fat and protein diet (HFPD)

Low-fat diet
(LFD) 72

PTN and sucrose helped reduce weight gain, but HFPD showed greater weight gain
↓ survival of animals fed with HFSD

Obesity was associated with mortality
↑ Lactobacillus in HFSD and HFPD

↓ ratio Bacteroidetes/Firmicutes according to animals’ age in HFPD and LFD
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(Year)

Type of
Study Population n Intervention Control Time

(Weeks) Results

Kübeck
et al. [64] EXP

Germ-free
mice (GFM)

and
pathogen-free
male C57BL/6

mice (PFM)

60
In both types of animals:
(1) High-fat diet (HFD) palm oil-based
(2) HFD pork lard-based

Control diet 8

GFM on diet 2 showed no weight gain, suggesting resistance to diet-induced obesity
Reduced intestinal fat absorption and higher basal metabolic rate (↑ energy

expenditure) in GFM on diet 2
PFM was obese compared to GFM, suggesting that microbial composition exerts

some influence on the loss of lean phenotype
↑ Clostridiales spp. and Bacteroidales in HFD

Dietary cholesterol may have a protective effect against diet-induced obesity

Lai et al.
[65] EXP

Male
C57BL/6JNarl

mice
47

(1) High-fat diet (HFD)
(2) HFD with exercise (HFDE)
(3) Normal-fat diet (NFD)
(4) NFD with exercise (NFDE)
(5) HFD with DGE microbiota

transplantation
(6) HFD with NFDE microbiota

transplantation
(7) NFD with NFDE microbiota

transplantation

- 24

Diet influenced more the composition of the microbiota and α diversity than exercise
NFDE group microbiota transplantation transfers effects similar to physical exercise

for weight loss and LIP on HFD diet
↑ genera Turicibacter, Sutterella, Prevotella, AF12 and Helicobacter in NFD and NFDE

↑ Odoribacter, AF12, Helicobacter and Akkermansia in HFDE and NFDE
↑ Odoribacter, Helicobacter and AF12 in the groups of microbiota transplantation

Use of antibiotics that preceded transplantation ↑ obesity development risks

Li et al.
[66] EXP Male Sprague

Dawley mice 20

(1) Low-fat diet (LFD) followed by diet
rich in FOS

(2) High-fat diet (HFD) followed by diet
rich in FOS

- 19

↑ weight gain, ↑ Bacteroidetes,
↓ Proteobacteria, ↑ abundance of bacterial species in lean mice in group 1
↑ ratio Firmicutes/Bacteroidetes in lean mice compared to obese mice
↓ ratio Firmicutes/Bacteroidetes after intervention in lean mice

Weight gain was associated with increase in Bacteroidetes
Few changes in microbiome community of obese animals:

↓ Desulfovibrionaceae and
Lactobacillaceae, ↑ Ruminococcaceae

Lu et al.
[67] EXP

Male
C57BL/6J

mice
60

(1) High-fat diet (HFD) for
diet-induced obesity

(2) HFD + acetate
(3) HFD + propionate
(4) HFD + butyrate
(5) HFD + mixture of three SFCA

Low-fat diet
(LFD) 16

The SCFA from groups 2, 3, 4 and 5 prevented weight gain, promoted a partial
improvement in the composition of the microbiota and reduced the increase in TG

and cholesterol caused
by an HFD

No differences between the groups in microbial diversity
↓microbial richness, ↑ ratio Firmicutes/Bacteroidetes in HFD

↓ Firmicutes ↑ Bacteroidetes in groups 2 and 3

Moreira
Júnior

et al. [68]
EXP Pathogen-free

C57BL/6 mice 24
(1) Standard diet
(2) High-sugar and butter diet - 12

↑ weight and adiposity, development of hepatic steatosis, ↑ Firmicutes and
Actinobacteria ↓ Bacteroidetes in group 2

↑ relative abundance of Lachnoclostridium, Bifidobacterium, Parvibacter,
Ruminiclostridium

and Blautia in group 2
Diet of group 2 was associated with impulsivity and an anxiolytic effect
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Author
(Year)

Type of
Study Population n Intervention Control Time

(Weeks) Results

Moretti
et al. [69] EXP

Germ-free and
conventional
mice (normal
microbiome)

16 Western diet Regular diet 16 ↑ weight, ↑ fat mass, ↓ lean mass, ↑ fasting glucose, adipose tissue inflammation,
development of obesity in both animal groups with a western diet

Oh et al.
[70] EXP

Male
mice with

diet-induced
obesity

36

(1) Normal diet
(2) HFD + PREB Cudrania tricuspidata
(3) HFD + PROB Lactobacillus gasseri 505
(4) HFD + PROB Lactobacillus gasseri 505

+ PREB Cudrania tricuspidata

High-fat diet
(HFD) 10

Less weight loss in group 4
↑microbial richness in group 2, but ↓ in group 3

↑microbial diversity in combined use or not of PROB and PREB
↑ ratio Firmicutes/Bacteroidetes in HFD and no changes using the supplement
↓ Proteobacteria and ↓ taxa associated with obesity using PROB and/or PREB

Weight gain was positively associated with phylum Verrucomicrobia and negatively
associated with Bacteroidetes and Firmicutes

Ridaura
et al. [71] EXP Germ-free

mice 12 a 16
Fecal microbiota transplantation from

obese discordant human twins to
germ-free mice

Mice
transplanted

with microbiota
from lean twins

1–4

↑ body mass in obese microbiota sample
↑ fermentation of butyrate and propionate, digestion of polysaccharides in the lean

microbiota sample
By housing an obese microbiota mouse with a lean one, the increase in adiposity in

the obese animal was reduced, and similar characteristics to the lean animal
were transferred

Saiyasit
et al. [72] EXP Male Wistar

mice 140
(1) Normal diet
(2) High-fat diet (HFD) - 40

In HFD: cognitive impairment, ↑ weight, LPS, LDL, cholesterol, HOMA-IR, ↓ HDL
↑ ratio Firmicutes/Bacteroidetes and ↑ ratio Enterobacteriaceae/Eubacteria

HFD promoted dysbiosis in animal microbiota from the first week of the study

Shang
et al. [73] EXP

Male
C57BL/6J

mice
12

(1) High-fat diet (HFD)
(2) HFD followed by control diet

Low-fat diet
(LFD) 7

Higher α diversity in groups 1 and 2 compared to control
Higher metabolism capacity of LIP, CH, starch and sucrose, ↓ S24-7, ↑ Lachnospiraceae

in HFD
↑ ratio Bacteroidetes/Firmicutes, ↓ Proteobacteria in the control group

LFD partially re-established diversity and composition of gut microbiota after HFD

Turnbaugh
et al. [74] EXP Obese and

lean mice 22 - - -

↑ Firmicutes in Ob animals
↓ Firmicutes ↑ Bacteroidetes in lean animals

↑ final products of butyrate and acetate fermentation, ↓ residual energy of feces
(compared to lean microbiome) in Ob mice

In a fecal transplantation test of Ob and lean mice to germ-free mice, the
characteristics of the obese microbiome were transmitted, promoting body fat gain
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Type of
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(Weeks) Results

Turnbaugh
et al. [75] EXP

Germ-free
male

C57BL/6J
mice

15

Fecal microbiota transplantation from
human adults
+
(1) Low-fat diet (LFD) and high content

of plant polysaccharides
(2) Western, high-fat and

high-sugar diet

Low-fat diet
(LFD) and high
content of plant

polysaccha-
rides

12

Fecal microbiota transplantation from human adults was successful
Diet of group 1: ↑ Bacteroidetes

Diet of group 2: ↑ Firmicutes (class Erysipelotrichi and Bacilli) and
↓ Bacteroidetes

• In fecal microbiota transplantation from transplanted animals to germ-free mice,
human gut microbiota were transmitted from generation to generation and hence

maintained its diversity. However, the composition of the gut microbiome is directly
influenced by the recipient’s diet

The transplanted microbiota was similar to human microbiota after 7 days, while
microbiome changes were observed by 1 day of the western diet

Welly
et al. [76] EXP Obesity-prone

male mice 30
(1) HFD + hamster wheel

volunteer exercise
(2) HFD with weight similar to group 2

HFD and
sedentary -

↑ weight in the sedentary group
No differences in α diversity, relative abundance of ratio Firmicutes/Bacteroidetes

and phylum-level changes between groups
↓ Bacteroidetes in groups 2 and 3 compared to control
Group 2: ↑ family Streptococcaceae and ↓ Rikenellaceae
Group 3: ↓ Streptococcus compared to other groups

BMI: body mass index; HbA1c: glycated hemoglobin; PTN: proteins; CHO: carbohydrates; LIP: lipids; SCFA: short-chain fatty acids; BP: blood pressure; PCR: C-reactive protein;
T2DM: type 2 diabetes mellitus; IL-6: interleukin 6; LPS: lipopolysaccharides; TG: triglycerides; ImP: imidazole propionate; ObMH: obese metabolically healthy; ObMUH: metabolically
unhealthy; EuMH: eutrophic metabolically healthy; OvMH: overweight metabolically healthy; MH: metabolically healthy; MUH: metabolically unhealthy; SIBO: small intestine bacterial
overgrowth; rRNA: ribosomal RNA; qPCR: real-time quantitative PCR; Ob/Ov: obesity/overweight.
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4. Gut Microbiota-Derived Nutrients and Nutrient Absorption

A healthy gut microbiota is of pivotal importance in enhancing nutrient absorption. In
the large intestine, bacteria interact with dietary substrates that are undigested in the upper
digestive tract for survival, while bacterial fermentation can yield beneficial metabolites [77].
Gut microbiota contributes to the metabolism of CHO, proteins (PTN), lipids and short-
chain fatty acids (SCFAs). Apart from macronutrients, the gut microbiota modulates the
metabolism of vitamins and phytochemicals, as discussed in these subsections.

4.1. Carbohydrates

CHO metabolism and transport are major catalytic functions of the gut microbiota,
with important consequences for the host. Mammals can hydrolyze starch and disaccha-
rides to monosaccharides but have a limited ability to hydrolyze other polysaccharides [78].
Humans lack the enzymes to degrade the bulk of dietary fibers (nondigestible CHO), which
are fermented by the anaerobic cecal and colonic microbiota [79]. Furthermore, gut micro-
biota has the ability to break down plant glycoconjugates (glycans), including cellulose,
chondroitin sulfate, hyaluronic acid, mucin and heparin [80].

4.2. Protein

Since there is a tendency for gut microbiota to ferment CHO over PTN, saccharolytic
bacterial fermentation occurs predominantly in the proximal colon, while proteolytic
fermentation is mainly performed in the distal colon. Moreover, gut microbiota PTN
breakdown produces potentially toxic metabolites such as ammonia, sulfur-containing
compounds and indoles [81,82]. Therefore, CHO and PTN fermentation results in multiple
groups of metabolites, of which SCFAs substantially contribute to the host metabolic
phenotype and hence to disease risk [83].

Undigested proteins have been considered potentially harmful to the gut micro-
biota [84,85]. Reaching the large intestine, proteinaceous fermentation substrates produce
toxic metabolites, such as gaseous products (hydrogen sulfide, hydrogen, carbon dioxide
and methane), ammonia, N-nitroso compounds, amines and phenolic and indolic com-
pounds [85]. More importantly, the major concern of proteinaceous fermentation is linked
to the excess of hydrogen sulfide levels, whose metabolite stimulates pro-inflammatory
gene expression in colonocytes [86]. Figure 1 illustrates these concerns.
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through microbiota passage, produces several colon gases from amino acid metabolism (i.e., H2,
CO2, CH4, mercaptans and H2S) [87]. These byproducts are excreted as flatus, which may lead to
abdominal pain and increase the malodorous components of human flatus. A major concern is the
H2S implications in the colonocytes, where it triggers an increased expression of pro-inflammatory
genes [84,86]. CO2: carbon dioxide; CH4: methane; H2: hydrogen; H2S: hydrogen sulfide.

4.3. Lipids and SCFAs

Gut microbiota is also vital to bile acid pool size and thus enhances intestinal nutrient
absorption and biliary secretion of lipids [88,89]. More specifically, in the gut, primary bile
acids are converted by colonic bacteria to secondary bile acids, predominantly deoxycholic
acid and lithocholic acid [90]. The host, in turn, generates a large, conjugated hydrophilic
bile acid pool via the positive-feedback antagonism of FXR in the gut–liver axis, which is
a fundamental action insofar as decreased bile acid concentrations in the gut can lead to
bacterial overgrowth and inflammation [89]. Moreover, taurine-related modulation by the
gut microbiota is crucial to bile acids, as taurine is an amino acid used to conjugate bile
acids [91].

SCFAs, i.e., acetate, propionate and butyrate, are organic acids produced within the
intestinal lumen by bacterial fermentation of undigested dietary CHO and PTN, which can
be used as energy sources either by the human colonocytes or elsewhere in the body [81,92].
In humans, fermentation of 50–60 g of CHO or ~10% of the daily energy requirement
(140–180 kcal) from high-vegetable and fruit diets yields 0.5–0.6 mol of SCFAs [78]. In
addition to their nutritional value, SCFAs have important effects on other aspects of human
physiology. SCFAs regulate the balance between fatty acid synthesis and oxidation, glucose
and cholesterol metabolism via AMP-activated protein kinase (AMPK) [79]. SCFAs broadly
influence host processes, which include energy uptake, host–microbe crosstalk signaling,
and colonic pH control, with ensuing effects on microbiota composition, gut motility and
epithelial cell proliferation [83].

4.4. Vitamins

Gut bacteria participate in vitamin K and B synthesis. Since human neonates are
born with low levels of vitamin K [93], gut microbiota is essential to provide K2 (or
menaquinone) [94]. Vitamin K is necessary for several blood coagulation factors (II, VII,
IX and X) and some coagulation inhibitors synthetized by the liver [95]. B-vitamins are a
diverse group of molecules and biosynthetic precursors of universally essential cofactors
used in numerous metabolic pathways related to energy production, protein metabolism
and hemopoiesis [96]. Taking into account the bacterial patterns that synthesize B-vitamins,
type 1 enterotypes participate in the synthesis of biotin, riboflavin and pantothenate, while
type 2 enterotypes synthesize thiamine and folate [97]. The real contribution of microbiome-
produced B-vitamins to host requirements and status are unknown [96].

4.5. Phytochemicals

Gut microbiota has an extensive capacity to metabolize phytochemicals, chiefly
polyphenols [98,99]. Polyphenols are secondary metabolites of plants generally involved in
defense against ultraviolet radiation or aggression by pathogens. In humans, polyphenols
confer antioxidant properties and may modulate the activity of a wide range of enzymes
and cell receptors [100]. Although polyphenols are common in the human diet, accounting
for about 820 mg/day, mainly from fruits and vegetables, they are poorly absorbed by
the intestine [77,100]. It may occur because most food polyphenols are in the form of
esters, glycosides or polymers that must be hydrolyzed by intestinal enzymes or by the gut
microbiota before they can be absorbed [100].

Polyphenols that are not absorbed in the small intestine reach the colon, where they are
hydrolyzed by the colonic microbiota, which includes Bacteroides distasonis, Bacteroides uni-
formis, Bacteroides ovatus, Enterococcus casseliflavus, Eubacterium cellulosolvens, Lachnospiraceae
CG19-1 and Eubacterium ramulus [101,102]. Specific active metabolites are produced by
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the gut microbiota; for instance, (a) enterolactone and enterodiol, from lignans of linseed,
and (b) equol, from daidzein of soya. Both of them have antioxidant capacities as well as
phytoestrogenic and potential anti-cancer properties [103,104].

5. Gut Microbiota-Derived Metabolites and Cardiovascular Disorders

Gut microbiota under unhealthy diet patterns transforms dietary nutrients into metabol-
ically harmful substances, of which branched-chain amino acids (BCAA), imidazole propi-
onate and trimethylamine N-oxide (TMAO) are some examples [105,106].

The microorganisms Prevotella copri and Bacteroides vulgatus increase BCAA synthesis,
while Streptococcus mutans and Eggerthella lenta are producers of imidazole propionate [7].
Since high circulating levels of BCAA are an important risk factor for insulin resistance [107],
BCAA-related microbial compounds (e.g., imidazole propionate) have negative effects on
insulin signaling cascades [105].

TMAO, in turn, has gained much attention due to its potential role in CVD [105,108].
Trimethylamine (TMA) is synthetized by gut microbiota from phosphatidylcholine, choline,
betaine and l-carnitine, which are abundant in seafood, dairy products, egg yolks and red
meat. TMA enters the portal circulation and is oxidized to TMAO in the liver by flavin-
containing monooxygenase 3 [7,109]. TMAO—or its dietary precursors—accelerates arte-
riosclerosis via inflammation, oxidative stress, platelet aggregation and thrombosis [109,110].
Accordingly, gut dysbiosis leads to high plasma TMAO levels, which are related to CVD
and all-cause mortality [105,111].

Importantly, the crosstalk between gut microbiota imbalance and obesity is inherent
to inflammation induced by lipopolysaccharides (LPS). LPS are glycolipid molecules that
serve as important outer membrane components of Gram-negative bacteria and have a role
as bacterial toxins [112], thereby favoring cardiometabolic abnormalities. High levels of LPS
can induce the expression of pro-inflammatory cytokines, thus contributing to endothelial
damage and increasing the oxidation of low-density cholesterol particles and foam cell
formation, ultimately accelerating atherosclerosis [113].

6. Gut Microbiota Composition in Obesity

The intestinal colon is inhabited by several microorganisms that form the gut mi-
crobiota and reach nearly trillions [114]. The predominant gut bacteria belong to the
following phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrumicro-
bia and Fusobacteria; however, Firmicutes and Bacteroidetes occur in greater quantities
among bacterial cells in the gut [115]. Seemingly, Bacteroides and Prevotella appear to be
the predominant bacterial genera inside the Bacteroidetes phylum. In contrast, the gen-
era Clostridium, Eubacterium and Ruminococcus appear to occur in greater numbers in the
Firmicutes phylum [116].

In addition to the distribution by phyla, intestinal bacteria are classified as enterotypes,
i.e., groups of various microorganisms that can somehow impact the health of the host.
Arumugam et al. [117] define three groups: (1) type 1 enterotypes, which are apparently
rich in species of Bacteroides; (2) type 2 enterotypes, with a greater presence of the genera
Prevotella; and (3) type 3 enterotypes, delimited by Ruminococcus.

Individuals with obesity have a higher prevalence of Firmicutes (Fusobacteria, Pro-
teobacteria and Lactobacillus reuteri) and a lower prevalence of Bacteroidetes (Akkermansia
muciniphila, Faecalibacterium prausnitzii, Lactobacillus plantarum and Lactobacillus para-
casei) compared with normal-weight individuals [118]. Furthermore, animals and humans
with obesity have a higher ratio of Firmicutes/Bacteroidetes [74,118,119].

Gut microbiota plays an important role in energy uptake (the energy harvest hy-
pothesis). Individuals with obesity show a higher energy harvest from food compared
to lean individuals. This effect seems to be associated with increased CHO degradation
and, consequently, the formation of SCFAs, favoring greater energy gain. In addition,
microbiota has been suggested to manipulate host behaviors by changing food preferences
(e.g., altered taste receptors for fat and sweets) [120]. Since obesity is a result of energy
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balance, a negative modification of gut microbiota can result in increased energy intake.
The pathophysiological link between obesity and gut microbiota is depicted in Figure 2.
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Figure 2. Pathophysiological relationship between obesity and gut microbiota. Legend: Obesity
is a disease characterized by being overweight and has triggering factors such as excessive calorie
consumption and a sedentary lifestyle. Individuals with obesity suffer alterations in gut microbiota
and gastrointestinal tracts, such as increased energy uptake and intestinal permeability, decreased
microbial diversity and gene richness, and an increased Firmicutes/Bacteroidetes ratio.

7. Unhealthy Dietary Patterns

An excessive intake of alcohol, sugars, and saturated fatty acids (SFAs) is associated
with a reduction in bacterial abundance, diversity and richness in the gut and, by virtue of
an augmentation of Gram-negative bacteria (dysbiosis), can raise the production of LPS
and disrupt intestinal barrier integrity [121–125].

That said, the crosstalk between gut microbiota imbalance and obesity is related to
a dietary cluster of high-energy food, fat and sugar intake, suggesting that an “obese
microbiota” may not be triggered by obesity itself [126]. In this regard, the high intake of
ultra-processed foods with a low nutritional profile is an unhealthy dietary pattern that
plays a negative role in gut microbiota [127,128].

The triad of a high content of sodium, SFAs and sugars across ultra-processed foods
leads to a higher calorie intake, as observed in a clinical trial in which participants received
an ultra-processed diet for two weeks and then a healthy food-based diet for the same
period [129]. In the period of the ultra-processed diet, there was an increase of 500 calories
ingested daily from CHO and fats, accompanied by a body mass gain of 900 g. Conversely,
in the healthy eating phase, the participants lost an average of 900 g. Thus, a diet rich in
ultra-processed foods is not only harmful to the gut microbiota but also results in a higher
energy intake that, in turn, can cause obesity in the long term.

Reduced microbial gene diversity is observed in low-complex CHO diets, suggesting
that this type of CHO acts as a prebiotic and promotes the diversity of gut bacteria [130].
Overall, the benefits of high-complex CHO diets and gut microbiota modulation are thor-
oughly discussed in the topic below.



Obesities 2023, 3 313

8. Healthy Dietary Patterns

A dietary pattern based on fruits, vegetables, seeds, whole grains and mono- and poly-
unsaturated fatty acids has been shown to result in gut microbiota diversity, mainly because
of the large supply of dietary fiber [131]. Such an eating pattern improves cardiometabolic
markers mediated by the gut microbiota, as shown in Figure 3. More specifically, the
low-energy, high-fiber pattern is the cornerstone of increasing microbial gene diversity, thus
affording reductions in serum cholesterol levels, adiposity and inflammation in patients
with obesity [132].

Obesities 2023, 4, FOR PEER REVIEW 22 
 

 

8. Healthy Dietary Patterns 

A dietary pattern based on fruits, vegetables, seeds, whole grains and mono- and 

poly-unsaturated fatty acids has been shown to result in gut microbiota diversity, mainly 

because of the large supply of dietary fiber [131]. Such an eating pattern improves cardi-

ometabolic markers mediated by the gut microbiota, as shown in Figure 3. More specifi-

cally, the low-energy, high-fiber pattern is the cornerstone of increasing microbial gene 

diversity, thus affording reductions in serum cholesterol levels, adiposity and inflamma-

tion in patients with obesity [132]. 

 

Figure 3. Influence of diet on gut microbiota and accompanied systemic consequences. Legend: (A) 

A metabolically healthy microbiota may be achieved through a diet high in fiber and low in animal 

fat and protein, as well as a low sugar intake. Fermentation of nondigestible CHO results in short-

chain fatty acids (acetate, butyrate and propionate), whose elements improve cardiometabolism. (B) 

Gut dysbiosis may be induced by a diet low in fiber and high in animal fat and protein, as well as 

by high intake of sugar and alcohol. An unhealthy diet is associated with a reduction in bacterial 

abundance, diversity and richness in the gut, transforming dietary nutrients into metabolically 

harmful metabolites, i.e., branched-chain amino acids (BCAA), imidazole propionate and trimethyl-

amine N-oxide (TMAO), and thus increasing the production of lipopolysaccharides (LPS) and/or 

disrupting the intestinal barrier integrity. Finally, such a background can induce the expression of 

pro-inflammatory cytokines and hence contribute to insulin resistance and related cardiometabolic 

disorders (e.g., atherosclerosis). 

Both low-fat and low-CHO diets with energy restriction increase Bacteroidetes, while 

reducing body weight, as observed in a one-year intervention of individuals with obesity 

[23]. In light of this, energy restriction is imperative for modulating the gut microbiota of 

patients with obesity. 

Lastly, public policies encouraging greater consumption of fresh or minimally pro-

cessed foods and taxation of ultra-processed foods may reflect healthier habits, contrib-

uting to obesity reduction [133]. 

9. Probiotics and Synbiotics in Weight Loss 

It is recognized that supplementation with products containing live microorganisms, 

known as probiotics, improves intestinal epithelial barrier function and increases mucus 

Figure 3. Influence of diet on gut microbiota and accompanied systemic consequences. Legend:
(A) A metabolically healthy microbiota may be achieved through a diet high in fiber and low in
animal fat and protein, as well as a low sugar intake. Fermentation of nondigestible CHO results in
short-chain fatty acids (acetate, butyrate and propionate), whose elements improve cardiometabolism.
(B) Gut dysbiosis may be induced by a diet low in fiber and high in animal fat and protein, as well
as by high intake of sugar and alcohol. An unhealthy diet is associated with a reduction in bacte-
rial abundance, diversity and richness in the gut, transforming dietary nutrients into metabolically
harmful metabolites, i.e., branched-chain amino acids (BCAA), imidazole propionate and trimethy-
lamine N-oxide (TMAO), and thus increasing the production of lipopolysaccharides (LPS) and/or
disrupting the intestinal barrier integrity. Finally, such a background can induce the expression of
pro-inflammatory cytokines and hence contribute to insulin resistance and related cardiometabolic
disorders (e.g., atherosclerosis).

Both low-fat and low-CHO diets with energy restriction increase Bacteroidetes, while
reducing body weight, as observed in a one-year intervention of individuals with obe-
sity [23]. In light of this, energy restriction is imperative for modulating the gut microbiota
of patients with obesity.

Lastly, public policies encouraging greater consumption of fresh or minimally pro-
cessed foods and taxation of ultra-processed foods may reflect healthier habits, contributing
to obesity reduction [133].
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9. Probiotics and Synbiotics in Weight Loss

It is recognized that supplementation with products containing live microorganisms,
known as probiotics, improves intestinal epithelial barrier function and increases mucus
production [134], thereby partially reducing gastrointestinal problems such as diarrhea,
abdominal pain, lactose intolerance, etc. [135]. More interestingly, probiotic supplemen-
tation has emerged as a weight loss [136] strategy by virtue of its putative anorexigenic
effect by increasing SCFA production, which plays a role in fatty acid oxidation as well
as the secretion of gut hormones (YY peptide and glucagon-like peptide 1) and leptin
in adipocytes.

The potential effects of probiotic supplementation on weight loss could be enhanced
when combined with prebiotics, a specific group of non-digestible and fermentable foods
that confer more gastric volume during the meal and are substrates for microorganisms in
the gut lumen [137]. Thus, the combination of probiotics and prebiotics, named synbiotics
(“live microorganisms that, after ingestion in specific numbers, exert benefits for the health
of the host”) [138], merits attention as to their potential in improving indicators of obesity.

Species from the Lactobacillus and Bifidobacterium genera are the components of pro-
biotic supplements in the field of weight loss [139]; however, optimal dosing regimens
and plausible clinical effects are far from discernible. A meta-analysis of randomized
clinical trials (15 studies, 957 patients) of patients who were overweight or obese revealed
that probiotic supplementation alone for 3 to 12 weeks significantly reduced body weight
by ~0.60 kg and BMI by ~0.27 kg/m2 compared to placebos, along with a non-statistical
decrease of ~0.42 kg in fat mass [140]. In addition to obesity, such a modest effect is similar
in patients suffering from both obesity and its metabolic-related diseases [141]. Not only
probiotics but also supplementation with symbiotics portrays a small clinical magnitude in
improving anthropometric indicators of obesity [142].

10. Exercise

Exercise significantly contributes to the increased biodiversity of microbial species,
modulation of the immune system, improved motility and decreased intestinal permeability.
Changes in gut microbiota seem to be intensity- and volume-dependent with exercise [143].
Furthermore, exercise increases microbiota-induced SCFA synthesis in the intestinal lumen,
which is related to fat oxidation and the preservation of muscle mass [144].

Aerobic exercise training improved gut microbiota and microbial-derived SCFA in
previously sedentary patients with obesity without dietary modification, whereas those
benefits were reversed after exercise training cessation [145].

In a recent study [26] whereby individuals who were overweight or obese underwent
a Mediterranean diet with caloric restriction associated with physical activity promotion
for one year, the Bacteroidetes/Firmicutes ratio increased at the end of the intervention,
such that there were improvements in the indicators of obesity as well as glycemic and
lipid profiles.

Regarding high-intensity interval training, it can counteract high-fat diet-induced
changes in the gut by increasing the alpha diversity and Bacteroidetes/Firmicutes in rats
with obesity; however, further research using this type of exercise ought to be performed in
humans [53].

11. Microbiota Transplantation

Mice receiving obese microbiota transplantation increase in body mass as a result of an
increase in the energy harvest without changing energy intake or expenditure, suggesting
that the microbiome may favor weight gain [9]. Ridaura et al. [71] tested if gut microbiota
may promote body fat increase by performing a microbiota transplant from obese discor-
dant twins (one obese and one lean) to germ-free mice. The animals were fed a low-fat
diet and a high-plant polysaccharide diet. The fecal material from mice was analyzed to
identify differences between their microbial communities and the relevance of these results
to metabolism and host body composition. Gut microbiota composition was modified
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according to the characteristics of the transplanted microbiota. Comparing results from the
transplant, mice that received obese microbiota samples gained more weight than animals
that received lean microbiota samples.

In humans, Vrieze et al. [31] implanted lean feces in men with metabolic syndrome
and, after six weeks, identified an improvement in gut microbiota composition and insulin
sensitivity. However, Yu et al. [32] performed a fecal microbiota transplant by capsules
in individuals with obesity and did not find significant changes between the two groups
in microbial diversity, body mass, insulin sensitivity, energy expenditure, HOMA-IR or
fasting lipid profile.

There are severe limitations when comparing trials in animals and humans due to
physiological, food, and microbial differences. Mice that received obese microbiota trans-
plantation showed weight gain as a result of an increase in energy harvest without changing
energy intake or expenditure, suggesting that the microbiome may favor weight gain [9].

Collectively, gut microbiota transplantation is promising; however, there are sev-
eral limitations between animals and humans due to physiological, food, and microbial
differences, such that there is no uniform evidence for humans.

12. Conclusions and Perspectives

A common obesity pattern can be a cause of dysbiosis due to the accumulative effects
of a high intake of high-energy foods, sugars and SFAs, as well as a reduced consumption
of fiber and physical inactivity.

Conversely, low-energy diets, high fiber intake and physical exercise are crucial to
enhancing gut microbiota of patients with obesity. Moreover, advice to reduce the intake of
ultra-processed foods with a low nutritional profile, along with increasing the intake of
natural or minimally processed foods, are reasonable strategies to afford a better status of
gut microbiota.

Regarding perspectives, although supplementing probiotics and synbiotics (mainly
those containing Lactobacillus and/or species from the Bifidobacterium genus) can aid in
the management of obesity, skepticism must be exercised due to modest clinical effects,
such that more investigation is needed to better understand proper bacterial strains and
dosing regimens.

Finally, microbiota transplantation is a field that deserves substantial elucidation in
terms of clinical recommendations.
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