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Abstract: The nuclear fuel cycle forms the basis for producing special nuclear materials used in
nuclear weapons via a series of interdependent industrial operations. These industrial operations each
produce characteristic emanations that can be gathered to ascertain signatures of facility operations.
Machine learning and deep learning techniques were applied to time series magnetic field sensor data
collected at the High Flux Isotope Reactor (HFIR) to assess the feasibility of determining the ON/OFF
operational state of the reactor. When data collected by the sensor near the cooling fans, position 9,
are transformed to the frequency domain, it was found that both machine and deep learning methods
were able to classify the operational state of the reactor with a balanced accuracy of over 90%.
This result suggests that the utilized methods show promise for application as techniques to verify
declared activities involving nuclear reactors. Additional effort is recommended to develop models
and architectures that will more fully capitalize on the data’s temporal nature by incorporating the
magnetic field’s time dependence to improve the model’s robustness and classification performance.

Keywords: machine learning; deep learning; random forests; nuclear reactors; frequency domain;
classification

1. Introduction

In an age of scientific and engineering advancements, the United States of America
is far from the only nation with nuclear capabilities [1]. Since the Manhattan project, the
spread of basic nuclear science and technology has resulted in nuclear weapon proliferation
as well as the spread of peaceful nuclear applications. Along with this spread, treaties
and agreements to slow or stop testing and nuclear proliferation have also been agreed
upon, such as the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and the
Comprehensive Nuclear-Test-Ban Treaty (CTBT) [2,3]. The current method of assessing
compliance with the NPT is through the International Atomic Energy Agency (IAEA) which
safeguards nuclear materials and monitors activities in more than 140 countries [4]. As the
first step in guarding against diversion of materials towards nuclear weapons development,
treaty verification requires gathering data about an actor’s use of nuclear technologies to
give insight into potential applications.

Advanced data analysis techniques can assist in verifying whether the information
collected is consistent with stated declarations. Previous research conducted by the Multi-
Informatics for Nuclear Operating Scenarios (MINOS) venture explored methods of mon-
itoring activities at nuclear reactor sites to promote nuclear treaty monitoring objectives.
As an example, activities at nuclear reactors have been monitored using physical signals
such as infrasound and low-frequency acoustic signals. Cárdenas et al. investigated the
use of smartphones and a cloud-based architecture to detect activities near nuclear reactors
such as crane operations, opening and closing of access doors, and vehicle operations in
the reactor vicinity utilizing sensor networks [5]. The research found that airlock door
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activity could be identified using a two-sample t-test in conjunction with timing analysis to
trigger a notification algorithm using local acoustic sensors. Members of the same group
performed a subsequent study that assessed the monitoring of a nuclear reactor during full
power generation utilizing a similar network of sensors for infrasound and low-frequency
acoustic signals [6]. A fundamental frequency of 21.4 Hz was found to be associated with
dual-speed cooling fan operations indicative of the reactor power status and was observed
up to ∼900 m from the cooling tower. Gastelum et al. performed similar studies with
two data streams, open source image data and multi-modal sensing platforms for indirect
physical sensing [7]. The study looked at both data streams individually and then as
one integrated analysis to assess the potential benefit of multi-modal fusion approaches.
Eaton et al. used locally collected infrasound measurements to predict the operation of
mechanical draft cooling towers associated with nuclear reactors which are critical for
managing heat in the reactor [8]. The approach was tested using data from the Advanced
Test Reactor at Idaho National Laboratory and the High Flux Isotope Reactor at Oak Ridge
National Laboratory. It was found that the developed algorithm could successfully be used
to predict fan speed and active cooling capacity.

Machine Learning (ML) and Deep Learning (DL) are also being employed to character-
ize nuclear reactor operations. One example from Tibbets et al. exploits a data stream from
the same multi-sensor network used in the present work collected in the vicinity of the
High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory [9]. The reactor’s op-
erational state (ON/OFF) was classified using a DL feed-forward network trained on time
series sensor data. A binary classification accuracy of 88.4% was obtained. A corresponding
feature importance study concluded that the magnetic field data was the most important
contributing factor to the classification accuracy. Chai et al. used ML to predict a reactor’s
operational state using seismic and acoustic data [10]. The study made use of ML models
such as linear regression, k-nearest neighbors, gradient boosting, and random forests with
features that had been selected in both the time-domain and frequency-domain. A binary,
ON/OFF, classification accuracy of 98% was achieved with a gradient boosted algorithm
with fusion of both seismic and acoustic data. Going beyond the binary problem, Rao et al.
used a ML model to predict the power level of a reactor given features from a data fusion
technique trained on data from infrared, electromagnetic, and acoustic sensors [11]. Their
estimator achieved 3.47% or lower root mean square error utilizing a 5-fold cross validation
for determination of reactor power level.

Classification of nuclear reactor operational state is not the only use case for ML in
a nuclear setting. Calivá et al. used DL to detect anomalies in nuclear reactors, such
as changes in process parameters like neutron flux to gain insight into the functionality
of the core [12]. This work used simulated neutron noise in a pressurized water reactor
core fed into convolutional neural networks (CNNs) and clustering algorithms such as k-
means to unfold the generated signals, followed by a denoising auto-encoder to reconstruct
power reactor signals with various noise levels and corruption. This process resulted in
an accuracy of 95.3% for twelve classes of perturbation location sources. Another example
of ML studies with nuclear reactor data is from Zhong et al. [13]. The study used transfer
learning of a convolutional neural network pre-trained on a database for fault diagnosis
and accident identification, an area which has very little native data with which to work.
The transfer learning technique was proposed to mitigate that problem.

The method of investigation proposed in this research is to employ ML and DL
to classify whether a nuclear reactor is powered ON or OFF, based on data collected
using passive persistent sensors. This study leverages the results presented by Tibbets
et al. by focusing on the magnetic field data since it was found to be the most significant
phenomenology contributing to the binary classification accuracy [9]. In contrast to the
previous work, a frequency domain analysis is presented.
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2. Materials and Methods

The reactor under examination is the High Flux Isotope Reactor (HFIR) at Oak Ridge
National Laboratory. Twelve sensors have been placed in the area around the reactor
as shown in Figure 1. They collect information about physical phenomena such as the
magnetic field in three axes B(x, y, z), seismic acceleration in three axes a(x, y, z), pressure,
temperature, ambient light, color (RGB + UV) and proximity [7].

Figure 1. Colored circles indicate positions of the sensors around the High Flux Isotope Reactor
(HFIR) at Oak Ridge National Laboratory. A total of 12 sensors are available, but this research focused
on the sensor highlighted in the orange circle, number 9. This location was chosen due to its proximity
to the cooling fans, shown in the red box, which give off a magnetic field, the chosen sensing modality.
Adapted from Ref. [9].

The magnetometers at position 9 shown by the orange circle were selected for analysis
due to their proximity to the cooling fans. The duty cycle and variable speed of the cooling
fans is expected to reflect the operational load of the facility. When the cooling fans operate,
they use electricity. The flow of electricity produces a magnetic field. The magnetic field
data was collected via 3 magnetometers positioned to collect along the x, y, and z axes
at this location. The positive z-axis pointed from the cooling fans towards the HFIR, the
positive y-axis pointed along the cooling fans towards the right of the image, and the
positive x-axis pointed toward the sky. The data coming from the sensors is in a time-series
stream, recording measurements at a rate of 16 Hz. The experiment described next creates
a function which maps the signals recorded by the sensor to the facility status. The fan
status is unknown.

The time frame over which data for this work was selected comes from four operational
cycles of the HFIR, shown in Table 1. Cycles 484, 485, and 486 were used to create training
and testing sets, with Cycle 488 kept isolated for further testing and model verification.
During each cycle, the HFIR was gradually powered up until it reached full power. The
reactor was run at full power for approximately 27 days, then gradually powered down
reaching its OFF state. During the OFF period, data were collected for approximately
5 days with no other systems changing. In this study, the ON class refers to the period
when the reactor power is >7%, and the OFF class refers to when the reactor power is ≤7%.
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The 7% threshold for ON and OFF classes was based off a process by the data owners and
is an inherited number. The sensitivity of this research to the threshold will be explored
in the future. A class imbalance was present within the data with a greater number of
measurements taken in the ON state than the OFF state. This will be accounted for in
the analysis.

Table 1. The operational cycles of the HFIR reactor considered in this paper. Each cycle spans 32+
days with data measured at a 16 Hz rate, which provided enough data for the ML and DL approaches.

HFIR Cycle Start Date End Date nDays in Cycle nDays between Cycles

484 29 Oct 2019 29 Nov 2019 32 N/A
485 28 Apr 2020 06 Jun 2020 39 181
486 23 Aug 2020 30 Sep 2020 38 78
488 03 Mar 2021 04 Apr 2021 32 154

Data Preprocessing

The first step in preprocessing the data for input into a ML or DL model was to convert
the 3-axis magnetic field data into a magnetic field magnitude via Equation (1). That is
to say that each 16th of a second, magnetic field components measured in the Bx, By, and
Bz directions were converted into magnitude using Equation (1). This step was done to
decrease the dimensionality of the data, due to the total number of features resulting from
the next preprocessing step.

B(t) =
√

B2
x + B2

y + B2
z (1)

The frequency domain may contain features indicative of a reactor’s operational state.
For instance, transforming the data into the frequency domain, one can look at how often a
frequency occurs within any given measurement. To use this data in the frequency domain,
a Short Time Fourier Transform (STFT) was applied. Similar to a moving window of
calculations, the STFT takes a range of time sampled data and converts it into a frequency
spectrum with granularity dependent on the length of samples given [14]. The amount
of time series data given to the STFT must be at least one second, per the 16 Hz sampling
frequency. For this paper, the time series data was split into one-minute intervals, or
960 samples. According to Nyquist’s theorem, this gives 480 sample frequencies per time
window [15]. This also equates to a bin width of 0.01667 Hz.

The real part of each of the 480 frequencies per time window was considered a feature
for input into a model. After the transformation, a feature standardization was used via
z-scaling to standardize each feature and decrease the influence of outliers. The method
for this standardization was to take each point x, subtract the mean, µ, and divide by the
standard deviation, σ. The final step of preprocessing was to split the data between a
training and a testing set. The HFIR cycles 484, 485, and 486 were used as the data for
models to be trained on, and cycle 488 was used as a testing set.

3. Results

With the data preprocessed, two techniques were used to analyze the capability of ML
to classify the reactor status. The first was a classical ML technique, random forests (RF),
which uses an ensemble of decision trees to predict an instance’s class. These models were
developed with the python package Sckit-Learn 1.1.1 [16]. The second was a neural network
(NN), a DL approach which was implemented in python using Tensorflow 2.9.1 [17] and
Keras 2.9.0 [18]. The individual performances of these models and their results will be
discussed in this section.

3.1. Machine Learning

A RF was chosen as the ML algorithm due to its ability to fit nonlinear systems [19].
Other nonlinear classifiers were tested such as Quadratic Discriminant Analysis and a
Support Vector Classifier. The RF had the highest performance of all models tested. A
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hyperparameter search was conducted with the training set, which found the optimal
parameters to use within the model with the results shown in Table 2. The grid search was
done with each combination using a 5-fold Cross Validation score. The hyperparameters
forming the model with the highest average balanced accuracy define the optimal values.

The resultant model was comprised of 75 individual decision trees that contributed to
the majority voting of the forest. The trained model achieved a balanced accuracy score of
93.34% on the testing data. The balanced accuracy is calculated with Equation (2), where TP
is the number of true positives, TN is the number of True Negatives, P is the total number
of positives, and N is the total number of negatives [20]. The resulting confusion matrix
is shown in Figure 2. Detailed within the confusion matrix is the number of counts that
correspond to each of the predicted and actual values, as well as the percentages of each.
The percentages all sum to 100%. The model had an even balance of misclassifications (top
right and bottom left), showing that the model generalized well to the training set and
accurately predicted the classes.

Balanced Accuracy =
1
2

(
TP
P

+
TN
N

)
(2)

Table 2. Optimized random forest hyperparameters obtained by using a grid search on the tested values.

Hyperparameter Tested Values Optimal Value

Number of estimators 25, 50, 75, 100, 150, 200, 250 75
Minimum number of samples per leaf node 1, 5, 10, 15, 20 5

Maximum number of features per node Sqrt, Log2, None None

Figure 2. Confusion matrix of the RF model on the data from Cycle 488. On is represented by True
and Off is represented by False. The combined 5.38% misclassification value indicates the high
accuracy obtained by this model.

Another way to analyze the result of the random forest approach is to examine the
occurrence of the misclassified samples in time. As mentioned previously, each sample
consisted of one minute of frequency transformed signals. Figure 3 shows the classification
results through time, where the light blue color represents a correct classification and
the darker blue represents an incorrect classification. A total of 2472 test samples were
misclassified, but there is no trend in when they occur, suggesting that misclassification
occurs at random. This indicates that one way to mitigate misclassification may be to
implement a majority voting classifier integrated over longer periods of time.
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Figure 3. RF results for cycle 488 as a function of time. Each marker corresponds to one minute of
data. Visual inspection indicates no obvious pattern to the incorrect (misclassified) instances.

3.2. Deep Learning

For the DL study, a deep neural network (DNN) was selected for application due to
the structure of the data. While other architectures were considered, such as 1DCNN and
Temporal Convolutional Neural Networks, the DNN was the simplest to test and showed
the most promising results. A hyperparameter search was conducted, the details are shown
in Table 3, with the resulting architecture containing 5 layers with 480, 240, 60, 10 & 1 neu-
ron. All hidden layers use standard ReLU activation functions ( f (x) = max(0, x)) which
performed better than standard hyperbolic tangent activation functions

(
f (x) = e2x−1

e2x+1

)
.

While shown to perform better in this research empirically, the ReLU activation function
and its derivative are also computationally simpler than tanh, thus reducing the compu-
tational effort of training a model. The final (output) layer employs a standard sigmoid
activation function

(
σ(x) = 1

1+e−x

)
, as this activation function outputs the probability of

the positive class in a binary classification problem [21]. Early training saw the model over
fit to the training data with the training accuracy quickly reaching 100% balanced accuracy
while the validation accuracy stayed low. Consequently, a dropout layer was added after
the first four layers, so as to not place any dropout on the output layer. It was found that
the optimal dropout rate for this layer was 30%.

Table 3. Hyperparameter tested values explored using a grid search, which resulted in an optimal set
for the DNN.

Hyperparameter Tested Values Optimal Value

Hidden Layer Activation Function ReLU, tanh ReLU
Hidden Layers 2, 4, 6 4

Nodes 479, 240, 120 479
Learning Rate 0.01, 0.001, 0.0001 0.0001
Dropout Rate 20%, 30%, 40% 30%

The DNN classified HFIR cycle 488 with a balanced accuracy of 95.70% and the
confusion matrix for this classification is shown in Figure 4. Both the data and trends within
the classification confusion matrix show that the DNN was able to generalize to the training
set with no sign overfitting. Only 1.25% of the OFF data was misclassified as ON, and only
2.68% of the ON data was misclassified as OFF.

The timeline results of correct and incorrect classifications for the DNN is shown in
Figure 5. Similar, to Figure 3, a total of 1085 test samples were misclassified, but there is no
trend in where they occur in time, suggesting that they are random.
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Figure 4. Confusion matrix of the DNN model on the data from Cycle 488. On is represented by True
and Off is represented by False. The low 3.93% combined misclassification rate indicates the DNN
accurately predicts the reactor state.

Figure 5. DNN results for cycle 488 as a function of time. Each marker corresponds to one minute of
timeseries data. Visual inspection indicates no obvious pattern to the incorrect (misclassified) instances.

4. Discussion

Both of the models tested in this work, a random forest and a DNN, were trained
and tested on the same data to enable direct comparison of their performances. The data
analyzed were collected from sensor position 9, Figure 1, located next to the cooling fans
supporting the HFIR. However, while the duty cycle and variable speed of the fans is
related to the status of the reactor, the ML and DL training process used the ON/OFF status
labels of the reactor not the fans. Both ML and DL models show a remarkable ability to
correctly classify the HFIR operational status. The DNN (95.70%) achieved a slightly higher
balanced accuracy than the RF (93.34%), suggesting that the DNN was better suited to
generalize to the data as it performed slightly better with Cycle 488. The RF struggled more
to generalize to the OFF class than the DNN, but differences observed in the classification
of the ON class were negligible.

In real use cases, further analysis of the expected small number of incorrectly-classified
time segments could provide additional illumination to existing model biases present in
these prototypes and lead to opportunities for performance improvement through model
redesign. Future exploration using statistical techniques (e.g., training the models with
different bootstrapped samples of the data) could be used to characterize the uncertainty
present in the model’s performance characterization.

The overall high classification accuracy obtained suggests that ML shows promise
for application to signals collected from unattended remote sensors to verify declared
activities involving nuclear reactors. This conclusion is consistent with results published
previously [9–11]. However, the current study reveals that when converted to frequency
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space, the signal detected by the 3-axis magnetometers placed near the HFIR cooling fans
can be used to classify the reactor operational state more accurately than the time series
data [9]. Additionally, a comparable balanced classification accuracy was obtained in this
study to that reported by Chai et al. [10]. This indicates that a judiciously placed magnetic
field sensor can provide a similar level of declarations verification as does data fusion
applied to a single seismo-acoustic station.

The operational cycle of a nuclear reactor used for commercial power production is
expected to be dramatically different from that of a nuclear reactor used for plutonium
production. This study demonstrates the viability of an important new technique for nuclear
treaty monitoring because high fidelity classification tools can be used to independently
verify declared operations. Independent verification of declared activities via multiple
phenomenologies strengthens monitoring robustness making illicit proliferation activities
more difficult to mask.

5. Summary, Conclusions, and Outlook

With the increasing simplicity of nuclear proliferation as science and technology ad-
vance, the opportunity arises for treaty verification to grow and develop. Treaty verification
plays an important role in slowing the proliferation of nuclear weapons because it acts as a
deterrent force. The analysis methodology presented in this paper relies on the availability
of passive persistent sensing exterior to a nuclear reactor. This modality of data collection is
ideal for nuclear treaty monitoring because it requires no access to the interior of a facility
yet provides continuous observation. This study provides a first look at the feasibility of
applying machine learning and deep learning techniques to magnetic field sensor data
transformed to the frequency domain to verify the declared operational state of a nuclear
reactor. The high level of classification accuracy achieved in this study for both ML and DL
approaches demonstrates a proof of principle success in applying advanced data analytical
techniques to remote sensor data collected exterior to a nuclear reactor.

Future work will examine the transferability of the tuned models to alternate reactors
and sites with no additional model changes or training. This will require labeled data be
available for those alternate locations so that the generalizability of the trained models can
be quantified. Quantification of generalizability will inform the user of existing limitations
associated with each trained model.

Other considerations for future studies include utilizing training data that covers a
complete calendar year to account for greater variability in the background temperature
against which the reactor and cooling fans must operate. This has the potential to produce
a more robust model. Additional studies should examine the sensitivity of the classification
method to the reactor power ON/OFF threshold value of 7% set by the data owners. Finally,
while binary classification provides a foundation, information is available for intermediate
power levels between the ON and OFF states. The ability to utilize ML and DL to classify
the power levels of this reactor should be investigated.
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