
Citation: Colonna, G. Understanding

the SARS-CoV-2–Human Liver

Interactome Using a Comprehensive

Analysis of the Individual Virus–Host

Interactions. Livers 2024, 4, 209–239.

https://doi.org/10.3390/

livers4020016

Academic Editor: Melanie Deutsch

Received: 11 February 2024

Revised: 25 March 2024

Accepted: 10 April 2024

Published: 30 April 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Understanding the SARS-CoV-2–Human Liver Interactome
Using a Comprehensive Analysis of the Individual
Virus–Host Interactions
Giovanni Colonna

Unit of Medical Informatics—AOU-L. Vanvitelli, University of Campania, 80138 Naples, Italy;
giovanni.colonna@unicampania.it

Abstract: Many metabolic processes at the molecular level support both viral attack strategies and
human defenses during COVID-19. This knowledge is of vital importance in the design of antiviral
drugs. In this study, we extracted 18 articles (2021–2023) from PubMed reporting the discovery
of hub nodes specific for the liver during COVID-19, identifying 142 hub nodes. They are highly
connected proteins from which to obtain deep functional information on viral strategies when used
as functional seeds. Therefore, we evaluated the functional and structural significance of each of
them to endorse their reliable use as seeds. After filtering, the remaining 111 hubs were used to
obtain by STRING an enriched interactome of 1111 nodes (13,494 interactions). It shows the viral
strategy in the liver is to attack the entire cytoplasmic translational system, including ribosomes,
to take control of protein biosynthesis. We used the SARS2-Human Proteome Interaction Database
(33,791 interactions), designed by us with BioGRID data to implement a reverse engineering process
that identified human proteins actively interacting with viral proteins. The results show 57% of
human liver proteins are directly involved in COVID-19, a strong impairment of the ribosome
and spliceosome, an antiviral defense mechanism against cellular stress of the p53 system, and,
surprisingly, a viral capacity for multiple protein attacks against single human proteins that reveal
underlying evolutionary–topological molecular mechanisms. Viral behavior over time suggests
different molecular strategies for different organs.

Keywords: COVID-19; COVID-19 molecular mechanisms; SARS-CoV-2; liver interactome; ribosome;
liver proteome during COVID-19; viral strategy

1. Introduction

The impact of COVID-19 on various organs is under intense investigation, as clinicians
have identified this infection as a systemic disease, leading to significant research efforts in
this area. Liver manifestations of COVID-19 have garnered attention because of their clinical
significance in vulnerable patient populations. Studies have reported diverse outcomes,
with liver damage ranging from mild and self-limiting in healthy individuals to severe and
potentially fatal in the elderly, obese, and those with pre-existing liver conditions [1].

Despite the challenges, researchers have made progress in elucidating the pathophysi-
ological mechanisms associated with liver involvement in COVID-19 [2]. Various tissues
have shown viral RNA, suggesting potential direct viral involvement [3–6]. However,
histological analysis has revealed non-specific findings [2], showing the need for further
investigation into the mechanisms of liver damage [7,8]. However, the precise molecular
mechanisms underlying liver injury are still not understood.

Computational approaches, such as gene expression analysis, have emerged as valuable
tools in understanding COVID-19 pathogenesis and its effects on liver metabolism [9,10]. By
evaluating changes in gene expression, researchers have identified hub genes associated
with COVID-19 [11], offering insights into disease progression and potential therapeutic tar-
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gets. These hub genes play crucial roles in coordinating metabolic processes, although there
is disagreement in identifying, characterizing, and classifying these types of nodes [12].

Many studies on PubMed [11,13–22] from 2021 to 2023 reported hub genes linked to
COVID-19. They aim to determine regulatory processes from datasets based on microarray
or transcriptome sequencing technology. Despite this progress, challenges persist in study-
ing COVID-19-associated liver damage because these studies rely on static and probabilistic
models, lacking spatial and temporal resolution, which limits our understanding of disease
progression [23–25]. The lack of a unified definition of liver damage complicates data
interpretation and comparison across studies.

To address these challenges, we have turned to computational tools for analyzing
protein–protein interactions and functional pathways associated with SARS-CoV-2. Here,
we apply a biological reverse engineering protocol that involves deriving a model of the
biological relationships established between the nodes implementing the networks, with
no a priori knowledge of their computational protocols [26,27]. This approach can pro-
vide valuable insights into the molecular mechanisms underlying COVID-19 pathogenesis,
decreasing biased conclusions from low-resolution data [28] with a more systematic un-
derstanding of the complex regulatory networks that govern disease [29,30]. The reverse
engineering is based on the direct validation of the biological message exchanged between
two nodes by validating it with an external tool.

However, the concept of degeneracy in biological systems [29,31] adds another layer
of complexity to our understanding of COVID-19 pathogenesis. Degeneracy refers to the
situation where distinct processes within a biological system can perform similar functions or
roles, making it challenging to pinpoint exact cause–effect relationships [32–34]. This com-
plexity underscores prizing rigorous experimental validation in elucidating the molecular
mechanisms underlying COVID-19-associated liver damage.

Experimental validation of computational findings through methods of biophysics
and biochemical tests is crucial for confirming the relevance of identified hub genes and
biological pathways in COVID-19 pathogenesis. By integrating computational and experi-
mental approaches, researchers can overcome the limitations of individual methodologies
and gain a more comprehensive understanding of the disease (more details in Appendix A).

In conclusion, although researchers have made significant progress in understanding
the liver manifestations of COVID-19, many challenges still exist. By integrating computa-
tional and experimental approaches and leveraging bioinformatics tools, researchers can
gain deeper insights into the molecular mechanisms underlying COVID-19 pathogenesis in
the liver, leading to developing more effective therapeutic strategies.

2. Materials and Methods
2.1. BioGRID

BioGRID [35] is the source of experimental interactions of SARS-CoV-2 (BioGRID
Version 4.4.223 as of July 2023): https://thebiogrid.org/search.php?search=SARS-CoV-2*
&organism=2697049, (accessed on 23 July 2023).

BioGRID is a curated biological database of protein–protein interactions, genetic
interactions, chemical interactions, and post-translational modifications. It also collects all
the experimentally proven data on the interactions between the 31 SARS-CoV-2 proteins and
the human proteome. The quantitative SAINT analysis [36] was used to identify SARS-CoV-
2 viral–host proximity interactions in human or model system cells [11,13–22] and those
with a Bayesian FDR =< 0.01 were high confidence. Scores are the sum of peptide counts
from four mass spec runs with a higher score indicating a higher degree of connectivity
between proteins. This statistical model assigns the number of peptide identifications for
each interactor to a probability distribution, which is then used to estimate the likelihood
of a true interaction.

https://thebiogrid.org/search.php?search=SARS-CoV-2*&organism=2697049
https://thebiogrid.org/search.php?search=SARS-CoV-2*&organism=2697049
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2.2. STRING

STRING [37,38] (https://version-11-5.string-db.org/, accessed on 1 July 2023) is a
proteomic database focusing on the networks and interactions of proteins in an array of
species. The curated interactions are direct (physical) and indirect (functional) associations.
In this paper, we establish the PPI network according to version 11.5 of the STRING
database. We constructed PPI networks by mapping proteins to the STRING database
with a confidence score of 0.900 and with all interaction source active (see also note in the
Supplementary Materials).

Regarding cluster analysis, STRING also provides the most reliable clusters in terms
of compactness, metabolic functionality, and p-value, calculated on the network data. The
cluster analysis uses the K-means clustering method [39] where K-means clustering is an
unsupervised centroid-based learning algorithm.

2.3. Protein Enrichment

It is to some extent based on prior knowledge, and the statistical enrichment of the
annotated features may not be an intrinsic property of the input. To obtain an enrichment
test from STRING that is statistically valid, we must insert the entire set of enriched
proteins into STRING ensuring that “first shell” and “second shell” are both set to “none”.
To confirm the procedure’s correctness, we also checked the STRING notes to the network
for a specific notice that disappears when the analysis is performed correctly. By adding
new interaction partners to the network, we can extend the interaction neighborhood
according to the required confidence score. We used 0.9 as a confidence score.

2.4. Cytoscape and Network Topology Analysis

Cytoscape [40,41] through Network Analyzer was used to analyze the topological
parameters of networks. Using Cytoscape software (Version 3.10.1), we visualized and
analyzed PPI networks, which offer diverse plugins for multiple analyses. Cytoscape
represents PPI networks as graphs with nodes illustrating proteins and edges depicting
associated interactions. We examined network architecture for topological parameters such
as clustering coefficient, centralization, density, network diameter, and so on. Our analysis
included undirected edges for every network. We termed the number of connected neigh-
bors of a node in a network as the degree of a node. P(k) is used to describe distributing
node degrees, which counts the number of nodes with degree k where k = 0, 1, 2, . . .. We
calculated the power law of distribution of node degrees, which is one of the most crucial
network topological characteristics. The coefficient R-squared value (R2), also known as
the coefficient of determination, gives the proportion of variability in the dataset. We also
examined other network parameters, including the distribution of various topological
features. We performed a calculation of hub and bottleneck nodes based on relevant topo-
logical parameters. By examining the PPI network, we found the top 7 hub nodes. These
nodes had higher degree values than the others and were in two central modules that were
connected and compact.

2.5. CentiScaPe

Regarding centralities for undirected, directed, and weighted networks, CentiScaPe [42]
computes specific centrality parameters describing the network topology. These parameters
facilitate users in locating the most important nodes within a complex network. The compu-
tation of the plugin produces both numerical and graphical results, facilitating identifying
key nodes even in extensive networks. Integrating network topological quantification with
other numerical node attributes can provide relevant node identification and functional
classification.

2.6. GO and KEGG Pathway Analyses

To better research and show the biological function of interacting proteins, we per-
formed GO analysis, which included biological process (BP), cellular component (CC),

https://version-11-5.string-db.org/
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molecular function (MF), and many other evaluations using the specific tools present in
STRING. All functions shown by STRING are significant, having a p-value of <0.05.

2.7. SARS2-Human Proteome Interaction Database (SHPID)

We have collected in a single database all the files made available online by BioGRID,
containing all the curated physical interactions of the 31 SARS-CoV-2 proteins gained
through experiments in human cellular systems with viral baits, followed by purification
and characterization with mass spectrometry. These data are available as a zip file con-
taining multiple zip files (32 zip files) each comprising interactions and post-translational
modifications for each single SARS-CoV-2 protein for 33,823 interactions (as of July 2023).
The database therefore contains the set of all real interactions existing between the SARS-
CoV-2 proteome and all the proteins of the human proteome. We highlight that not all
interactions are real and some could derive from artifacts of the method, such as non-
biological interactions, only because of the random encounter between proteins in the
system used, representing an encounter that would never happen in reality during an
infection. However, the interactions derived from BioGRID all, even those with the low-
est score, have a significant statistic with an FDR =< 0.01. This allows us to identify as
many significant comparisons as possible while maintaining a low false positive rate, i.e.,
the probability of a false positive is less than 1%, so only 338 interactions among all are
truly null.

This database is the comprehensive repository of all interactions acknowledged as
biologically possible between the virus and its human host. The database also contains
interactions between individual viral proteins, where known. As part of database search
actions, one can ask who interacts with whom, with queries that use single human or viral
proteins. The search can include multiple sets of proteins.

2.8. Comparison between GO Pairs in Enriched Networks

In modeled networks, STRING analytically defines the enriched biological terms using
two parameters. Strength is the measure of how large an enrichment is, expressed as
Log10 [Log10 (observed/expected)], while false discovery rate (FDR) is the measure of the
statistical significance of an enrichment given as a p-value after the Benjamini–Hochberg
procedure. The higher the strength value, the greater the biological effect because of genetic
enrichment, indicating increased gene expression, which suggests a higher likelihood of the
event occurring. Since STRING characterizes biological functions as pairs in which strength
and FDR often show very different numerical values from each other, we use the product P
[P = strength x − log10 p-value] to carry out a quantitative evaluation. When “strength”
has a very high value and p has a low value, this product is enhanced (the extremes of their
numerical values, very high and low, represent the most favorable situation for evaluating
an effect). This facilitates us to compare and evaluate different pairs. Two pairs, one
characterized by S = 0.35 and FDR = 1.0 × 10−11 and another characterized by S = 1.9 and
FDR = 1.0 × 10−6, could lead one to think that the first is more significant. If we analyze
the P value, we have 3.85 and 11.4. This tells us that the increase in gene expression in the
second case is prevalent. The higher the value of the product, the more reliable the result
of one pair will be over the other. We consider that strength = 1 means a 10-fold genetic
enrichment. However, it is important to remember that all FDR values reported by STRING
in its biological functionality characterizations (GO, KEGG, etc.) are always significant and
never greater than 0.05.

2.9. Highlighting the Nodes of a STRING Network Involved in the Same Biological Process (GO)

STRING makes visible all the nodes involved in the same biological process evidenced
through its databases mapped onto the proteins (GO, KEGG, REACTOME, and so on)
by activating the process itself with a click of the cursor on the process line. Activation
means that all nodes involved in the same metabolic process are colored. Nodes involved
in multiple processes receive multiple colors. This tool is very useful when one wants to
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analyze involving multiple nodes in many metabolic processes, distinguishing the effect
of different processes between nodes and identifying which nodes represent the crossing
points. If individual nodes do not show any coloration after clicking, this identifies certain
components of a path, or group, that a specific activated process does not influence. The
relationships that determine the coloring of the nodes depend on the knowledge base that
STRING organizes for a specific network by extracting data and information from the
scientific literature in PubMed.

3. Results
3.1. Hub Data of Human Liver during COVID-19

As mentioned in the Introduction, we carefully selected 11 projects [11,13–22] out of the
18 projects identified in the scientific literature between 2021 and 2023. These papers deal
with characterizing hepatic metabolic processes that are viral targets in patients affected
by COVID-19. The distinguishing feature of these projects is using different techniques to
conduct bioinformatic analyses on profiled patient genes. In particular, the author studied
the hub genes that coordinated the metabolic activities of the human liver during COVID-19
infection. They were considered as potential drug targets for this liver pathology. Owing to
their high significant rank, hub nodes can also serve as functional seeds to extract related
functions from the human proteome. By enriching the nodes that express these functions,
it is possible to broaden the functional spectrum of action of the virus, accessing the
mechanisms used by SARS-CoV-2 to manipulate human proteins and metabolic processes,
as well as information on the molecular strategy adopted. The surprising discovery is that
the hub nodes highlighted by these projects are too numerous and different from each other
(Table 1). Since they concern the same disease and the same virus, we should have a set of
similar hub genes that control the viral strategy by inducing dysregulations in metabolic
processes, but we could also come across hub nodes that coordinate normal metabolic
activities (housekeeping activities).

Table 1. Hub genes found in the liver by different scientific projects during COVID-19 (2021–2023).

Article Title HUB Genes

Demonstration of the impact of COVID-19 on
metabolic associated fatty liver disease by
bioinformatics and system biology approach [13].

SERPINE1, IL1RN, THBS1, TNFAIP6, GADD45B, TNFRSF12A, PLA2G7,
PTGES, PTX3, and GADD45G.

Comprehensive DNA methylation profiling of
COVID-19 and hepatocellular carcinoma to identify
common pathogenesis and potential therapeutic
targets [14].

MYLK2, FAM83D, STC2, CCDC112, EPHX4, and MMP1.

Exploration and verification of COVID-19-related
hub genes in liver physiological and pathological
regeneration [11].

ASPM, BUB1B, CDC20, CENPF, CEP55, KIF11, KIF4, NCAPG, NUF2,
NUSAP1, PBK, PTTG1, RRM2, TPX2, and UBE2C.

Systems biology approach reveals a common
molecular basis for COVID-19 and non-alcoholic
fatty liver disease [NAFLD] [15].

IL6, IL1B, PTGS2, JUN, FOS, ATF3, SOCS3, CSF3, NFKB2, and HBEGF.

To investigate the internal association between
SARS-CoV-2 infections and cancer through
bioinformatics [16].

MMP9, FOS, COL1A2, COL2A1, DKK3, IHH, CYP3A4, PPARGC1A,
MMP11, and APOD.

Target and drug predictions for SARS-CoV-2
infection in hepatocellular carcinoma patients [17].

Upregulated, PDGFRB, MMP14, VWF, CD34, NES, MCAM, CSPG4,
MMP1, SPARCL1, and MMP10. Downregulated, IL1B, S100A12, FCGR3B,
CCR1, S100A8, CCL3, CCL2, CCL4, CLEC4D, and LILRA1.
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Table 1. Cont.

Article Title HUB Genes

Bioinformatics analysis reveals molecular
connections between non-alcoholic fatty liver disease
[NAFLD] and COVID-19 [18].

ACE, ADAM17, DPP4, TMPRSS2 and NAFLD-related genes such as TNF,
AKT1, MAPK14, HIF1A, SP1, and IL10.

Organ-specific or personalized treatment for
COVID-19: rationale, evidence, and potential
candidates [19].

CCL2, CCL5, CXCL10, HAO2, BAAT, and SLC27A2.

Differential Co-Expression Network Analysis
Reveals Key Hub-High Traffic Genes as Potential
Therapeutic Targets for COVID-19 Pandemic [20].

IL6, IL18, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2,
SUMO1, CASP1, IRAK3, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1,
HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A.

A systems biology approach for investigating
significantly expressed genes among COVID-19,
hepatocellular carcinoma, and chronic
hepatitis B [21].

ACTB, ATM, CDC42, DHX15, EPRS, GAPDH, HIF1A, HNRNPA1, HRAS,
HSP90AB1, HSPA8, IL1B, JUN, POLR2B, PTPRC, RPS27A, SFRS1,
SMARCA4, SRC, TNF, UBE2I, and VEGFA.

Identification of Key Pathways and Genes in
SARS-CoV-2 Infecting Human Intestines by
Bioinformatics Analysis [22]

AKT1, TIMP1, NOTCH, CCNA2, RRM2, TTK, BUB1B, KIF20A, and PLK1.

Note: In bold red, hub genes found in common between different projects.

From these papers, we have collected 142 hub nodes of the liver cell landscape found
connected to COVID-19, of which 21.12% comprise a group of 30 genes in common between
different projects, while all the others are different. One hundred and twenty-six hub genes
remain after removing those in common. We show this gene list in the Supplementary
Materials as Table S1. Barabasi’s research showed that biological networks exhibit scale-free
properties, with a few genes controlling multiple connections within different functional
modules, while most genes have only a few connections [43,44]. It is rather suspicious
that the same tissue has a metabolic network operated by such a disproportionate number
of hub genes during viral aggression. This suggests heterogeneity of networks. The
differences in databases used to extract relationships are a common cause of conflicting
results [45,46]. The relationships between the virus and the host occur at the molecular level,
through protein interactions. These interactions occur between viral proteins and human
proteins and are determined by both human defensive strategies and viral attack strategies.
Therefore, it is likely that hub nodes unrelated to the pathology have also been identified.
To understand how and why, we applied a biological protocol that involves identifying the
real physical relationships established between the nodes that implement the liver network,
with no a priori knowledge of the computational protocols. The fundamental biological
events between virus and host drive these interactions, thus necessitating a biological
evaluation of each individual interaction (see Materials and Methods for details).

Considering the ongoing SARS-CoV-2 pandemic, BioGRID implemented a project
called the BioGRID COVID-19 Coronavirus Curation Project (https://thebiogrid.org/
project/3) accessed on 1 July 2023. BioGRID is a biomedical interaction repository with
experimental data compiled through curation [35]. BioGRID has accumulated fundamental
experimental data supporting the role of SARS-CoV-2 in human infection. This project
collected comprehensive datasets of all known physical interactions between the proteins
of the human proteome and those of SARS-CoV-2. In the purification processes of these
proteins, researchers used physical methods such as affinity capture–MS and proximity
label–MS and curators of BioGRID have selected and classified both interactors and physical
interactions into various levels of statistical significance. This is because some interactions
may be random because the laboratory method does not reproduce the cellular environment.
Indeed, breaking cells to favor bait–prey interaction also allows for random encounters that
do not happen. Today we have over 30,000 interactions (as of July 2023) from the human
proteome when its proteins interact one-to-one with the 31 viral proteins of SARS-CoV-2.
These interactions possess an unparalleled quality, characterized by their non-redundancy

https://thebiogrid.org/project/3
https://thebiogrid.org/project/3
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and high-confidence interactions occurring at a rapid rate, showed by score values obtained
through statistical filtering, as determined by Significance Analysis of INTeractome (SAINT)
express version 3.6.0 [36].

We have obtained a dataset comprising the entire viral genome (31 proteins) and its
interactions with the human proteome. With it, we have created a unique database of the
human–virus relationships to search for physical/functional interaction between a viral
protein and a human protein. Using our proposed conceptual application framework,
we can gain a good understanding of the molecular mechanism of a viral infection. A
similar approach has already helped researchers recognize targeted viral complexes of five
common human viruses [47]. This recognition is based on biological information. Because
of its small genome, a virus must reach maximum performance in interfering with the
functional processes determined by human cellular proteins aimed at ensuring normal
organic homeostasis. The virus learns over time to implement its attack strategy on specific
animal targets by evolutionarily studying the structure of the target proteins. Many viruses
use proteins containing large segments of intrinsic disorder [48]. The key to interaction
lies in each interaction having specific and well-defined structural foundations, no matter
how transient they are. To obtain this knowledge, the virus employs lengthy periods of
co-evolution, parasitizing humans or similar species [49]. Therefore, if an interaction is
present in this peculiar archive, it means that it has a strategic value of attack or defense, for
the virus and for humans. The database also searches for multiple interactions of a human
protein with different viral proteins.

Therefore, prioritizing the characterization of the 126 hub genes is an important issue.
They should represent the highest-ranking genes, most affected by the virus, and that
are therefore optimal to use as functional seeds. This should facilitate identifying genes
associated with the pathology and genes involved in normal metabolic regulation, but also
uncertified genes included in networks with no experimental certainty. STRING uses many
standardized databases [45] as a source of data and information for calculating network
models. It produces a detailed analysis of all the scientific articles underlying each single
interaction and also corroborates the models calculated with biological analyses, such as
GO or KEGG, and with structural analyses using systems such as UniProt. Using STRING,
we can manage six data channels that parametrize the network calculation differently and
are influenced by various confidence levels. In this way, we can modulate results with very
different parameters of reliability, origin, and statistical significance.

On STRING, we inputted the 126 hub genes as functional seeds to extract their re-
lationships from the entire human proteome. These genes, decoded by STRING, should
interact to form a protein–protein network model showing compact sub-graphs. Therefore,
we left the six channels open to make the most out of each source, but we set the interaction
score to 0.900. As STRING networks have a lot of low-scoring interactions, if we want to
limit their number per protein, we should use a filter. We used the highest confidence score
cut-off to limit the number of interactions to those that have the highest confidence and
then are more likely to be true positives. By implementing this strategy, we can narrow
down the information only to our input proteins and their network pattern.

3.2. Comprehensive Liver Interactome during COVID-19

The graph in Figure S1 of the Supplementary Materials shows numerous nodes that
are not connected (31%). A significant number of the remaining elements do not form
a compact and connected graph, with only a portion exhibiting connectivity. This is an
indicator of poor functional connectivity, but it also says that many of these hubs may
not possess the basis of significant experimental certainty. Manipulating genomic data in
the pipeline, from input to extracting functional properties of the network, suffers from
a lack of accurate data and an indifference for control over know-how. This makes it
impossible to carry out any robust analysis, because the disconnected nodes make any
topological analysis or functional consideration unreliable [50–53]. To overcome these
shortcomings, we can extend the interactions by setting an enrichment of our network
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with new interaction partners (seeds), always depending on confidence value. This allows
us to know whether the input shows evidence of statistical enrichment for any known
biological function or pathway. The various external databases, including Gene Ontology,
KEGG pathways, UniProt keywords, PubMed publications, and others, which annotate
the STRING maps, can provide considerable help. The STRING enrichment method
retrieves functional enrichment for the set of input proteins. This will show which input
protein has enriched terms and describe each term with all its annotations, providing
only answers with FDR =< 0.05. Regarding publications, STRING extracts all available
scientific texts from PubMed to cover the maximum knowledge about each interaction, also
including full-text articles. Figure S2 (see Supplementary) shows the network of Figure
S1 implemented with 500 first-order (direct) nodes and 500 second-order (indirect) nodes.
Despite its compactness and size, the resulting graph still shows some unconnected nodes.
We removed the 15 unconnected nodes (APOD, BAAT, CCDC112, CSPG4, CYP3A4, DKK3,
EPHX4, HAO2, MMP11, NES, PLA2G7, SLC27A2, SPARCL1, STC2, and UGT2B7) using
an appropriate tool present in STRING to ensure a connected network. Pruning also has
the aim of minimizing non-informative enrichment. As a result, we still have 111 residual
original hub proteins within the final network, which suggests that there are enrichments
consistent with the functional seeds used. In Table S2, we report the list of the 111 remaining
hub nodes. It is also important to note that STRING in all the calculated networks has
always used data and information extracted from no less than 10,000 scientific articles from
PubMed (downloadable), which have generated a specific knowledge base for interactions
used in the calculation. By employing a sequential cleaning approach, we can gain precise
information and data, which is ensured by the exceptional dependability of each individual
interaction among nodes, unveiling their authentic biological credibility.

The enrichment produced a network that includes all principal human proteins in
liver tissues during COVID-19. According to STRING, the network shows 7313 functional
associations with biological processes spanning 14 categories. A set of 2344 biological
processes (GO), 195 KEGG pathways, and 960 reactome pathways characterize the breadth
of functional activities. This network appears very well organized and contains all those
functional relationships that also involve the original hub proteins. The compact groupings
of certain nodes suggest molecular complexes, even very large ones. We can see these
molecular complexes in the peripheral areas of the network. They operate as metabolic
nano-machines that carry out specific molecular processes [54,55]. For example, the sub-
graph at the bottom left is rich in proteins of the Splicing Factor 3B complex that, together
with other 17S U2 small nuclear ribonucleoprotein particle (snRNP) components, may play
a role in the spliceosome during the selective processing of microRNAs (miRNAs) [56].
This sub-graph also collects many of the proteins involved in transforming molecules of
precursor messenger RNA (pre-mRNA) into mature mRNA. Including this complex is not
random because RNA splicing is among the major downregulated proteomic signatures
in COVID-19 patients [57]. Certainly, the virus needs to manipulate the host splicing
machinery to its advantage to control the production of its proteome [58]. In fact, going
back along the periphery of the network, we encounter compact sets of genes involved
in all phases of cellular translational processes and the entire ribosomal complex, just to
mention the most important. At least in the liver, these appear to be the most obvious
targets of SARS-CoV-2. EXCEL FILE S1 reports all the nodes of the interactome in Figure 1
with their degrees. These nodes also include all the remaining original hubs (111 nodes).
In EXCEL FILE S1, we can also note a few dozen high-ranking genes, all specific for the
various phases of the cytoplasmic translation processes. However, before proceeding with
other observations, we have reported in EXCEL FILE S2 all 26,990 interactions relating to
the interactome in Figure 1. The file also reports the sources of each single binary interaction
and the combined score. The interest in this file produced by STRING is because it shows
(in red) the quantitative impact of the component deriving from the experimental data
alone on the combined value of the score. Thus, this file is useful as a reference in evaluating
each individual interaction for the score of 0.900 (highest confidence) we have always used.



Livers 2024, 4 217

As these results show, even for a binary relationship with a score of 0.900, the experimental
certification that makes it certain can often be missing, thus introducing serious and
invisible anomalies into the graph. We then processed in our SARS2-Human Proteome
Interaction Database (SHPID) each single protein of the entire interactome (1111 nodes)
to find out which viral proteins had interacted with the network proteins, as well as with
the remaining original hub proteins. Some of these proteins no longer exhibit the high-
connectivity characteristics that were crucial when they were designated as hubs in the
original papers. For example, hub nodes like MCAM, LILRA1, GDI2, COL2A1, TNFAIP6,
or PTX3 now have low ranks. What happened reveals that their COVID-19-associated high
functional rank disappeared because their value was likely highly inflated by the frequency
of studies because of their relevance in diseases or their functional importance in the cell or
because they are poorly characterized. A quick check using EXCEL FILE S2 highlighted the
widespread lack of valid biochemical and biophysical experimental data for these proteins,
meaning that they did not provide adequate evidence for the functional hypotheses in
which they had been implicated. Despite the experimental difficulty, we observe in this
interactome that proteins localize to specific molecular complexes within a defined range
of modules.
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We enriched this network with 500 first-order (direct) nodes and 500 second-order (indirect) nodes.
Settings: interaction score of 0.900 (highest confidence); all six channels open. Network parameters:
number of nodes, 1111; number of edges, 13,494, while expected statistical number is 8838; average
node degree, 24.3; avg. local clustering coefficient, 0.623; PPI p-value, <1.0 × 10−16; network diameter,
7; network density, 0.022; network heterogeneity, 1.030; network centralizations, 0.128; connected
components, 1. (Topological parameters calculated by Cytoscape).

3.3. Metabolic Stress Related to COVID-19 in the Liver

EXCEL FILE S1 shows that protein RPS27A, with a degree of 161, serves as the primary
hub. The original hub node list (refer to Table 1) also contained RPS27A. One alias of
RPS27A, Ubiquitin-40S Ribosomal Protein S27a, suggests its function as a conserved protein
responsible for directing cellular proteins toward degradation by the 26S proteasome [59].
Thus, its role in the liver holds significance. We also know RPS27A plays a significant role
in the progression of various human cancers, including HCC [60]. Its landscape of action
during viral infection of the liver is interesting. Investigations of SARS-CoV-2 infection
have shown large-scale chromatin structural changes because of metabolic stress [61,62]. In
situations of oxidative stress [63], induced by phases of the viral cycle [64,65], both oxidizing
agents and the need to signal this stress, as well as variations in sensitivity to oxygen, have
highlighted the importance of HIF in signaling [66]. These effects are a common feature of
both tumors and COVID-19 [67,68]. The shift from the TCA cycle to glycolysis requires cells
to upregulate multiple glycolytic enzymes, which are less energetically efficient. One of the
transcriptional regulators involved in the response to oxidative stress is HIF1A [69], which
remains inactive in normoxic conditions because of its interaction with HIF1AN, an oxygen
sensor that hinders interactions with other transcriptional co-activators. SIRT1 serves as
an energetic sensor [70], connecting transcriptional regulation to intracellular energetic
demands, while TP53BP1 acts as a p53-binding protein, participating in the response to
DNA damage.

In tumor progression, the stressful events described affect the p53 protein. The role
of p53 (gene TP53) is to inhibit proliferating cancer cells through cell cycle arrest [71].
Therefore, it normally performs a protective cellular action. The main cellular antagonist of
p53 is MDM2, as it triggers the degradation of p53 [72] and supports cancerous growth.
MDM2 and p53 establish a feedback loop to preserve balance, complemented by involving
RPL11, a ribosomal protein that inhibits MDM2 and enhances p53 stabilization and activa-
tion in normal conditions [73]. Therefore, RPL11–MDM2–p53 form an axis regulated by
RPS27A [73]. When activated by cellular stress phenomena, RPS27A hinders the interaction
between RPL11 and MDM2, promoting the degradation activity of p53 through the catalytic
activity of free MDM2, thus starting the oncogenic process. Hence, this system of proteins
works as a sensor and regulator of cellular stress, acting on p53 and RPS27A to regulate
their specific activity.

Figure 2 demonstrates the influence of DNA damage and oxidative stress on these
same metabolic players during COVID-19. By highlighting the proteins involved in these
processes through a tool that colors the nodes specifically involved (refer to Materials and
Methods for further information) we can identify them within the liver protein interac-
tome, also visualizing their role and functional relationships. Table 2 shows the activated
biological processes, their statistical value, and the colors of the nodes in the network.

The analysis of Figure 2 reveals that RPL11 and RPS27A are not implicated in the
pathways through which cellular stress is detected and transmitted to TP53 and MDM2.
These two proteins are not colored; thus, they do not display any stimulation from their
interconnected nodes. The non-involvement of RPS27A also suggests that RPL11 continues
its activity of blocking the biological function of MDM2 towards TP53. This analysis
hypothesizes an activity of TP53 in protecting liver cells by interfering in viral action. Only
data from laboratory experiments can offer certainties, even though clinical observations of
mild liver damage appear to corroborate this hypothesis. However, EXCEL FILE S2 shows
that the experimental component of all the interactions highlighted in Figure 2 and used
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to evaluate the hypothesis on the functional activity of TP53 during infection is very high
for each protein, so the interactions all rely on a solid experimental basis, which strongly
supports this conclusion.
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Figure 2. Role of TP53 (p53) and RPS27A in liver infection by SARS-CoV-2. The network is that of
Figure 1 and the nodes at the top left have been carefully extrapolated to highlight both the mutual
relationships and the abundance of functional connections with the central core of the network. The
degree for each single node is RPL11, 104; MDM2, 45; TP53, 133; RPS27A, 161; TP53BP1, 23; SIRT1, 26;
HIF1A, 35; HIF1AN, 5. The colors of the individual nodes show the type of metabolic stress (DNA
damage and/or hypoxia) induced by COVID-19 in the liver. The biological stress processes (GO)
activated are those shown in Table 2.

Table 2. Biological processes related to COVID metabolic stress in the liver.

GO-Term Biological
Process Description p-Value Node Color

GO:0043620 Regulation of DNA-template transcription in response to stress 1.90 × 10−3

GO:0080135 Regulation to cellular response stress 9.77 × 10−37
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3.4. The Reverse Engineering Actions

EXCEL FILE S3 reports all the liver proteins that interact with the viral proteins.
Only 51 proteins (in red) of the original hubs interact with the virus. In our experimental
conditions, the human proteins interacting with the 31 viral proteins are only 626 out of
1111 proteins (56%). They originate 2680 SARS-CoV-2–host interactions (roughly 20% of the
total) of which only 134 can actually be null. These interactions include most of the proteins
involved in the translational processes that control protein biosynthesis. In particular, the
virus takes possession of the ribosomal system and all the supporting protein complexes
to control and promote the biosynthesis of its proteins. This result supports the idea that
viruses target high-ranked proteins and proteins crucial in certain biological processes [74].
Several authors have already noted this remarkable ability of individual SARS-CoV-2
proteins to interact with many human proteins, making therapeutic and pathobiological
observations [75–77].

There is a notable difference in action between DNA and RNA viruses. Scientists
classify viruses according to their DNA or RNA genome. DNA viruses replicate using
DNA-dependent DNA polymerase. RNA viruses exhibit greater heterogeneity, especially
with ssRNA (+) viruses like coronaviruses. The genetic material of these viruses is very
similar to a mRNA. Compared to the genomes of DNA viruses, RNA viruses have smaller
genomes that encode fewer proteins and can undergo rapid and direct translation within
the host cell. The proteins of RNA viruses have developed a strategy by interacting with
host proteins through specific protein-binding motifs. In fact, RNA viruses attacking with
few proteins need them to have as multifunctional a capacity as possible. Therefore, we
expect RNA virus proteins to possess the capacity to interact with multiple molecular
partners. This ability to multitask implies quite specific evolutionary structural adjust-
ments. Indeed, RNA viruses encode proteins characterized by many binding interfaces, but
physically with smaller binding surfaces, to hit a greater number of cellular targets [78,79].
Another structural feature to achieve efficient multitasking is to have various segments
of intrinsically disordered structure along the protein sequences that are very suitable for
expressing multiple, even uncorrelated, activities [80,81]. We could say that the proteins
of RNA viruses have had a specialized evolution to develop very peculiar biophysical
characteristics. It is widely acknowledged that viral non-structural proteins engage in
interactions with host cell proteins, resulting in the formation of replication complexes [82].

Asserting that viral proteins attack human proteins needs quantitative validation
and specific information regarding the proteins involved. This question has a particular
meaning. In all protein databases, as we have already pointed out, the spatio-temporal
characteristics of the archived proteins are missing. Multiple participants hinder the
reconstruction of events. While the interaction between many molecules is a recognized
concept, the precise mechanisms, meeting sites, timing, and frequency remain elusive. We
have limited knowledge in providing mechanistic information about the targeted complex.

3.5. Individual Human Proteins Interacting with Many Viral Proteins and Their
Distribution Graph

In EXCEL FILE S3, we can see that some human liver proteins interact with many
viral proteins. It is a known fact that multiple viral proteins can target specific human
proteins [83]. These interactions described in EXCEL FILE S3 could be a resource for re-
searchers aiming to identify important specific host–virus interactions in the dynamics of
disease transmission [84], in particular, to describe the viral diversity associated with differ-
ent hosts and different tissues, as well as detect shared associations useful for identifying
with whom, where, and how they are shared [83,84]. However, some authors report that, in
viral infections, the most common ratio of protein–protein interactions between virus and
host is 1:1 [85]. Viral proteins, as well as human proteins, are integrated and interact in a
specific functional context. This explains much of the binding specificity between proteins.
However, even in the best-case scenario, only a handful of viral proteins could interact with
a single human protein. This limitation arises from the physical impossibility of locating
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suitable binding surfaces on a single molecule and the potential electrostatic repulsions
and structural constraints caused by proximity on a crowded structure. In the absence of
temporal data on the frequency and specificity of these attacks, we can reasonably think
that this massive attack is likely directed towards the entire ribosome and its ancillary
complexes, of which the targeted protein is a component, given that the most targeted
proteins are the ribosomal ones. But this hypothesis also has another side. It shows the total
lack, even in the best databases, of the spatio-temporal characteristics relating to individual
human proteins. Given the unlikelihood of crowding on a single protein, the attack is more
likely to be sequential, i.e., at different times. A comprehensive understanding of human
biology, and that of other living beings, requires acknowledging the dynamic nature of
metabolism.

Table 3 shows the human proteins most attacked by viral proteins in the range 12–20.
Its main purpose is to showcase the different levels of affected human proteins, both high
and low. The degree of each protein (see EXCEL FILE S1) is in brackets. A high degree is
because the majority are proteins organized into complexes.

Table 3. Human proteins subjected to multiple attacks by SARS-CoV-2 proteins.

Human Protein Number of Interacting
Viral Proteins **

RPL18A * (84) 20

RPL13 (84) 19

ALDOA (4), CDC42 (52), EIF2S1 (45) 18

RRM2B (3) 17

RPL13A (98), RPL21 * (87), RPL30 * (85) 16

PSMC1 (30), RPL26 * (96), RPL7A (85), RPL (9) 15

BUB3 (19), RPL7 (95), RPL8 (95), RPS24 (90), RPS6 (93), RPS9 * (102),
SNRPD1 (38), SRC (97), STIP1 (12) 14

BAG2 (7), RAC1 (11), RPL12 (93), RPL27A (85), RPS27L (82). 13

EIF6 (46), MCM7 (20), HYOU1, PTGES3 (23), RPL27 (84), RPL13 (84),
RPL35A (84), RPS10 (87), RPS11 * (108), RPSA (99). 12

Note: * Proteins marked with an asterisk also interact with ORF1ab. ** For more extensive details about interactions,
see EXCEL FILE S3.

That some human proteins interact with many viral proteins presupposes many
shared structural motifs. But this also suggests that viral motifs in their evolution must
gain host-like mechanisms to be successful in invasion. This supports the observations
that conformational flexibility, spatial diversity, abundance, and slow evolution are the
characteristic features of the human proteins targeted by viral proteins [74]. Viral proteins
mimic host-binding surfaces of domains to interact with human proteins, which occur
through domain–motif interactions. In EXCEL FILE S3, we can also observe that the
interacting viral proteins are not only non-structural proteins (NSPs) and there is also
a significant presence of accessory proteins. However, viral proteins intervene in large
numbers, targeting mostly the proteins of the ribosomal system. This allows the virus
to take control of protein biosynthesis and redirect it towards the synthesis of the viral
genome and its own proteins. That many viral proteins attack one host protein also means
that many of them have mimicked the same human motif. In addition, we must consider an
average of around 47% of disordered segments in coronavirus proteins [86,87]. This favors
attacks on specific cellular targets of the host. An interesting discovery is that among the
viral proteins that interact with ribosomal proteins (RPL18A, RPL21, RPL30, RPL26, RPS9,
and RPS11) there is also the long viral polypeptide ORF1ab. Since ORF1ab is certainly not
a target to be blocked but is the viral polypeptide that must be translated, the asterisked
proteins mentioned above could represent points of structural contact of the viral protein
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ORF1ab with the human ribosome. In fact, some of them (RPL18A, RPL21, RPL30, and
RPL26) are specific components of the large ribosomal subunit, the complex responsible for
peptide chain elongation and the synthesis of proteins in the cell, while RPS9 and RPS11
are components of the small ribosomal subunit as part of ribosomal process, which couples
processing steps of RNA folding and RNA cleavage [88,89]. Most ribosomes end translation
at a stop codon present in the first stem of the pseudo-knot. Meanwhile, coronavirus protein
synthesis employs regulatory mechanisms, such as ribosomal frameshifting, promoted
by a conserved stem-loop of RNA that forms a promoting pseudo-knot structure [90].
Ribosomes stall at the pseudo-knot and undergo a -1 frameshift at the slippery sequence,
leading to translating ORF1ab fusion polypeptide [91,92]. In coronavirus, this phenomenon
allows the virus to encode multiple types of proteins from a single mRNA, compacting
the information. In this way, virus translation dominates host translation because of high
levels of virus transcripts.

In Table 3, we also find the involvement of lower-degree human proteins that are not
ribosomal proteins. Some of them are key because they are involved in crucial metabolic
functions of the liver. We report, as examples, ALDOA, RRM2B, BAG2, and HGS. ALDOA
is the tetramer of hepatic-type aldolase B that binds to the hepatic cytoskeleton and to actin-
containing stress fibers. The presence of disordered segments in the C-terminals favors the
possibility of scaffolding and suggests that aldolase can regulate cell contraction [93,94].
RRM2B forms a complex with RRM1 where it plays a key catalytic role in repairing
damaged DNA together with p53 and provides deoxyribonucleoides in G1/G2-locked
cells [95,96]. BAG2 is a co-chaperone regulator of the HSP70 and HSC70 chaperones. It acts
as a nucleotide exchange factor by promoting the release of ADP from HSP70 and HSC70
proteins, triggering the release of the client/substrate protein [97,98]. Finally, hepatocyte
growth factor (HGS) is involved in intracellular signal transduction mediated by cytokines
and growth factors. It regulates endosomal sorting and plays a critical role in the recycling
and degradation of membrane receptors [99–101]. The liver serves as the site of localization
for many of these proteins, emphasizing their tissue specificity.

3.6. Distribution of Viral Proteins Interacting with Single Human Proteins

Figure 3 shows the distribution graph of the entire set of human liver proteins
(626 proteins) interacting with viral proteins (see also EXCEL FILE S3). Each point on
the curve reports the set of human proteins that have the same number of interacting viral
proteins. The fit shows that the distribution conforms to a power law, albeit with an R2

value of 0.5278, suggesting an acceptable fit. This value is at the low limits of reliability and
may imply existing heterogeneities in the distribution, which makes the results difficult to
explain. This should not be surprising because the distribution reflects the overall structural
and functional behavior of the entire set of human proteins with different roles from each
other and subjected to sequential functional stress by viral proteins in complex and metabol-
ically differentiated cellular environments. Hundreds of interactions are one-to-one (those
on the left side of the curve), while others involve multiple interactions (multi-to-one), to up
to 20 viral proteins per single human protein (in the tail). The connectivity distribution in
Figure 3 is quite consistent with the power law’s prediction of preferential attachment [102].
Thus, our model should show the emergence of a scale-free topology [103] from interaction
results. So, if the connectivity distribution follows a power law, then new nodes will
have a better chance of connecting to those with already many neighbors because of the
preferential attachment rule.

Comparative and evolutionary genomic analyses support the birth of complex struc-
tures in the cell that make up organized and complicated cellular nano-machines [104].
Genomics has also shown that parts associate with each other to form integrated systems
with modular and hierarchical structures [105]. This organizational process should also be
intrinsic in the modeling of liver metabolic reactions that arise from protein–protein inter-
actions. In accordance, complex networks exhibit higher-order organization in connectivity,
showing links that can be modulated and modeled using sub-graphs of the network [106].
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Some authors have also shown that networks contain within themselves information about
the organization of these compact modules (sub-graphs) such as emergence of the protein
complexes [106,107]. From the peculiarity of these models emerges an important intrin-
sic structural characteristic of biological networks, namely hierarchical modularity, i.e., a
higher level of organization, the growing mechanisms of which, unfortunately, remain
unknown. Researchers have never quantitatively tested these qualitative and observational
relationships in real biological interaction networks. Our network model, related to liver
tissue, shows human protein complexes strongly involved in viral infection. We believe
that the preferences of viral proteins toward the interior of these complexes should reflect
the mechanisms used by viruses to manipulate host protein complexes.
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Figure 3. Distribution of viral proteins interacting with single human proteins. The curve is the
exponential fit (displayed at the top right). Data calculated from EXCEL FILE S3. The figure also
shows the most targeted human proteins (from 10 onwards). The asterisked proteins are those that
also interact with ORF1ab.

Based on our collective data, it is evident that the evaluation of virus action should be
conducted within the framework of viral preferential attack strategies on intricate protein
organizations. However, how viruses manipulate sub-graphs of local host networks, such
as human protein complexes, has never been addressed from a topological–computational
perspective, preferring to focus on the preferential targeting of viral proteins with hub or
bottleneck nodes, despite that no formal definition exists to separate hub proteins from
non-hub proteins [12,108].

A systematic analysis of the protein complexes, identified as direct protein–protein
targets, has been carried out to discover new drugs [109] or even through bioinformatic
approaches [47], almost never considering a topological point of view. In this type of
analysis, both local topological aspects of the network and evolutionary ones should
contribute, but, to date, discrimination of the topological and functional properties of
complex viral targets during an infection is lacking. Our analysis identified compact sub-
networks of human proteins targeted by multiple viral pathogen proteins. But what is
perplexing is that during the infection, the targeting process of a complex protein system,
such as the ribosome, seems to depend on the connectivity of neighboring proteins in
the network (because of the preferential attachment, which is a topological parameter).
Conversely, the interaction of a viral protein ought to be primarily determined by the
likelihood of a physical encounter associated with the decrease in free energy because of
binding, exploiting chemical–physical parameters from evolutionary laws.
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We can hypothesize, from the analysis presented in Figure 3, that multiple types of
interaction activities could compete concurrently. If this is the case, upon closer analysis,
we should be able to discern more exponential decays that would better characterize the
distribution. In Figure 4 (top), we observe that the degree distribution seems to follow
a single power law. However, the fit in the log–log scale indicates that the single power
law distribution is at the lower limit to adequately meet or explain the data characteris-
tics. One-to-one and one-to-many interactions behave differently and make the analytical
representation heterogeneous when considered together. The bottom graph shows that
the distribution, always in the log–log scale, displays two different slopes, unlike what
happens when fitting with a single power law. In both fits, the values of R2 are very good,
suggesting a combination of two solutions (or two decays) that are linearly independent.
The biphasic distribution suggests the hypothesis that there may be at least two dominant
classes of co-existing proteins with differentiated functional responses. One class (in black)
should contain human proteins essential for metabolic adaptations following viral infection.
These proteins can be under-expressed or lost when pathophysiological conditions induce
profound metabolic changes. Proteins belonging to the other class (depicted in red) are
essential for critical physiological processes of viruses and hosts but are also essential for
the virus to gain energy. Thus, these human proteins, highly expressed, exhibit enhanced
resistance to pathological processes that induce functional variability. Depending on the
characteristics of the local context, it is possible for all proteins to transmigrate between
both classes. In the lower graph of Figure 4, there is on the x axis the transition degree,
TD. Its value breaks the distribution into two parts and identifies the boundary between
nodes with an interaction degree of less than 12 (in black, made up of proteins that are on
average poorly connected) and nodes having a degree greater than TD (in red, composed
of evolutionarily older proteins that are on average much more connected). In our analysis,
each of these sub-networks follows a single power law degree distribution well, while
differing in the value of power law exponents.
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Figure 4. Linear distributions of interacting viral proteins with a single human protein (log–log scales).
Upper figure—Distribution graph considered as a single power law. Fitting: f(x) = 431.26 x−1.66 and
R2 is 0.3675. Lower figure—Biphasic representation of the power law. The graph displays the fitting
equations. TD is the transition degree, the estimated point (marked by blue star) at which the slope
of the distribution sharply changes. Its value is around 12.

This biphasic model suggests all proteins can gain new interactions with rate (greater
slope) and number of interactions (the rich get richer) always increasing, as happens for
older proteins (red ones). Proteins can also lose their interactions, both with and without
the loss of their connecting partners. It is a kinetic model which through the different slopes
reflects the evolutionary behavior of proteins, considering two classes of proteins, one with
a rapid action but also with a fast residence time and the second with opposite properties
of greater resilience. Both classes adequately describe, both in topological and evolutionary
terms, the nature of the biexponential model. The model, in fact, shows a situation in which
the oldest proteins, the most conserved by evolution, increase their interactions because of
the establishment of new and specific kinetic conditions. Although our results are built on
solid foundations of statistics and experimentation, it is important to interpret them with
caution due to all the limitations previously described.

3.7. Comprehensive Analysis of Liver Metabolic Activities during COVID-19

To support the structural and functional organizational events previously found for
these proteins and the complexes involved, we analyze the data using the many specific
databases that STRING maps onto the protein data of calculated networks. Table 4 reports
some analyses of biological processes made by STRING on the interactome data shown
in Figure 1. The table shows the most statistically reliable results. Although all data used
in this study have a high intrinsic significance, analyses on extensive sets, where gene
expression variability could also play a fundamental role, must be carefully evaluated.
Therefore, in their evaluation, the value of the intensity of the expression of the genes that
code for the proteins of a process, contained in the strength parameter (see Section 2.8),
was also considered. The results show that the p-value (FDR) is important, but the level of
gene expression influences its significance. Then, the intensity of the biological action also
depends on the intensity of gene expression.

The gene expression depends on cellular signals, but the biological results depend on
the phenotype “interpretation” of that information, which is displayed by the synthesis
of proteins (and non-coding RNA). Thus, this parameter allows for the definition of a
similarity metric between gene expressions, which we can use to reposition and compare
biological processes [110,111].
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Table 4. Liver Biological processes during COVID-19 infection.

1—Normal biological processes related to nodes certified by reverse engineering in the liver infected by COVID-19

GO Term
Biological Process Description P p-Value Strength

GO:0019221 Cytokine-mediated signaling pathway 47.50 8.51 × 10−57 0.82

GO:0002181 Cytoplasmic translation 46.53 2.05 × 10−44 1.05

GO:0071345 Cellular response to cytokine stimulus 42.97 1.59 × 10−63 0.68

GO:0033044 Regulation of chromosome separation 37.73 9.62 × 10−36 1.02

GO:0010965 Regulation of mitotic sister chromatid separation 36.30 8.03 × 10−34 1.04

GO:0033045 Regulation of sister chromatid segregation 36.20 6.46 × 10−34 1.02

GO:0051983 Regulation of chromosome segregation 34.60 4.60 × 10−35 0.97

GO:0030071 Regulation of mitotic metaphase/anaphase transition 33.87 3.68 × 10−32 1.04

GO:0033044 Regulation of chromosome organization 32.37 3.03 × 10−39 0.82

GO:0007346 Regulation of mitotic cell cycle 32.25 1.18 × 10−46 0.70

GO:1901987 Regulation of cell cycle phase transition 30.16 2.98 × 10−42 0.71

GO:0006412 Translation 29.30 4.59 × 10−40 0.72

GO:1901990 Regulation of mitotic cell cycle phase transition 27.66 2.42 × 10−37 0.74

GO:1990869 Cellular response to chemokine 23.92 8.36 × 10−24 0.96

GO:0034243 Regulation of transcript. elongat. from RNA polym. II 17.94 5.25 × 10−19 0.91

GO:0007088 Regulation of mitotic nuclear division 17.50 3.89 × 10−20 0.85

2—Negative regulation of biological processes related to nodes certified by reverse engineering in the liver infected by
COVID-19

GO Term
Biological Process Description P p-Value Strength

GO:0043069 Negative regulation of programmed cell death 18.94 2.65 × 10−36 0.52

GO:0043066 Negative regulation of apoptotic process 18.31 7.95 × 10−35 0.51

GO:1901988 Negative regulation of cell cycle phase transition 15.97 3.11 × 10−22 0.71

GO:0045786 Negative regulation of cell cycle 15.25 1.63 × 10−24 0.63

GO:0010948 Negative regulation of cell cycle process 14.98 1.08 × 10−22 0.68

GO:0009892 Negative regulation of metabolic process 14.36 3.19 × 10−43 0.33

GO:0010605 Neg. regulation of macromolecule metabolic process 14.22 6.61 × 10−41 0.34

GO:1901991 Neg. regulation of mitotic cell cycle phase transition 13.83 8.82 × 10−18 0.73

GO:0045930 Negative regulation of mitotic cell cycle 13.33 2.12 × 10−19 0.69

GO:0031324 Negative regulation of cellular metabolic process 12.03 2.37 × 10−34 0.35

GO:0060548 Negative regulation of cell death 11.95 1.43 × 10−34 0.35

GO:2000816 Neg. regulation of mitotic sister chromatid separation 11.88 7.56 × 10−11 1.0

GO:0045841 Neg. regulation mitotic metaphase/anaphase transition 10.46 2.29 × 10−10 1.01

GO:2001237 Neg. regulation of extrinsic apoptotic signaling pathway 9.67 5.60 × 10−12 0.76

GO:0051348 Negative regulation of transferase activity 8.90 1.17 × 10−15 0.59
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Table 4. Cont.

3—Dysregulated biological processes related to nodes certified by reverse engineering in the liver infected by
COVID-19

3A—Local
Network

Clustering
(STRING)

Description P p-Value Strength

CL.152 Viral mRNA translation 89.03 7.21 × 10−46 1.19

CL:159 Viral mRNA translation 55.38 1.06 × 10−45 1.23

CL:162 Cytoplasmic ribosomal proteins 54.16 1.41 × 10−43 1.23

CL.143 Viral mRNA transl. and Sec61 translocon complex 53.10 6.93 × 10−47 1.11

3B—Reactome
Pathways Description P p-Value Strength

HSA-192823 Viral mRNA translation 64.09 2.56 × 10−53 1.2

HSA-72764 Eukaryotic translational termination 61.79 2.32 × 10−52 1.18

HSA-72689 Formation of a pool of free 40S subunits 58.97 1.91 × 10−51 1.15

HSA-72737 CAP-dependent translation initiation 53.73 1.98 × 10−49 1.09

HSA-1799339 SRP-dependent co-translational prot. targeting to member 53.17 2.20 × 10−48 1.1

HSA-9679506 SARS-CoV-1 infections 38.58 5.77 × 10−50 0.76

HSA-9754678 SARS-CoV-2 modulation of host translational machinery 26.18 2.39 × 10−23 1.12

HSA-9692914 SARS-CoV-1 host interactions 32.98 1.06 × 10−32 1.03

HSA-9705683 SARS-CoV-2 host interactions 31.14 1.61 × 10−36 0.86

HSA-9678108 SARS-CoV-1 infection 30.73 1.12 × 10−33 0.93

HSA-9735869 SARS-CoV-1 modulates host translational machinery 28.19 1.28 × 10−23 1.22

HAS-9754678 SARS-CoV-2 modulation of host translational machinery 26.18 2.39 × 10−23 1.12

HSA-9694516 SARS-CoV-2 infections 25.52 1.07 × 10−34 0.75

HSA-9705671 SARS-CoV-2 activates/modulates innate/adaptative immune
responses 11.06 5.57 × 10−14 0.75

HSA-597592 Post-translational protein modification 7.95 1.28 × 10−22 0.36

HSA-9772572 Early SARS-CoV-2 infection events 3.68 1.3 × 10−5 0.72

4—Protein domain characteristics in the liver infected by COVID-19

4A—Prot.
Domains
(InterPro)

Description Count in
Network P p-Value Strength

IPR036048 Chemokine interleukin-8-like superfamily 29 of 44 15.03 1.11 × 10−14 1.07

IPR039809 Chemokine beta/gamma/delta 15 of 26 8.03 8.90 × 10−7 1.01

IPR033899 CXC chemokine domain 12 of 14 7.30 1.54 × 10−6 1.18

IPR011332 Zinc-binding ribosomal protein 9 of 10 7.01 6.92 × 10−5 1.2

IPR011029 Death-like domain superfamily 29 of 97 6.01 2.23 × 10−8 0.72

IPR008271 Serine/threonine-protein kinase, active site 52 of 310 4.21 9.00 × 10−8 0.47

IPR001875 Death effector domain 5 of 7 3.84 3.10 × 10−3 1.1

IPR0000488 Death domain 11 of 35 2.81 6.3 × 10−3 0.74
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4—Protein domain characteristics in the liver infected by COVID-19

4B—Prot.
Domains
(SMART)

Description Count in
Network P p-Value Strength

SM00199 Intercrine alpha family (small cyt/chem
CXC) 28 of 42 16.80 5.07 × 10−15 1.07

SM00252 Src homology 2 domains 22 of 104 3.24 2.5 × 10−5 0.6

SM00219 Tyrosine kinase, catalytic domain 20 of 88 2.64 2.5 × 10−4 0.6

4C—Annotated
Keywords
(UniProt)

Description Count in
Network P p-Value Strength

KW-0689 Ribosomal protein 90 of 175 44.83 5.05 × 10−46 0.96

KW-0687 Ribonucleoprotein 112/278 42.17 4.14 × 10−49 0.85

KW-0945 Host–virus interaction 148/540 33.03 3.81 × 10−48 0.68

KW-0747 Spliceosome 50 of 138 16.77 5.14 × 10−20 0.81

KW-0395 Inflammatory response 56 of 163 16.56 1.73 × 10−21 0.78

KW-0132 Cell division 88 of 384 14.25 2.31 × 10−23 0.61

KW-0498 Mitosis 69 of 75 13.43 4.53 × 10−20 0.65

KW-0131 Cell cycle 137/651 13.13 1.09 × 10−23 0.57

KW-0647 Proteasome 25 of 52 11.57 2.74 × 10−12 0.93

The networks representing the clusters are reported in the Supplements as Figures, from Figures S3–S6. While the
functional characteristics as Tables, from Tables S4–S7.

The table is split into four sections that show the primary aspects of the metabolic
context encountered by the liver during COVID-19. The data are shown in decreasing
order determined by the P value. As we note, some p-values, despite being remarkably
low, are repositioned because of variability in the intensity of gene expression. In the first
part of the table (Part 1) we can see that cellular activity is mainly involved in promoting
cytokine signaling processes, cellular translation, and the cell cycle. In the second part
(Part 2), we have the negative regulations resulting from the viral attack. Surprisingly, one
of the main viral activities is to alter the programmed processes of cell death, followed by
strong interference to alter the processes of the cell cycle in its various phases. These data
suggest a viral activity that aims to implement a systemic spread of intact but infected cells,
very similar in result to the spread of cancerous metastases. If we observe the interaction
data in EXCEL FILE S3, we can see that the virus attacks proteins of the cellular matrix and
cytoskeleton, such as ACTB, ACTR3, FN1, CDC42, COL2A1, COL18A1, ITGA3, ITGA5,
ITGAV, FLNA, ACTL6A, ACTR2/3, and others, similar to what the cancer cell does to
spread metastasis. Other researchers have noticed similar strategies [112], such as extending
particular stages of the cell cycle and managing programmed cell death. Part 3A shows
some of the clusters calculated by STRING which show the involvement of the virus in
mRNA translation and in ribosomal cytoplasmic proteins. Local STRING network clusters
are pre-computed protein clusters derived by hierarchically clustering the full STRING
network.

The Supplementary Materials (under Clustering) provide a comprehensive overview
of all four clusters of Part 3A, featuring their topological parameters and a GO analysis for
each, to facilitate the identification of the metabolic framework of action. Extremely low
FDR values characterize all these contexts, demonstrating that the cytoplasmic translational
system, including ribosomes, is the most statistically significant virus target.
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Part 3B (Reactome) shows the most reliable metabolic pathways that involve extensive
virus–host interactions and identifies sets of proteins that also perform the same action as
SARS-CoV-1. Part 4 highlights the specific human protein domains targeted by viruses. One
interesting aspect is that the presence and incidence (count in the net) of these proteins have
been quantized. Many of these domains (Parts 4A and 4B) are involved in the molecular
mechanisms of chemokine/cytokine signaling and in the reprogramming processes of
programmed cell death. The last part, 4C, shows in which downregulated biological
processes we find these domains and in what abundance, including spliceosome-mediated
RNA processing. The set of this information is in excellent agreement with that discussed
earlier and also opens up other observations. Although our results are built on solid
foundations of statistics and experimentation, it is important to interpret them with caution
because of all the limitations described. In this study, we did not discuss one-to-one
interactions of the proteins of this viral pathogen with other human proteins. The most
surprising of these observations (see EXCEL FILE S3), is the large number of one-to-one
interactions, that, for instance, characterize the S1 viral protein (spike), which interacts with
many individual human proteins involved in different metabolic processes [113].

4. Discussion

COVID-19 involves many cellular biochemical adaptations affecting specific biochem-
ical and physiological pathways that generate profound systemic alterations which are
reflected in specific organ adaptations. This justifies a specific study of the alterations
generated in the liver by SARS-CoV-2. The study shows the interactions between viral and
human proteins involved in molecular and/or biological processes and their consequences
because of the infection. To the best of our knowledge, we have presented here the most
comprehensive and in-depth analysis of SARS-CoV-2–human PPIs within liver infection by
COVID-19.

Our analysis revealed that viral targets are enriched in human protein complexes, such
as ribosomes or proteasomes, and results confirm that viral infection affects large protein
complexes involved in the human translational system. During the attack, we observed
a significant presence of scaffolding and housekeeping proteins among the viral targets.
In this way, the virus takes possession of and controls the entire apparatus that manages
mRNA translation, blocking similar activities of the host. The strategy is to encourage
viral replication. Therefore, understanding the host molecular mechanisms involved in
protein–protein interactions (PPIs) controlled by SARS-CoV-2 is crucial for the design of
new antiviral strategies, as well as because there are human proteins that could be better
targets than viral ones. However, the results show the interactions that are crucial factors for
regulating cellular metabolism and survival during stressful times, which have relevance
in viral infections for disease progression.

Many pathological features of SARS-CoV-2 in the liver have remained unclear because
the underlying molecular mechanisms are unknown (1). Although many host proteins
can interact with viral proteins, only some of them are essential for a full infection in a
virus-specific manner. The results also show that the biological control exerted by the
various human hubs, as reported in the literature, was not always confirmed, nor was it
shown which of them physically interacted with viral proteins. The results presented in our
reverse engineering approach are all experimentally based because the proteins involved
and their specific interactions come from BioGRID. Through a comprehensive collection
of all BioGRID one-to-one interaction data, we could filter these proteins, revealing the
functional characteristics of those involved in virus–host interactions. Although many
host proteins can interact with multiple viral proteins, only some of them were crucial for
infection in a virus-specific manner, after filtering out the less significant ones to reduce
noise.

The limit of this approach does not lie in the methods used but in the acquisition and
representation of tissue information on a spatial and temporal scale, which remains a limit
to be overcome technologically. This is the real challenge. Considering the intricacy in
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representing the spatio-temporal organization of cells and tissues as metabolic scenarios,
our aim has been to choose specific biological processes applicable in real-world scenarios.
We extracted from the literature an extensive set of heterogeneous hub data of the liver
of infected patients by comparing them with the biological data set of our database and
pruning those of low significance. We have shown the accuracy and biological robustness
of our conclusions. Next, we evaluated these liver datasets and showed they could detect
metabolic patterns of hepatic tissues within COVID-19. Our data showed that inverse
engineering can map and reconstruct the metabolic distribution of various biomolecules,
providing valuable multimodal insights into coronavirus disease.

From the distribution analysis of the human proteins, used as targets by the viral
proteins, we have highlighted that the best fit of the data is the one that provides a biphasic
power law. This allowed us to highlight at least two classes of proteins related to two
different distributions that consider two operational kinetics of the two classes. The
main connection of evolutionarily consolidated proteins is to a resilient class that quickly
enhances its connectivity. The second group consists of proteins that are already loosely
linked, primarily concerned with pathological aspects and exhibiting slower connectivity
growth. Thus, the forces driving this protein behavior are both evolutionary and topological,
albeit to varying degrees.

A set of over 33,000 experimental human–virus interactions curated by BioGRID
provided the biological basis for each individual interaction. Added to this is that for every
single interaction to model the STRING network, we used a score of 0.900. In evaluating key
interactions, we have considered the quantitative incidence of the experimental contribution
to the value of the combined score using the parametric data reported in EXCEL FILE S2.
It is worth considering that only a solid experimental basis can make a protein–protein
interaction certain and reliable in the real metabolic world. Recent results show that
biases of the experimental procedures used to infer networks can affect the resulting
topology [114]. Additionally, we can expect that study bias may affect the sensitivity of
experiments, considering that proteins that have been excessively studied are tested more
frequently than others [115].

Today, a network can capture functional modules and cellular connectivity processes
because proteomic data contain a relational and informational component connected to
protein–protein interactions. But the biological events that distinguish a cell, whether
normal or infected, represent how the genetic code is executed that triggers one of the
many metabolic processes of which a hub node is part or can manage. Therefore, it is
very difficult, if not impossible, to distinguish when, how, and with whom a hub node
is involved in an altered or normal process. As mentioned previously, the actual activity
of a node does not derive from understanding the human metabolic activities in which it
seems involved, but from knowledge of the specific spatio-temporal events that involve it.
This is because a key node, be it a hub or a bottleneck, is a crossroads through which many
pieces of information can pass, even if we do not know which ones and in what order. This
constraint currently limits human knowledge, but we will overcome it to enable drawing
real conclusions.

This study analyzes in depth some protein–protein interactions between virus and
host involving molecular complexes in the cellular system represented by liver tissue
during COVID-19. The results allow us to provide an account, albeit approximate, of the
mapping of these interactions. SARS-CoV-2 identifies multiprotein complexes with which
high biological functions are associated as optimal targets for attack. An advantage for
this virus is that, being an ssRNA (+) virus, it has a very rapid cytoplasmic production of
viral proteins. The affected multiprotein complexes are RNA splicing, transcription, and
translation machineries, but also cell signaling proteins, which function as part of complexes
on the order of mega-Daltons and are made of dozens of proteins [114]. With ribosomes
and spliceosomes, these complexes reach an even greater molecular weight, because, on
average, they comprise 100–300 different proteins, including structural and regulatory
RNAs [115]. We should also consider that these complexes, which function as scaffolds
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for viral proteins, are also subject to regulation of their function through mediating post-
translational modifications. As already noted, we have little knowledge of the dynamics
of the information flows that drive events that give rise to molecular phenomena, such
as signaling or translation. We do not know PTMs of subunits or information about
the structure/function relationships to organize the architecture of these complexes. All
this makes any proposal of a dynamic hypothesis on viral strategy murky. However,
although we still have a static understanding of metabolic actions, knowing the details
involving some key human proteins in these complexes could open a new era in antiviral
pharmacology.

One last observation deserves to be noted to conclude this discussion. We found a
smaller quantity of important ribosomal interactions associated with RPLs and RPSs, as
opposed to the information documented in the BioGRID file concerning the ORF1ab protein.
This result, together with the fact that, of the 1111 human proteins of the interactome,
only 626 interact with viral proteins, opens considerations on the systemic activity of the
virus in various human organs. These results suggest a different viral strategy in different
tissues/organs. Many researchers speak of a process of evolutionary adaptation of the virus
to humans, favored by its successful propensity to mutate. The mutation rate of the virus
genome has been estimated at 1 × 10−3 substitutions per base (30 nucleotides/genome)
per year under neutral genetic drift conditions or 1 × 10−5–1 × 10−4 substitutions per
base in each transmission event [116], but, tracking a systematic gene-by-gene comparison
analysis with a reference genome (i.e., the first sequence data of a patient from Wuhan in
the National Center for Biotechnology Information (NCBI), annotation NC_045512.2), only
six of mutations had over 50% frequency in global SARS-CoV-2 up to 2023 (NSP12, S, NSP4,
N, ORF9b, and NSP3) [116].

Viral evolution occurs on time scales comparable to virus transmission events and
to dynamics that involve many factors [117]. These factors encompass the fluctuation of
infected individuals over time, the varying percentages of immune profiles in populations,
human mobility, the effectiveness of transmission between individuals, as well as the
interplay between viral strains and lineage extinction [117]. The complexity of all this
makes it challenging, if not outright impossible, to establish global evolutionary theories
through experimental evidence, although it is still workable to have coherent discussions
about individual factors of variability. Consequently, numerous hypotheses have emerged
regarding the evolution of SARS-CoV-2, including the notion that the virus becomes less
virulent [118]. Without going into the merits of these observations and the many existing
hypotheses, we note that the sampling of data we collected covers patients scattered around
the world who became infected between 2021 and 2023. The genomic profiling focuses on
the liver. Thus, our data cover a wide window of the evolution of SARS-CoV-2 in relation to
liver tissue [119] and regarding high-ranking proteins (hubs), known to be the preferential
target of the virus. Although 22% of them did not meet the experimental requirements to
be reliable, we discovered that only 51 of these proteins (refer to EXCEL FILE S3) ultimately
played a role in the infection, although many had reduced connectivity. They, through
functional enrichment, showed us how remarkable the viral activity was against specific
proteins of the entire hepatic cellular translation system. This strategy never changed
over 3 years. Checking BioGRID, the interaction data show that ORF1ab also interacts
with many other proteins of the human translational system but not in the liver. This
suggests a unique and specific viral behavior, i.e., over time, viral methods and proteins
attacking the liver showed no significant changes in strategy. It is logical to speculate that a
different strategy should be considered in relation to the protein–protein interactions of
SARS-CoV-2 in diverse human tissues/organs. The complexity arises when attempting to
illustrate this hypothesis, as the data used are sourced from deceased patients, rendering it
impossible to distinguish between the systemic response of the patient’s phenotype and the
effects specifically tied to the organ being examined. We could also find this information in
those poorly interacting hub nodes that we often discard, which could represent unstable
ongoing variations of molecular strategy, but it is not yet consolidated. So, although this
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result may already exist in another context, where different design objectives obscure it,
in this investigation, we present precise molecular data that support a different way to
approach the distribution of nodes in an interactome, suggesting new design hypotheses.
The scientific community should verify these data.

5. Conclusions

The aim of this study was to give an overall view of the molecular mechanisms
involved in SARS-CoV-2 liver infection. Our research shows that COVID-19 affects only
50% of liver proteins, but it triggers a vast network of interactions among them. Based on
this observation, we can infer that the virus does not attack the molecular mechanisms
that are vital for cellular metabolism. Instead, it seems to affect the protein complexes
governed by influential human proteins, employing a variety of types of viral proteins. The
ability of these proteins to interact with many human proteins, each with distinct structural
characteristics, is essential for controlling specific biological processes, such as translation.
The virus attacks the entire ribosomal system, demonstrating the importance of controlling
protein biosynthesis. All this also suggests that specific human proteins can serve as targets
for antiviral drugs.

Two things appeared important from the set of multiple analyses that characterized
this study. Researchers hunt for hub proteins because they may be ideal drug targets. Many
nodes, unfortunately, turn out not to be hubs, but they support inappropriate functional
hypotheses that are widespread in the literature. This shows how necessary it is to use
only validated interaction data for computational analyses [120,121]. To this we add that
metabolism is degenerate. The complexity of establishing cause–effect relationships in
biological processes [122–126] cannot be addressed by probing a few specific proteins, like
with Western blotting. A protein believed to be involved in a biological process can often
be found in various forms of aggregation in multiple functional sub-networks [122–126].
Therefore, without determining the specific molecular process within that context, we
cannot make any conclusions regarding cause or effect. This also generates inappropriate
functional hypotheses.
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Appendix A

An appendix is necessary to frame the reason for a reverse engineering approach and
explain why everything must be based on reliable data. When we think of a biological
network, we think it comprises a one-to-one set of interactions of its nodes. What the
nodes exchange is functional information, therefore, a biological network is an information
system that manages the metabolic information of the cell and the entire organism. The
more precise the metabolic information, the greater the homeostatic capacity of the entire
organism. Therefore, when we refer to two nodes that have a functional relationship,
i.e., exchange information, we must be very sure that the interaction exists. We can only
get high certainty experimentally, for example, through the methods of biochemistry and
biophysics. The mutual information between two variables, i.e., the nodes, measures
the amount of information that one variable contains about another. The higher the
certainty, the greater the reduction in the functional uncertainty of one variable following
the knowledge of another. Mutual information between two variables is a fundamental
concept of information theory as defined by Shannon [127]. To apply this concept to one-to-
one biological interactions, we should define it in terms of entropy, as an uncertainty of the
information that is transmitted [128].

Reciprocal information is a measure of dependency between variables, which can be
analyzed by interaction networks [37]: if two components have strong interactions, their
reciprocal information will be high, increasing the certainty of the event. The intrinsic
information of an event, also called self-information, is the amount of intrinsic uncertainty
associated with it. The more certain the event, the lower the amount of uncertainty
associated with it. From which, the more certain the information one possesses, knowing
that the event has occurred, the lower the associated uncertainty will be, but the lower the
self-information or intrinsic information, i.e., its total entropy, will also be.

In entropic terms:
I(X, Y) = H(X) − H(X/Y) (A1)

where I(X, Y) is the uncertainty existing in the relationship between the two nodes X and Y
and it depends on the level of informational uncertainty relating to each variable. H(X) is
the entropy of the information system, or self-information or intrinsic information, which is
the amount of uncertainty associated with the interaction between the two nodes. H(X/Y)
is the conditional entropy, i.e., the entropy of a variable Y conditioned from the knowledge
we have of the other variable, and, the higher the knowledge, the lower the associated
uncertainty.

Relation (A1) tells us that the uncertainty between two metabolic nodes, which have
a physical and/or functional relationship [I(X, Y)], depends on the intrinsic uncertainty
[H(X)] associated with the relationship itself. We can reduce this uncertainty by increasing
our knowledge of the metabolic behavior of the interacting nodes [H(X/Y)]. However,
by confirming a metabolic event between two nodes through experimentation, we obtain
secure and certain information, thus eliminating the conditional uncertainty and reducing
the self-information, intrinsic information, or entropy of the system.

It is crucial to acknowledge that information fully controls biological networks. The
greater the certainty of the information we possess about the physical/functional rela-
tionships existing in the network, the more certain and real the metabolic or pathological
previsions of our computational model are. Therefore, since the relationships between two
metabolic nodes are physical/functional, we gain the greatest certainty of all only through
conducting experiments, with the methods of biophysics, with which we measure the type
and strength of the interaction, and of biochemistry, with which we measure the levels
of function. So, the relationships between computational models and experimental data
are one cornerstone of systems biology. Reverse engineering aims to understand which
functional processes are real and which are dysregulated through external control of the
certainty of the biological event of virus–host interaction. The goal is the ultimate biological
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determination of existing interactions, not the detailed characterization of these interactions,
knowing that difficulties increase because we deal with non-linear interactions.

The existence of many errors undermines these principles very often because uncer-
tainty is intrinsic in the multiple contexts that provide data and information relating to
the biomolecules necessary to calculate biological networks. Although next-generation
sequencing studies provide extensive sequence information, the precise knowledge of
virus–host one-to-one protein interactions and potential targets for antiviral therapies re-
mains limited, partial, and incomplete. Typically, metadata for PPIs [129] should include
experimental details of tens of thousands of virus–human interactions. Some databases,
such as BioGRID, STRING, or INTACT, have used standardized procedures, but many
others, generalists, have collected virus–host interactions in different ways and contexts [45]
and do not have a standard format.

These platforms are online and useful for checking results. The fundamental reason
lies in the crucial distinction between reproducibility (repeating an experiment to obtain
the same result) and replicability (interpreting the same data in different contexts). It
is important to recognize that interpretations of data may vary depending on context,
data quality, or analysis method. Standardization of data and protocols is necessary to
obtain a univocal understanding and interpretation of research results. The vast differences
between databases make it extremely challenging to compare their data when the lack
of experimental details obscures the nature of an interaction. What we often observe in
interactomics papers is an abnormal bloom of hub genes/proteins far beyond the needs
of any biological network [46]. Therefore, STRING, a platform that for each calculated
interaction in a graph creates a specific knowledge base by querying thousands of scientific
articles on PubMed, and BioGRID, a platform that archives only curated experimental
data of the one-to-one interactions of SARS-CoV-2 proteins with the human proteome,
are two indispensable tools to guarantee the best possible certainty of the data under
analysis. The liver is a very complex organ with a highly dynamic metabolism, where the
sequential regulation of cellular processes plays a crucial role [119,130]. Therefore, studying
its metabolic behavior during COVID-19 requires knowledge of the control systems and
areas [131], which are not always found out in liver diseases [46].
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