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Abstract: Parkinson’s disease is a neurodegenerative disease which involves the malfunction and
death of vital nerve cells in the brain, called neurons, which produce dopamine. Dopamine is
a neurotransmitter that communicates with the area of the brain responsible for movement and
coordination. As Parkinson’s disease progresses, the amount of dopamine production in the brain
declines, leaving a person unable to control movement. Typically, natural compounds such as
flavanoids have been cited in the literature for having the ability to penetrate the blood–brain barrier
and halt the progression of such disorders. In this study, ten phytoconstituents were screened using
molecular docking against adenosine A2A to identify potential inhibitors. Target protein of interest,
Adenosine A2A receptor (PDB ID: 3UZA) was extracted from PDB database. Test drugs as well
as standard drug were extracted in their 3D conformation from the PubChem in .SDF format, and
docking was done using FlexX software. The docking scores of the selected photochemical were
compared with levodopa as a positive control. Docking studies revealed that Baicaline has best
molecular docking result (−21.6 kcal/mol) for Adenosine A2A receptor, with low toxicity as per pro
Tox-II online server which indicates that the Baicalein is a potential lead to be drug candidate for
Parkinson’s disease.

Keywords: Parkinson’s disease; dopamine; molecular docking; adenosine; baicalein

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
globally, which leads to severe behavioral and cognitive dysfunction [1], with a prevalence
of about 0.5–1% among people 65 to 69 years old and rising to 1–3% among people 80 and
older [2]. It was initially described in 1817 by James Parkinson, and it was further defined
by Jean-Martin Charcot [3].

The etiology of Parkinson’s disease remains a topic of intense investigation, with both
genetic and environmental factors implicated in its development. The main risk factor for
PD is age, with a median onset age of 60 years old [4]. The hallmark pathological feature of
Parkinson’s is the progressive loss of dopamine-producing neurons in the substantia nigra,
a region of the brain critical for motor control [5]. This depletion of dopamine leads to the
characteristic motor symptoms of tremors, bradykinesia, rigidity, and postural instability,
which significantly hamper patients’ daily lives [6].

Deep brain stimulation and dopaminergic medications are currently accessible to
enhance daily activities and quality of life while lessening the motor impairment in the
patient with Parkinson’s disease [7]. In order to encourage neuroprotective intervention
prior to the commencement of clinical manifestation, new investigations are being done to
identify suitable therapy approaches [8].
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Recently, natural medicines, mostly molecules derived from plants, have gained wide
acceptance to treat Parkinson’s disease, since they are known to have fewer negative side
effects than synthetic ones [9].

From the literature, ten phytoconstituents were selected for their neuroprotective
action (Table 1) are caffeine (1), lenoleic acid (2), oleic acid (3), vasicine (4), vasicinol (5),
vasicol (6), baicalein (7), amentoflavone (8), ginkgolide-B (9) and alpha cubebene (10)
(Figure 1).
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Figure 1. Structure of compound.

Using molecular docking analysis, phytoconstituents were investigated and were
compared with the standard drug Levodopa. FlexX is a quick and flexible docking tool
that docks ligands into the active site of proteins. It possesses excellent ligand flexibility by
changing the conformations in the active site although protein is rigid [10]. Using the FlexX
docking software, screening of ten natural compounds with the Adenosine A2A receptor
(3UZA) was done on the basis of their binding energy and conformation.
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Table 1. Neuroprotective action of phytoconstituents.

Phytoconstituents Mechanism of Neuroprotective Action

Caffeine
Caffeine has capacity to antagonize adenosine receptors, particularly
A2A receptors present in striatopallidal neurons and improves PD motor
functioning [11].

Lenoleic acid Antidepressant and anti-inflammatory properties, as well as increases in
neuronal plasticity [12].

Oleic acid

Oleic acid serves as a neurotrophic factor that promotes synapse
formation, axonal and dendritic growth, neuronal migration and
aggregation, and the production of myelin phospholipids during brain
development [13].

Vasicine
Effectively inhibited cholinesterases and Aβ aggregates, as well as
neuroprotection activity [14].

Vasicinol

Vasicol

Baicalein
Baicalein has a protective effect against oxidative stress-related damage.
It also suppressed cell viability loss, intracellular ROS production, and
prevented the buildup of ROS [15].

Amentoflavone
Protects dopaminergic neurons from neurotoxicity by activating the
PI3K/Akt and ERK signalling pathways, and reducing
neuroinflammation in dopaminergic neurons [16].

Ginkgolide-B Anti-inflammatory effects and scavenging of oxygen free radicals [17].

Alpha cubebene Reduces the amyloid-induced neuroinflammatory response of
microglia [18].

2. Material and Methods
2.1. Preparation of Ligands

From the literature, we selected the set of ten phytoconstituents structure, known for
their brain stimulant action and can be used for Parkinson’s disease.

The phytoconstituent were extracted in their 3D conformation from the PubChem
and were in .SDF format. Levodopa was used as the reference standard, as the first line of
treatment for Parkinson’s disease is levodopa.

2.2. Retrieval of Protein Structure and Preparation

The X-ray-co-crystallized structures of the protein molecules (PDB ID: 3UZA) used
in the study were retrieved from the Research Collaboratory for Structural Bioinformatics
(RCSB). The receptor file was saved in “Mol2” format.

2.3. Molecular Docking Studies

The FlexX v 2.1.3 program was used to load the potential binding sites between
the various ligands and the target protein. Prediction of protein–ligand interactions is
performed using FlexX v 2.1.3 docking software. The results of docking were then compared
with the docked result of reference ligand obtained from the corresponding PDB ID. The
docking scores, 2D and 3D pose views, as well as the binding affinities of the selected
natural compounds, were generated for further investigation.

The best docked phytoconstituent for neuroprotective action was identified on the
basis of binding energy and interaction with amino acid residues.

2.4. Toxiciy Study

Toxicity of each phytoconstituents were determined with the help of pro Tox-II online
server. ProTox-II is a virtual toxicity lab that enables the prediction of multiple toxicological
endpoints related with a chemical structure.
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3. Results and Discussion

It has been discovered that natural substances operate preferentially as brain stimu-
lants. The objective of the current study was to investigate the effects of natural substances
as brain stimulants. Among the ten ligands, Baicalein showed a superior docking score of
−21.60 kcal/mol. Baicalein (5,6,7-trihydroxy-2-phenylchromen-4-one) is a naturally occur-
ring substance mainly found in stachys annua, stellera chamaejasme and other organisms.
It belongs to the trihydroxyflavone class of group with the hydroxy groups at positions C-5,
-6 and -7. Binding configuration of the reference ligand and best dock ligand is depicted in
Figures 2 and 3 and Tables 2 and 3.
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Table 2. Docking result of levodopa in 3UZA.

Docking Result High Dock Low Dock High Match Low Match

Rank 1 323 2 259

Score −23.118 −2.4571 −14.6326 −12.4526

Match 12 3 13 2

Table 3. Docking result of baicalein in 3UZA.

Docking Result High Dock Low Dock High Match Low Match

Rank 1 177 36 174

Score −21.6080 0.2300 −13.9364 −0.3296

Match 17 11 22 5
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Predictive Toxicity Studies

Toxicity of baicalein was determined with the help of pro Tox-II online server, and it
was found that the predicted LD50 value of baicalein was 3919 mg/kg and the predictive
toxicity class of baicalein is 5.

4. Conclusions

Docking studies were performed on the ten selected phytoconstituents. The docking
result of plant compound compared to levodopa, standard drug shows that baicalein,
caffeine, vasicol, vasicinol, vasicine, and amentoflavone have negative docking energy,
which corresponds to good binding. Baicalein has a more negative value (−21.6080), which
corresponds to very high binding and is closest to levodopa binding energy. Lineolic acid
and oleic acid has positive score, which corresponds to non-existing binding (Table 4).

Table 4. Docking score of phytoconstituents in the active site of Adenosine A2A receptor (PDB
ID:3UZA).

Protein Ligands Binding Affinity
(Kcal/mol)

3UZA

Levodopa −23.118

Baicalein −21.6080

Caffiene −17.9397

Vasicol −14.5378

Vasicinol −9.3958

Vasicine −8.5219

Amentoflavone −4.5378

Linoleic acid 4.2474

Oleic acid 5.1262

Alpha cubebene Not docked

Ginkgolide B Not docked
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