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Abstract: This study investigates the semantic segmentation of common concrete defects when using
different imaging modalities. One pre-trained Convolutional Neural Network (CNN) model was
trained via transfer learning and tested to detect concrete defect indications, such as cracks, spalling,
and internal voids. The model’s performance was compared using datasets of visible, thermal,
and fused images. The data were collected from four different concrete structures and built using
four infrared cameras that have different sensitivities and resolutions, with imaging campaigns
conducted during autumn, summer, and winter periods. Although specific defects can be detected in
monomodal images, the results demonstrate that a larger number of defect classes can be accurately
detected using multimodal fused images with the same viewpoint and resolution of the single-sensor
image.

Keywords: non-destructive testing; deep learning; image processing; multimodal images; infrared
thermography; concrete bridges; infrastructure inspection

1. Introduction

Computer vision methods combined with remote sensors represent a promising
solution for the automatic inspection of concrete structures [1,2]. The goal of using such
advanced non-destructive testing and evaluation (NDTE) methods is to more efficiently
evaluate the inspection of large infrastructures [3]. The defects present in concrete structures
such as cracks, spalling, and internal voids, can appear with a particular color, shape, and
thermal contrast in the images acquired in the visible and/or infrared spectrum. For
instance, the detection of subsurface voids is not possible using visible images only, and the
occurrence of spalling and cracks are not sufficiently clear in thermal images. This scenario
represents a challenge for human and computer analyses, where multimodal images from
the same structure and field of view must be inspected multiple times due to their diverse
information content.

Given this outline, the development of registering and fusion techniques to integrate
with multimodal images has been studied and receiving attention [4]. As a result, the ap-
plication of smart algorithms for automated feature detection on fused images is becoming
more common [5,6], as the multimodal image can intelligently combine the complemen-
tary information with the several input sensors. However, there is a valid concern about
whether the pixel fusion of the multiple input images can cause a loss of information
for feature detection [7]. In this study, the segmentation performance of concrete defect

Eng. Proc. 2021, 8, 29. https://doi.org/10.3390/engproc2021008029 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-0421-2302
https://orcid.org/0000-0002-8777-2008
https://doi.org/10.3390/engproc2021008029
https://doi.org/10.3390/engproc2021008029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://aita2021.sciforum.net/
https://doi.org/10.3390/engproc2021008029
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021008029?type=check_update&version=1


Eng. Proc. 2021, 8, 29 2 of 4

indications commonly present in visible and thermal images is investigated and compared
using multimodal and fused images. The hypothesis is that the registration and fusion
of the multiple-sensor images can bring information to the learning algorithm without a
significant loss of information. Moreover, the merged images can speed up the labeling,
training, and evaluation of the asset by using only one dataset of fused images.

2. Methods

The data acquisition campaigns were performed in 4 concrete structures: a concrete
dam, 2 highway bridges, and 1 railway overpass in Canada. Part of the current dataset
was collected and analyzed in a previous study [2]. Four different thermal cameras were
used to collect the data, and all the devices were equipped with both thermal and optical
sensors; therefore, each capture provides an optical and thermal frame with the same field
of view, allowing further image registration and fusion. The imagery campaigns were
conducted at different times of the year to obtain different thermal information. All the
experimental tests were performed under passive heating.

A total of 690 visible and infrared images resulted from the inspection campaigns. The
further applied computer-based procedures can be summarized: (1) The correlated single-
sensors visible and infrared images were downloaded and structured inside 2 datasets.
(2) All images were registered and fused. (3) Original visible and infrared images were
replaced by their respective registered images. (4) A dataset of fused images was created,
with images of the same resolution and from the same field of view of the registered
infrared and visible images. (5) All cracks and spalling were labeled using the visible
images dataset, and the internal voids indications were labeled using the thermal image
dataset. (6) Each dataset was split into training (85%), validation, and testing datasets
(15%). (7) Different image processing techniques were applied to the datasets: contrast
enhancement using histogram equalization and resolution improvement using the Very
Deep Convolutional Networks (VDCN) algorithm [8] trained in visible and thermal images.
(8) A pre-trained Convolutional Neural Network (CNN) model, i.e., MobileNetV2 [9], was
trained (via transfer learning), validated, and tested to detect the multiclass labeled defects
using the different datasets. (9) The segmentation performance was evaluated in each
scenario using the Intersection over Union, Pixel Accuracy, and Mean F1 Score metrics.
Given the different acquisition scenarios, all data were normalized before the analysis.

3. Results

The CNN model demonstrated the possibility of accurately identifying the investi-
gated damages in the multimodal and fused images of concrete structures. Figure 1 shows
one example of the tested images that contains crack and spalling. The segmentation results
are shown according to the different image modalities and image processing techniques.

The VDCN algorithms visually improved the image resolution in all cases, proving
to be suitable for use in thermal, visible, and fused images. The visual result of the
segmentation shows that the model was able to identify most of the defects and that the
image processing techniques can help the model be more specific and avoid false positives,
as we can see in the comparison of Figure 1c with Figure 1h,m,t. The results of IOU, Pixel
Accuracy, and Mean F1 Score were also computed and will be provided later on. The
outcome showed that image processing techniques can increase defect detection. However,
in some cases, the interventions led to a decrease in the segmentation performance, such as
in the case of crack detection. When it comes to multiple damage detection, some filters can
overpass or hide damages that have individual characteristics (color, shape, texture, etc.).
By way of illustration, contrast enhancement can facilitate spalling identification but can
cause thin cracks to vanish or change the appearance and texture of the concrete portions.
In addition, both thermal and visible images contain noise that are consequently combined
when the images are fused. The use of specific image processing techniques to reduce
the level of noise before and after the fusion and segmentation may improve the model
performance. In this experiment, the aim was to compare the segmentation performance
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using different image datasets (multimodal and fused images), and further research will be
performed to improve the deep learning model to pursue a better performance in multiclass
segmentation.
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Figure 1. Visual results of image processing techniques and multiclass damage detection on the multimodal images, where 
red represents the predicted cracks and blue represents the predicted spallings in each case; the columns show thermal 
images, visible images, segmentation results on visible images, visible and infrared fused images, and segmentation results 
on fused images, respectively (left to right). The first row (a–e) shows examples of the original dataset; the second row (f–
j) shows examples of the improved dataset based on the Very Deep Convolutional Networks algorithm trained in visible 
images; The third row (k–o) shows examples of the improved dataset based on the Very Deep Convolutional Networks 
algorithm trained in thermal images; and the last row (p–t) shows examples of the dataset with the contrast enhanced by 
image histogram equalization. 

In a defect class analysis, the models yield rather similar results in segmentation for 
processed multimodal and fused images from the same field of view. A hypothesis test 
was conducted using a two-way analysis of variance (ANOVA) to verify if there was any 
significant difference in the segmentation performance results when using the different 
image modalities and fused images. Considering a level of significance of 0.01, the results 
show that statistically, there is no significant difference between the average IOU, 
accuracy, and F1score when the different image datasets are used as input of the CNN 
model. This preliminary result indicates that fused images, with the same field of view 
and resolution as the single-sensor image, can be used for the computation of cracks, 
internal voids, and spalling in concrete structures without any significant harm to the 
accuracy of the defect segmentation. The outcome is advantageous for the computer 
vision and analyst point of view, as the fused images can contain a higher number of 
defect classes than the singular images. Therefore, the use of fused images can save the 

Figure 1. Visual results of image processing techniques and multiclass damage detection on the multimodal images, where
red represents the predicted cracks and blue represents the predicted spallings in each case; the columns show thermal
images, visible images, segmentation results on visible images, visible and infrared fused images, and segmentation results
on fused images, respectively (left to right). The first row (a–e) shows examples of the original dataset; the second row
(f–j) shows examples of the improved dataset based on the Very Deep Convolutional Networks algorithm trained in visible
images; The third row (k–o) shows examples of the improved dataset based on the Very Deep Convolutional Networks
algorithm trained in thermal images; and the last row (p–t) shows examples of the dataset with the contrast enhanced by
image histogram equalization.

In a defect class analysis, the models yield rather similar results in segmentation for
processed multimodal and fused images from the same field of view. A hypothesis test
was conducted using a two-way analysis of variance (ANOVA) to verify if there was any
significant difference in the segmentation performance results when using the different
image modalities and fused images. Considering a level of significance of 0.01, the results
show that statistically, there is no significant difference between the average IOU, accuracy,
and F1score when the different image datasets are used as input of the CNN model. This
preliminary result indicates that fused images, with the same field of view and resolution
as the single-sensor image, can be used for the computation of cracks, internal voids, and
spalling in concrete structures without any significant harm to the accuracy of the defect
segmentation. The outcome is advantageous for the computer vision and analyst point of
view, as the fused images can contain a higher number of defect classes than the singular
images. Therefore, the use of fused images can save the time, effort, and resources spent
in the labeling and training of multimodal images, as they smartly use the combination
complementary information of multiple input sensors in one single image.

Future research could use a larger number of thermal, visible, and fused images
from other types of concrete structures or use diverse NDT sensors, as well as explore the
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use of automated labeling for one or multiclass damages in different images modalities.
Another possible area of future research would be to investigate the use of two multimodal
images as the input of the network, exploring the characteristics of feature detection in
each modality before the fusion and segmentation, as well as modifying the model to add
a deep feature extraction layer, for instance. In addition, the effect of using different fusion
algorithms on the performance of CNN could be investigated.

Regarding the data availability, the datasets, model, and codes that support the
findings of this study are available from the corresponding author upon reasonable request.

4. Conclusions

A comparative experimental study was performed to investigate crack, spalling, and
internal void segmentation in concrete structures using datasets of visible, thermal, and
fused images with the same resolution and point of view. The experiment was developed
using CNN and image processing techniques, which automatically identified concrete
damages in the multimodal and fused images from different concrete structures. The
contribution of this study is attributed to the (1) automatic defect detection improvement
based on the fusion of infrared and visible images due to higher information content, (2)
the possibility of defect segmentation improvement based on the application of simple
image processing techniques, such as image resolution improvement and image contrast
enhancement, (3) automated crack, spalling, and delamination segmentation with a multi-
class convolutional neural network, and (4) use in the growing field of computer vision
applied to concrete bridge inspection.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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