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Abstract: Reducing greenhouse gas (GHG) emissions through carbon capture and conversion to fuel
and other useful products is a focus of recent research. Among all fuels, CO2 to methanol stands out
for its efficiency and promise. To make the CO2-to-methanol (CTM) process sustainable and efficient,
it needs to be analyzed with respect to its thermodynamic potential. Conventionally, energy analysis
was used, but exergy analysis is an advanced tool used for this purpose. In this study, the Aspen
Plus-based CTM model was developed, and its exergy analysis was carried out. Physical exergy
data are taken from Aspen Plus V.11, while an interface between Aspen Plus and Excel was used to
calculate the exergy destruction, exergy efficiency, and the improvement potential of the process. All
three sections of the CTM model were compared and it was observed that the separation section has
the highest exergy destruction of 37,225.89 KW with an exergy efficiency and exergetic improvement
potential of 76.17% and 8870.75 KW, respectively.
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1. Introduction

Human-made carbon dioxide emissions have seen a dramatic rise over the past century,
primarily due to industrial processes. Reducing these CO2 emissions is essential because its
escalating emission has resulted in global warming, leading to adverse consequences like
rising temperatures, melting glaciers, abnormal climate patterns, and elevated sea levels,
potentially submerging coastlines and low-lying areas [1]. To tackle this issue, carbon
capture and storage (CCS) and carbon capture and utilization (CCU) are the two pathways
used, with CCU as the most promising one because solely capturing and storing CO2
emissions can be energy-intensive and costly (CCS) [2], but transforming CO2 into valuable
chemicals (CCU) or fuels like methanol offers a more sustainable and economically viable
approach. Methanol serves as a versatile platform chemical used in various industrial
processes, including the production of olefins, formaldehyde, acetic acid, dimethylether,
and methylamine [3]. By converting CO2 into methanol, a waste product is effectively
converted into a valuable resource, addressing both environmental and economic chal-
lenges. To enhance the thermodynamic efficiency of this process, exergy analysis can be
employed. Exergy analysis can help to make the process efficient as exergy analysis, follow-
ing the second law of thermodynamics, helps pinpoint inefficiencies in energy conversion
processes by identifying where and why they occur [4]. It quantifies the maximum work
possible from a reversible process when a system reaches equilibrium with its surroundings.
Applying exergy analysis leads to process improvements, ensuring the sustainable use
of limited natural resources and, consequently, the sustainability of various industries
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like cement [5], power generation [6], pulp and paper [7], steel [8], chemical [9,10], and
food [11]. In this particular study, the CO2-to-methanol (CTM) process exergy analysis
is carried out to pinpoint the inefficiency of the process so that they can be addressed to
optimize and make the process efficient. For the CTM process, Yang et al. [12] carried out
advanced exergy analysis using Graaf’s kinetic model and the Aspen Plus model with
multistage hydrogen compression, while in this study, Vanden Bussche’s kinetic model
with a different Aspen Plus model having multistage CO2 compression instead of hydrogen
was used [13].

2. Materials and Methods

In this section, a brief explanation of process description and exergy analysis will be
discussed.

2.1. Process Description

Aspen Plus software is used to develop a model for the CTM process. The CTM
process is divided into three sections. In the preheating section, the carbon dioxide is
compressed in four stages with intercooling. The compressed CO2 is combined with
compressed hydrogen and recycled gas. In the reaction section, this feed is reacted over
a Cu/ZnO/Al2O3 catalyst to synthesize methanol. In the separation section, the reac-
tor output is first cooled in heat exchangers, with heat integration to the distillation
feed. Then, untreated gases are separated and largely recycled. The liquid stream is
then depressurized and further purified in a distillation column to produce high purity
methanol product. Heat is exchanged between the reactor output and column feed. The
gaseous methanol product is then compressed, cooled, and sent to a flash tank to remove
residual gases, yielding the final liquified methanol product. Figure 1 shows the CTM
process flowsheet.
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Figure 1. Process flowsheet of CO2 hydrogenation to methanol [13].

2.2. Exergy Analysis Equations and Formulations

Exergy-based analysis integrates the principles of the first and second laws of thermo-
dynamics to assess the energy-saving possibilities of a system. It quantifies the maximum
useful work that can be extracted from a system, process, or substance when it is brought
into equilibrium with its surroundings [14]. Different formulas can be used to find the
exergy analysis and its performance indicators, as given in Table 1.
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Table 1. Summary of formulas used in this work.

Formulas for Exergy Analysis and Its Performance Indicators

Exph = m[(H − H0)− T0(S − S0)] Physical exergy at standard conditions

I = ∑ Exin − Exout
Irreversibility calculates the difference between exergy input

and output in a process or system

η = Exout
Exin

× 100
Exergy efficiency measures how closely a system approaches

ideal performance as a percentage

IP = (1 − η)(Exin − Exout)
Exergetic improvement potential calculates the reduction in

irreversibility achievable within a process

3. Results and Discussion

This section discusses the physical exergy analysis of the CTM model at 25 ◦C temper-
ature and 101.325 kPa pressure.

Table 2 displays the highest six and lowest six equipment in terms of exergy ef-
ficiency for the CO2 hydrogenation-to-methanol plant, along with their respective ex-
ergy destruction and exergetic improvement potential values. As only physical exergy
is considered and chemical exergy analysis is not part of this work, because of this, the
R-1* reactor has a negative exergy destruction, and its exergy efficiency exceeds 100%,
as mentioned in the reported literature [15]. DIV-1 and KO-1 have perfect exergy effi-
ciency with no exergy destruction, leaving no room for exergetic improvement poten-
tial as these are designed to carry out their functions without introducing energy losses
or inefficiencies.

Table 2. Equipment’s exergy destruction, efficiency, and improvement potential.

Equipment
Exergy

Destruction
(KW)

Exergy
Efficiency

(%)

Improvement
Potential

(KW)
Equipment

Exergy
Destruction

(KW)

Exergy
Efficiency

(%)

Improvement
Potential

(KW)

R-1* −4490.86600 102.96 132.92236 CP-1 457.97617 78.44 98.71681
DIV-1 0.00000 100.00 0.00000 HX-4 53,771.94971 71.86 15,130.63269
KO-1 0.00000 100.00 0.00000 DT-1 744.69335 70.86 217.00320
MIX-1 64.17148 99.72 0.17822 VLV-1 319.34698 44.47 177.33476
CP-6 650.55879 99.45 3.54918 VLV-2 231.36874 9.53 209.32192
HX-6 782.22825 99.35 5.07421 HX-7 12,029.94934 0.25 11,999.66660

MIX-1, CP-6, and HX-6 also have good exergy efficiency with values of 99.72%, 99.45%,
and 99.35%, respectively, leaving very minimum space for improvement, indicating their
ability to efficiently convert input energy into useful work.

HX-4 stands out with the highest exergy destruction at 53,771.95 KW, leading to the
highest improvement potential of 15,130.63 KW, despite its relatively good exergy efficiency
of 71.86%. HX-7 shows the lowest exergy efficiency of 0.25%, but has an exergy destruction
of 12,029.95 KW and exergetic improvement potential of up to 11,999.67 KW. The high
exergy destruction of these heat exchangers is because these are exposed to significant
temperature differences between process streams and because in this particular CTM model,
the heat exchanger is not optimally designed and inefficient heat transfer occurs, leading to
higher exergy destruction. Figure 2 shows the Grassmann diagram of all three sections of
the CTM process where the line’s width represents the quantity of exergy flow entering
and exiting each section.
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4. Conclusions

The exergy analysis conducted on the CO2 hydrogenation-to-methanol production
plant helps to provide a valuable insight into its thermodynamic performance. The analysis
mainly focused on physical exergy at standard conditions (25 ◦C and 101.325 kPa). It
was observed that the equipment with the lowest exergy efficiency exhibits the highest
exergetic improvement potential relative to exergy destruction. It was observed that the
heat exchanger HX-7 showed the lowest exergy efficiency of 0.25%, while compressor
KO-1 and DT-1 displayed perfect exergy efficiency of 100% due to its efficient isentropic
compression process. This analysis helps in identifying equipment that can be optimized
for improved thermodynamic performance. However, it is important to note that the
analysis did not consider the chemical exergy associated with CO2 hydrogenation reac-
tions. Therefore, a more comprehensive evaluation in the future should incorporate chem-
ical exergy to obtain a holistic understanding of the thermodynamic performance of the
entire process.
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