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Abstract: In recent years, deep reinforcement learning (DRL) has garnered substantial attention in the
context of enhancing resilience in power and energy systems. Resilience, characterized by the ability
to withstand, absorb, and quickly recover from natural disasters and human-induced disruptions,
has become paramount in ensuring the stability and dependability of critical infrastructure. This
comprehensive review delves into the latest advancements and applications of DRL in enhancing the
resilience of power and energy systems, highlighting significant contributions and key insights. The
exploration commences with a concise elucidation of the fundamental principles of DRL, highlighting
the intricate interplay among reinforcement learning (RL), deep learning, and the emergence of DRL.
Furthermore, it categorizes and describes various DRL algorithms, laying a robust foundation for
comprehending the applicability of DRL. The linkage between DRL and power system resilience is
forged through a systematic classification of DRL applications into five pivotal dimensions: dynamic
response, recovery and restoration, energy management and control, communications and cybersecu-
rity, and resilience planning and metrics development. This structured categorization facilitates a
methodical exploration of how DRL methodologies can effectively tackle critical challenges within
the domain of power and energy system resilience. The review meticulously examines the inherent
challenges and limitations entailed in integrating DRL into power and energy system resilience,
shedding light on practical challenges and potential pitfalls. Additionally, it offers insights into
promising avenues for future research, with the aim of inspiring innovative solutions and further
progress in this vital domain.

Keywords: communications and cybersecurity; deep learning; deep reinforcement learning; dynamic
response; energy management and control; power and energy system resilience; resilience review

1. Introduction

In recent decades, the frequency of extreme events, including natural disasters such as
droughts, heatwaves, floods, hurricanes, wildfires, earthquakes, and winter storms, as well
as man-made disruptions like cyber-attacks, has notably increased [1]. Research conducted
by the U.S. Energy Information Administration has confirmed a significant rise in the occur-
rence of weather-related extreme events in the United States between 1992 and 2012 [2,3].
Figure 1 provides a visual representation of the notable increase in weather-related extreme
events in the United States, characterized by economic damages exceeding one billion
dollars. The data, sourced from the National Oceanic and Atmospheric Administration [4],
spans the years from 1980 to 2022. Notably, the year 2022 witnessed the occurrence of
18 severe weather-related disasters within the United States, each resulting in economic
losses exceeding the billion-dollar threshold. Extreme events are impacting regions across
the globe, not limited to the United States. Examples of such events include a severe storm
in Australia in 2016, a windstorm in Canada in 2015, and the 2016 tornado of Jiangsu
Province in China [5]. These events have had a devastating impact on critical power and
energy system components, resulting in extensive and prolonged power disruptions. The

Electricity 2023, 4, 336–380. https://doi.org/10.3390/electricity4040020 https://www.mdpi.com/journal/electricity

https://doi.org/10.3390/electricity4040020
https://doi.org/10.3390/electricity4040020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electricity
https://www.mdpi.com
https://orcid.org/0000-0003-0571-5825
https://doi.org/10.3390/electricity4040020
https://www.mdpi.com/journal/electricity
https://www.mdpi.com/article/10.3390/electricity4040020?type=check_update&version=1


Electricity 2023, 4 337

significant increase in the frequency and economic impact of extreme weather events, as
depicted in Figure 1, underscores the pressing need for resilient power and energy systems.

The growing influence of global warming, exemplified by the increasing prevalence
of hurricanes and other natural disasters, has heightened the importance of power and
energy system resilience. While power infrastructure has historically focused on reliability,
aiming to withstand known threats and ensure uninterrupted power supply, the rise
in extreme weather events presents a significant challenge [6]. Between 2003 and 2012,
approximately 679 large-scale power outages in the United States were attributed to extreme
weather, each affecting a minimum of 50,000 customers and resulting in an annual economic
loss exceeding USD 18 billion [3]. These recurring and disruptive events underscore the
limitations of current power facilities in effectively mitigating their impact [7]. While the
likelihood of extreme natural events may be relatively low, the severity of their impact is
indisputable. Consequently, there is an urgent need to enhance power and energy systems’
resilience to withstand and recover from such events.
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Figure 1. Occurrence of climate disasters in the United States from 1980 to 2022 [8].

To enhance the reliability and resilience of power and energy systems, various an-
alytical and population-based heuristic approaches employing dynamic modeling and
optimization techniques have been used in the literature. For instance, previous work [9]
has utilized dynamic modeling and classical optimization to address threats like wildfires
to power distribution networks, focusing on resilience with renewable energy resources
and evaluated on a 33-node distribution system. Another study [10] analyzed microgrid op-
eration using a multicarrier energy hub, considering various energy carriers and resources
to reduce environmental impact and operational costs while enhancing resilience and flexi-
bility. Similarly, methodologies based on graph theory and cooperative game theory [11,12]
were introduced to determine optimal locations and sizes of movable energy resources
for power distribution system resilience. Additionally, an optimal energy storage sizing
method [13] aimed to improve reliability and resilience in networked microgrids through
bi-level optimization, showcasing the benefits of microgrid interconnection in enhancing
both reliability and resilience during grid outages compared to non-networked microgrids.
Furthermore, addressing the impact of unfavorable weather and natural disasters, an
article [14] emphasized evaluating network resilience and proposed a cost-effective method
involving tie-lines for power restoration, outperforming other optimization techniques.
In [15], a labor-economics-based framework, employing contract theory, was introduced to
model interactions in modern smart grid systems, focusing on the microgrid operator and
prosumers, with the potential to establish optimal personalized contracts for energy selling
and purchasing, thereby contributing to resilient energy management and control in smart
grids while satisfying the involved parties’ profit and requirements. The evolutionary
swarm algorithm (ESA) [16] was introduced for reliability assessment, offering advan-
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tages in accuracy, computational efficiency, and precision over other heuristic approaches.
However, these analytical and heuristic techniques have limitations, including modeling
inaccuracies due to data scarcity and scalability challenges [17]. Additionally, these meth-
ods require repeated calculations when applied to new scenarios [18]. To address these
shortcomings, recent advances have introduced deep reinforcement learning (DRL)-based
approaches for enhancing the resilience of power and energy systems.

Within power and energy systems, DRL, a combination of reinforcement learning (RL)
and deep learning, has emerged as an attractive alternative for conventional analytical
and heuristic methods, offering solutions to their inherent shortcomings. Similar to other
learning-driven methodologies, DRL makes use of past experiences to inform decision
making. In [19], a real-time dynamic optimal energy management system for microgrids
utilized DRL, specifically the proximal policy optimization (PPO) technique, to enhance effi-
ciency and stability while integrating renewable energy sources. This approach showcased
superior computational accuracy and efficiency compared to conventional mathematical
programming or heuristic strategies. Additionally, in [20], a new energy management
approach employed DRL within a Markov decision process (MDP) framework to minimize
daily operating costs without the need for explicit uncertainty prediction, highlighting its
effectiveness with real power-grid data. Furthermore, an innovative DRL-based Volt-VAR
control and optimization method was introduced in [21], showcasing its effectiveness in
improving voltage profiles, reducing power losses, and optimizing operational costs on
various test cases. References [22,23] implemented Volt-VAR optimization in distribution
grids with high DER penetration and volt-VAR control in active distribution systems, re-
spectively, both leveraging DRL for efficient reactive power management. A DRL-based
trusted collaborative computing has been proposed and analyzed in [24] for intelligent
vehicle networks. A federated DRL-based approach for wind power forecasting has been
proposed in [25], which is supposed to handle data sharing and privacy concerns. Beyond
these aforementioned DRL applications, there is a growing landscape of wide-area applica-
tions in enhancing power system resilience, making this review paper a comprehensive
exploration of DRL’s increasing significance in this field.

Numerous review papers exist in the fields of power and energy systems, resilience
improvements, and DRL. The review papers [5,26] explored a variety of topics, from
conventional power system resilience methods to the metrics and assessment techniques
for power system resilience. The review paper [27] comprehensively discussed machine
learning strategies and their applications in conserving energy and managing it effectively,
emphasizing their efficiency in addressing various decision and management challenges.
Reference [28] discussed the transformation of power systems into cyber-physical systems
(CPSs) and the unique resilience challenges posed by CPSs. The paper also highlighted
the differences between conventional power systems and cyber-physical power systems
(CPPSs), delving further into the realm of cyber-physical disturbances, resilience techniques
for CPPSs confronting natural hazards and cyber threats, and the intriguing dimension
of leveraging social behaviors to enhance CPPS resilience. Additionally, the review pa-
per [29] scrutinized RL techniques in the context of power and energy systems, covering
RL concepts, algorithmic diversity, and real-world applications, while considering the
future course of RL within these domains. Reference [30] explored the utility of RL in
navigating the intricacies of energy systems, offering an insightful classification of RL
applications within the energy landscape and highlighting its potential to tackle rising
system complexities, even as it struggles with utilization and benchmarking challenges.
Lastly, the review paper [31] unraveled the expansive domain of DRL in power systems,
highlighting foundational concepts, modeling intricacies, algorithmic diversity, and con-
temporary advancements. However, amid this wealth of knowledge, a significant gap
exists: the application of DRL to enhance resilience in power and energy systems. Notably,
previous works have primarily focused on showcasing the capabilities and applications of
DRL in these domains, often overlooking the need to provide a comprehensive overview
of the existing limitations, challenges, and future avenues. Given the increasing reliance
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on DRL for resilience enhancement within these domains, this review paper emerges as a
pivotal and missing link, illuminating the transformative potential of DRL in steering the
trajectory of resilient power and energy systems.

In this article, an overview of the current progress in applying DRL to enhance the
resilience of power and energy systems is presented. The foundations of different categories
of DRL methods, including value-based, policy-based, and actor–critic methods, are laid
out to aid in the understanding of their applications. Subsequently, an exploration of DRL
applications within various domains of resilient power and energy systems, including
dynamic response, recovery and restoration, energy management and control, communica-
tions and cybersecurity, and resilience planning and metrics development, is undertaken,
with a focus on outlining the detailed methodologies and contributions of these studies.
This in-depth analysis of DRL applications is followed by a discussion of the challenges
and limitations associated with incorporating DRL into resilient power and energy systems.
These revelations shed light on the practical limitations and possible consequences that
researchers and practitioners need to take into account. Finally, the future is examined and
a roadmap of potential research possibilities in this area is provided. Novel discoveries and
solutions are eagerly anticipated in this field of research.

The remainder of this review article is organized as follows: Section 2 provides an in-
troduction to DRL and its various categories. Section 3 offers a detailed exploration of DRL
applications across various dimensions of resilient power and energy systems. Section 4
examines the existing challenges, limitations, and opportunities for future research in DRL
applications for power and energy system resilience. Finally, Section 5 summarizes the key
findings and highlights the transformative potential of DRL in ensuring the resilience of
critical power and energy infrastructure.

2. Deep Reinforcement Learning Foundations

In the investigation of DRL and its crucial role in enhancing the resilience of the power
and energy systems, deep reinforcement learning foundations are regarded as fundamental.
They are indispensable in providing a solid foundation before setting out on this adventure
by exploring the fundamental ideas that support DRL and its variety of algorithms. This
section will outline the fundamentals of RL, the revolutionary potential of deep learning,
and the powerful synergy that develops as these two fields converge to create DRL. A
foundation will also be laid for a thorough understanding of different DRL algorithms’
usefulness in the context of power and energy system resilience.

2.1. Reinforcement Learning (RL)

RL is characterized as a notable and dynamic machine learning paradigm in which
an agent interacts continuously with its designated environment. The typical RL frame-
work, depicted in Figure 2, consists of two main components: an artificial intelligence (AI)
agent and the environment, engaging in reciprocal interactions until the agent achieves
a learned state. In this context, it is typical to represent the environment as a Markov
decision process (MDP), a common framework employed by numerous RL algorithms
in this field by leveraging dynamic programming, as discussed in recent work by Xiang
et al. [32]. A fundamental differentiator between classical dynamic programming tech-
niques and RL algorithms is that the latter do not require precise knowledge of a mathemat-
ical model of the MDP. Instead, they focus on addressing large MDPs, where exact methods
become impractical.

Within the realm of RL, the agent assumes the role of an autonomous decision-maker,
persistently seeking choices that maximize a cumulative reward signal over an extended
timeframe while navigating the intricacies of the environment [33]. This iterative process
unfolds over discrete time steps, showcasing the agent’s decision-making capabilities. At
each time step, the agent observes the current state of the environment, assimilating vital
information that guides its future actions. Empowered with this knowledge, the agent
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makes deliberate decisions that impact not only its immediate actions but also have the
potential to influence subsequent states and rewards within the environment.

Fundamental to the entire RL framework is the core objective of establishing optimal
policies, serving as clearly defined action-selection strategies. These optimal policies are
central in the RL journey, directing the agent towards decisions that hold the promise of
the highest expected cumulative reward [34]. The agent navigates its course through the
environment using this expected cumulative reward, which is frequently expressed as the
expected return. In RL, learning is an ongoing process of exploration and improvement
that uses a trial-and-error approach. The agent’s actions are carefully chosen to best
serve its long-term goals and are not random. Through a continuous feedback loop with
the environment, this strategic decision making continuously evolves. The environment
provides feedback to the agent after each action in the form of rewards or penalties. These
evaluative indications give the agent essential information about the effects of its earlier
actions, allowing it to gradually modify and improve its decision-making approach over
time [35]. The underlying framework on which the RL paradigm is built is this complex
interaction between the agent, environment, and the reward signals.

Figure 2. Typical framework of reinforcement learning.

2.2. Deep Learning

Deep learning, a subset of machine learning, makes use of deep neural networks,
which are artificial neural networks with several layers. In order to provide output pre-
dictions, these networks methodically process input data through a series of complex
transformations, forming an interconnected web of layers made up of neurons. The field of
deep learning has produced amazing results in a variety of fields, including speech recogni-
tion, computer vision, natural language processing, and power systems. A transformative
era and a significant advancement in the state of the art in a variety of tasks, including
object detection, speech recognition, language translation, and power systems modeling,
have been brought in by the emergence of deep learning [36].

One of the most compelling attributes of deep learning lies in its innate ability to auto-
matically unearth concise, low-dimensional representations, commonly referred to as features,
from high-dimensional datasets—ranging from images to text and audio. By incorporating
inductive biases into the architectural design of neural networks, particularly through the
concept of hierarchical representations, practitioners in the realm of machine learning have
made significant strides in combating the notorious curse of dimensionality [37].

Furthermore, the impact of deep learning extends its reach into the domain of RL,
catalyzing a distinct field known as DRL [38]. This fusion of deep learning algorithms
with RL techniques has redefined the landscape of RL, unlocking new avenues for solv-
ing complex decision-making problems with unprecedented capabilities. The symbiotic
relationship between deep learning and RL has ushered in a realm of possibilities for
enhancing power and energy system resilience, where the exploitation of intricate patterns
and representations in data holds substantial promise for addressing intricate challenges
within the domain.
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2.3. Deep Reinforcement Learning (DRL)

As outlined earlier, DRL marks the convergence of two influential domains: RL and
deep learning. Within the realm of DRL, the utilization of neural networks, often extending
into deep neural networks, plays a pivotal role in approximating the agent’s policy or value
functions [39]. This fusion empowers DRL with the ability to tackle complex decision-
making tasks within high-dimensional state spaces, extending its applicability to a wide
array of intricate challenges.

The foundation of deep learning predominantly rests on the capabilities of multilayer
neural networks, where neurons serve as the fundamental building blocks [40]. The percep-
tron [41], one of the earliest neural network prototypes, initially surfaced as a single-layer
neural network devoid of hidden layers. Its competence, however, was limited to straight-
forward linear classification tasks, rendering it incapable of resolving complex problems
such as the XOR problem [42]. The ascent of multilayer perceptrons, characterized by an in-
creased number of neurons and layers, brought forth remarkable nonlinear approximation
capabilities. Hornik et al. [43] definitively established that multilayer perceptrons could
approximate any nonlinear function, further solidifying the potential of deep learning in
shaping the landscape of machine learning.

Two major success stories have emerged in the developing field of DRL, each of which
marks a paradigm shift. The first, which served as the catalyst for the DRL revolution, was
the creation of an algorithm capable of learning a wide variety of Atari 2600 video games
at a superhuman level, straight from the raw image pixels [44]. By demonstrating that
RL agents may be trained successfully using only a reward signal, even when faced with
unprocessed, high-dimensional observations, this innovation resolved the long-standing
instability challenges related to function approximation techniques in RL.

The development of AlphaGo, a hybrid DRL system that defeated a human world
champion in the challenging game of Go, was the second significant accomplishment [45].
This success is comparable to IBM’s victory over Deep Blue in the chess tournament two
decades earlier [46]. Contrary to conventional rule-based chess systems, AlphaGo utilized
the strength of neural networks trained using both supervised learning and RL, along with a
standard heuristic search approach [38]. These outstanding accomplishments demonstrated
DRL’s excellent capacity for policy learning and optimization, enabling it to broaden its
scope to address difficult real-world challenges for power and energy system resilience.

In the context of power and energy systems, a typical framework for training a
DRL agent is illustrated in Figure 3. The DRL agent typically comprises multilayer neural
networks, with an internal mechanism for continually updating the neural network weights.
The environment generally includes a power system model and a reward generator, as
depicted in the figure. The reward generator may employ system data and states obtained
from the power system model to incentivize or penalize the DRL agent using rewards
or penalties. The DRL agent takes the state from the power system model and provides
actions to the power system model, in return for which it receives rewards or penalties.
The figure represents a generic training framework for a DRL agent, and specific cases
may involve some variations. It is important to note that during the implementation of the
trained model, an actual power system may be used instead of a power system model.

State

System

data

DRL AgentDRL Agent

Reward Generator

Power System Model

State

Action

Reward

Environment

Figure 3. DRL training framework.
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2.4. DRL Methods

In the realm of DRL, methodologies can be broadly classified into three primary
categories: value-based, policy-based, and actor–critic methods, as categorized in [32] and
as shown in Figure 4. Each of these categories will be briefly introduced in this subsection.

Value-based

Methods

Policy-based

Methods

Actor-Critic 

Methods

Figure 4. Different categories of DRL methods.

2.4.1. Value-Based Methods

Value-based DRL is regarded as a fundamental class of DRL methodologies, where
the emphasis is placed on the representation of the value function and the determination
of the optimal value function [39]. Within this category, the core objective is to capture
and model the value function, a pivotal component that significantly influences the agent’s
decision-making processes.

The value function in value-based DRL serves as a critical guiding force for the agent.
It provides insights into the expected cumulative rewards associated with taking various
actions in specific states, aiding the agent in making informed choices. This methodological
approach is characterized by its ability to approximate and optimize the value function,
enabling the agent to navigate complex decision spaces effectively. Table 1 outlines merits
and drawbacks of two popular value-based methods, namely, Q-learning and SARSA.
These methods are discussed in detail below.

Table 1. Merits and drawbacks of various value-based methods.

Algorithm/Method Merits Drawbacks

Q-Learning

• Estimates the quality of actions through Q-values.
• Aims to find optimal Q-values to maximize cumu-

lative rewards.
• Adaptable and efficient due to its off-policy nature.
• Converges to an optimal policy that maximizes cu-

mulative rewards.

• High variance and might not converge
efficiently.

• Often requires long training periods to esti-
mate Q-values accurately.

• Sensitive to the choice of hyperparameters,
like the learning rate.

SARSA

• Employs an on-policy methodology to update Q-
values.

• Suitable for learning and improving the policy used
during training.

• Allows you to enhance the policy being used to
interact with the environment.

• Might not find the optimal policy but in-
stead optimizes the policy in use.

• Could have slower convergence compared
to Q-learning.

• The on-policy nature makes it less efficient
in some situations.

(a) Q-learning: Q-learning is a classic RL that focuses on estimating the quality, repre-
sented by Q-values, of taking a particular action in a given state within an environment [47].
Finding optimal Q-values is the main goal of Q-learning since they form an essential basis
for directing the choice of actions in a way that maximizes cumulative rewards over time.

The Q-values for each state–action pair are updated iteratively by this algorithm
depending on the knowledge gained from interacting with the environment. The predicted
cumulative rewards that an agent can obtain by beginning in a particular state, executing
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a particular action, and then implementing the best course of action are represented by
Q-values. The strategy that results in the highest potential expected rewards is referred to
as the optimal policy in this context.

By taking into account the immediate benefits gained from taking actions and the
highest Q-value possible in the subsequent state, Q-learning iteratively improves its esti-
mates of Q-values during the learning process. It accomplishes this utilizing a formula that
strikes a balance between the knowledge that is currently known and the new information
that is yet to be learned.

Q-learning is characterized by its off-policy nature, which allows it to learn from
actions resulting from any policy, even if it randomly explores the environment. This
characteristic adds to its adaptability and efficiency in a variety of applications.

The Q-value update function equation for Q-learning, also known as the Bellman
equation, is typically expressed as follows [34]:

Q(s, a)← Q(s, a) + α ·
[
r + γ ·max

a
Q(s′, a)−Q(s, a)

]
(1)

where Q(s, a) represents the Q-value for a particular state–action pair (s, a), where s is the
current state, and a is the action taken; α is the learning rate, which controls the extent
to which the new information obtained from the update affects the Q-value; r stands
for the immediate reward received after taking action a in state s; γ is the discount factor,
representing how much importance is given to future rewards, which has a value between 0
and 1, with higher values indicating a greater emphasis on long-term rewards; s′ represents
the resulting state after taking action a in state s; and maxa Q(s′, a) represents the maximum
Q-value for all possible actions a in the new state s′, which reflects the agent’s estimate of
the highest cumulative reward achievable from the new state onward.

The fundamental component of Q-learning is the update Equation (1), which enables
the Q-values to repeatedly interact with the environment and iteratively converge toward
their optimal values. By revising its Q-values in response to observed rewards and antic-
ipated rewards from future states, the agent learns to make better decisions. Q-learning
eventually reaches an optimal policy that optimizes the anticipated cumulative rewards.

(b) SARSA: An on-policy reinforcement learning technique referred to as SARSA, or
“state–action–reward–state–action”, shares similarities with Q-learning. It differs from Q-
learning, though, in that it adopts an on-policy methodology. When updating the Q-values
for a certain state–action combination, SARSA chooses a new action based on the existing
policy and then updates the Q-values using the reward of the new action and the state
that results from it [48]. In contrast, regardless of the policy being followed, Q-learning
chooses the action with the highest anticipated reward for the subsequent state to update
its Q-values. SARSA is ideally suited for situations where you wish to learn and enhance
the policy being used to interact with the environment during training. This is because it
has an on-policy capability.

The Q-value function update equation for SARSA is as follows [34]:

Q(s, a)← Q(s, a) + α ·
[
r + γ ·Q(s′, a′)−Q(s, a)

]
(2)

where Q(s, a) represents the Q-value for the current state–action pair (s, a); α is the learning
rate, controlling the step size of the update; r is the immediate reward received after taking
action a in state s; γ is the discount factor, determining the importance of future rewards;
Q(s′, a′) is the Q-value for the next state–action pair (s′, a′) after taking action a in state s.

By taking into account the immediate reward, the anticipated future rewards, and
the learning rate, the updated Equation (2) determines the new Q-value for the current
state–action combination. This reflects the SARSA algorithm’s on-policy nature, as it uses
the same policy to select the action a′ in the next state s′ for the update.



Electricity 2023, 4 344

2.4.2. Policy-Based Methods

A policy-based method is an approach to RL/DRL where the agent learns a policy
that directly maps states to actions. Unlike value-based DRL methods, which estimate the
value of being in a particular state or taking a specific action, policy-based methods aim to
find the optimal policy itself, which is a strategy for selecting actions in different states to
maximize the expected cumulative reward. Table 2 outlines the merits and drawbacks of
some popular policy-based methods. These methods are discussed in detail below.

Table 2. Merits and drawbacks of various policy-based methods.

Algorithm/Method Merits Drawbacks

Vanilla Policy
Gradient (VPG)

• Focuses on maximizing expected cumulative rewards.
• Adaptable due to its relative advantage and policy up-

dates.
• Theoretically sound and widely applicable.
• Can handle high-dimensional action spaces.

• High variance in gradients, which can
lead to slow convergence.

• Requires careful tuning of hyperparam-
eters like learning rates.

• Limited sample efficiency in some envi-
ronments.

Trust Region Policy
Optimization

(TRPO)

• Maintains policy consistency and prevents abrupt
changes.

• Uses a trust region constraint for safe policy updates.
• Effective in continuous action spaces.
• Stabilizes learning and avoids policy collapse.

• Computational demands due to solving
constrained optimization problems.

• May require complex optimization tech-
niques (e.g., conjugate gradient).

• Less straightforward to implement com-
pared to simpler algorithms.

Proximal Policy
Optimization

(PPO)

• Provides a stable and sample-efficient alternative to
TRPO.

• Uses a clipped objective function to prevent policy di-
vergence.

• Relatively easy to implement and scale to various envi-
ronments.

• Suitable for both discrete and continuous action spaces.

• Can converge to sub-optimal solutions
due to the clipping.

• Requires careful tuning of hyperparam-
eters, including the clipping range.

• Might need a large number of samples
for complex tasks.

(a) Vanilla policy gradient (VPG): The VPG algorithm is an RL method used to optimize
policies in order to maximize the expected cumulative reward [48]. It focuses on compre-
hending the relative advantage of performing a particular action in a particular state versus
choosing an action at random under the current policy. This relative advantage is captured
by the advantage function, denoted as Aπ(s, a), and is defined as the difference between
the action-value function Qπ(s, a) and the state-value function Vπ(s), as shown below [48]:

Aπ(s, a) = Qπ(s, a)−Vπ(s) (3)

where Aπ(s, a) is the advantage of taking action a in state s under policy π; Qπ(s, a) is the
action-value function, representing the expected cumulative reward of taking action a in
state s and following policy π thereafter; Vπ(s) is the state-value function, representing the
expected cumulative reward when starting in state s and following policy π thereafter.

The VPG algorithm aims to find the policy parameters θ that maximize the expected
return. This is accomplished through policy adjustments that increase the expected return.
The following equation demonstrates how to calculate the policy gradient as the predicted
value of the gradient of the policy with regard to its parameters, weighted by the advantage
function [48]:

∇J(πθ) = Eτ∼πθ

[
T

∑
t=0
∇θ log πθ(at|st)Aπ(st, at)

]
(4)

where ∇J(πθ) is the policy gradient, representing the direction in which policy parameters
should be updated; τ represents a trajectory generated by the policy πθ , consisting of states
st and actions at for each time step t; ∇θ log πθ(at|st) is the gradient of the log-probability
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of selecting action at in state st with respect to the policy parameters θ; and Aπ(st, at) is the
advantage of taking action at in state st under policy πθ .

The policy parameters θ are updated iteratively using this policy gradient, typically
through gradient ascent, to improve the policy’s performance over time. The VPG algo-
rithm is one of the foundational methods in policy gradient RL, with variations like the
REINFORCE algorithm that build upon this concept [49].

(b) Trust region policy optimization (TRPO): TRPO is a policy gradient algorithm intro-
duced by Schulman et al. [50] in 2015. TRPO is renowned for its role in preserving the
consistency of agent training for DRL. Its main goal is to stop excessive policy modifications
that could otherwise cause performance to collapse. TRPO runs in a predetermined trust
region, which denotes a particular parameter space where updating policies is thought to
be safe. Its main goal is to find policy changes that uphold this trust region constraint while
maximizing predicted rewards. In order to accomplish this, TRPO uses an iterative strategy
that includes local approximations and policy adjustments made in accordance with the
boundaries of the trust region. TRPO adds a penalty term based on the Kullback–Leibler
(KL) divergence [51] between the new and old policies to make sure that the updated policy
continues to stay close to the previous one.

The core idea of TRPO can be summarized in the following optimization problem
with a maximization-type objective function (5), given below:

J(π) = Es,a∼π

[
π(a|s)

πold(a|s) Aπold(s, a)
]

(5)

where J(π) represents the expected return under the new policy π; s and a are states
and actions sampled from the policy; Aπold(s, a) is the advantage function computed with
respect to the old policy πold; and πold(a|s) is the probability of taking action a in state s
according to the old policy.

The optimization problem is subject to a KL-divergence constraint given by (6), which
ensures that the new policy is not too different from the old policy:

Es∼πold [DKL(πold(·|s) ||π(·|s))] ≤ δ (6)

where DKL is the KL divergence between the old and new policies; and δ is the trust region
radius, which limits how far the new policy can deviate from the old policy.

TRPO then solves this constrained optimization problem using various optimization
techniques, such as conjugate gradient or natural gradient methods, to update the policy in
a way that maximizes expected returns while respecting the trust region constraint. This
ensures that policy updates are stable and do not lead to drastic performance degradation.

(c) Proximal policy optimization (PPO): PPO is an RL algorithm that was developed as a
more straightforward substitute for TRPO. In terms of stability and sample effectiveness,
PPO and TRPO are comparable, although PPO is easier to execute. Unlike TRPO, PPO uses
a particular clipping method in its goal function rather than a KL-divergence restriction to
make sure that the new policy stays close to the old policy [52].

The key features of PPO include its simplicity and improved sample efficiency, making
it a popular choice for training RL agents. The objective function in PPO is defined
as follows:

L(θ) = E
[
min

(
r(θ)Â, clip(r(θ), 1− ε, 1 + ε)Â

)]
(7)

where L(θ) represents the objective function to be maximized with respect to the policy’s
parameters θ. The term r(θ) is the ratio of probabilities of taking actions under the new
policy πθ to the old policy πθold

:

r(θ) =
πθ(a|s)

πθold
(a|s) (8)

where πθ(a|s) is the probability of taking action a in state s under the new policy; and
πθold

(a|s) is the probability of taking action a in state s under the old policy.
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The term Â represents the advantage function, which estimates the advantage of
taking action a in state s under the current policy:

Â = Q(s, a)−V(s) (9)

where Q(s, a) is the state-action value function (Q-function), representing the expected
return of taking action a in state s; and V(s) is the state-value function, representing the
expected return of being in state s under the current policy.

The clip function is used to clip the value of r(θ) within the range [1− ε, 1 + ε], where
ε is a hyperparameter that controls the clipping range. Clipping helps to prevent the policy
update from moving too far from the old policy, ensuring more stable updates.

Equation (7) illustrates how the objective function seeks to maximize the expected
value of the minimum between two terms. The terms are the product of the advantage
estimate and r(θ), and the clipped form of the same product. This objective promotes policy
revisions that enhance performance without significantly deviating from the previous policy.

To maximize the objective function and adjust the policy parameters, PPO often uses
stochastic gradient ascent techniques like Adam or RMSProp. PPO is a popular choice
for RL tasks because it produces consistent and effective policy updates by iteratively
optimizing the policy using this clipped objective function.

2.4.3. Actor–Critic Methods

Actor–critic is a popular RL method that combines aspects of both value-based and
policy-based RL approaches [53]. In the actor–critic framework, an RL agent consists of
two primary components: actor and critic. The actor is responsible for selecting actions
in the environment. In regard to a particular state, it learns a policy that specifies the
probability distribution over possible actions. The actor’s job is to investigate and choose
the best course of action to maximize anticipated rewards. The critic, however, assesses the
actor’s behavior. It gains knowledge of the value function, which calculates the potential
returns from a given state or state–action pair. By evaluating the effectiveness of the actor’s
performance, the critic offers the actor feedback.

Utilizing the value judgments of the critic to inform and enhance the actor’s policy
is the core idea behind actor–critic methods. Gradient ascent is a common technique for
accomplishing this, in which the actor modifies its policy in a way that raises the expected
return as determined by the critic.

The actor–critic architecture has several advantages, some of which are listed below:

• Advantage estimation: Actor–critic methods are able to estimate the advantage of
performing a specific action in a specific state by adding the critic’s value function.
The actor can concentrate on activities that are more likely to result in greater rewards
with the aid of this advantage estimate.

• Stability: Actor–critic methods often exhibit more stable learning compared to pure
policy-based or value-based methods. The critic’s value estimates provide a stable
baseline for updating the actor’s policy.

• Sample efficiency: Actor–critic methods can be more sample-efficient than pure policy-
based methods because they make use of value estimates to guide learning.

Actor–critic algorithms come in various forms and can be implemented using different
techniques, including deep neural networks. Deep deterministic policy gradient (DDPG),
twin delayed deep deterministic policy gradient (TD3), and soft actor–critic (SAC) are
popular actor–critic algorithms that have achieved success in both discrete and continuous
action spaces. Table 3 outlines the merits and drawbacks of these methods. The details of
these methods are discussed below.
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Table 3. Merits and drawbacks of various actor–critic methods.

Algorithm/Method Merits Drawbacks

Deep
Deterministic

Policy Gradient
(DDPG)

• Handles continuous action spaces effectively.
• Combines actor and critic networks for policy learning.
• Uses target networks for training stability.
• Successfully applied in robotic control tasks.

• Requires careful hyperparameter tuning.
• Sensitive to the choice of neural network

architectures.
• Can have high sample complexity in

some scenarios.

Twin Delayed
Deep

Deterministic
Policy Gradients

(TD3)

• Addresses Q-value overestimation issues.
• Improves training stability with twin critics.
• Uses a “twin delay” approach for policy updates.
• Reduces overfitting and enhances reliability.

• Increased computational complexity due
to twin critics.

• Complexity in maintaining the twin de-
lay mechanism.

• Sensitivity to hyperparameter choices.

Soft Actor–Critic
(SAC)

• Handles continuous action spaces with stochastic
policies.

• Promotes exploration through entropy regularization.
• Achieves remarkable success in various RL tasks.
• Efficiently combines actor and critic networks.

• Complexity in optimizing the tempera-
ture parameter.

• Requires significant computational re-
sources.

• Tuning of hyperparameters, especially
entropy-related ones.

(a) Deep deterministic policy gradient (DDPG): DDPG is an RL algorithm designed for
solving tasks with continuous action spaces [54]. By extending the actor–critic design to
deep neural networks, it makes it possible to simultaneously learn a policy (the actor) and
a value function (the critic). A neural network acts as the actor, taking the current state as
input and generating a continuous action. It gains knowledge of a deterministic strategy
that directly links states and actions. In other words, it calculates the best course of action
in a particular situation. As in conventional actor–critic systems, the critic, on the other
hand, is a different neural network that accepts a state–action pair as input and calculates
the expected cumulative reward (Q-value) linked to performing that action in the given
state. The critic’s job is to offer feedback on the quality of actions chosen by the actor.

The critic network is trained to minimize the mean squared error (MSE) between its
predicted Q-values and the target Q-values. The target Q-values are computed using the
Bellman equation and a target network to stabilize training:

L(θcrc) = E[(Q(s, a|θcrc)− (r + γQ(s′, µ(s′|θtgt_act)|θtgt_crc))
2] (10)

where Q(s, a|θcrc) is the Q-value predicted by the critic network; r is the immediate reward
received after taking action a in state s; γ is the discount factor; and Q(s′, µ(s′|θtgt_act)|θtgt_crc)
is the target Q-value estimated using the target actor network to select the next action.

The actor network is updated based on the deterministic policy gradient. The actor
aims to maximize the expected cumulative reward with respect to its parameters:

∇θact J ≈ E[∇aQ(s, a|θcrc)|s=st ,a=µ(st |θact)∇θact µ(s|θact)|s=st ] (11)

where θact are the actor’s parameters; θcrc are the critic’s parameters; J is the expected
cumulative reward; µ(s|θact) is the actor’s policy (action) in state s; and Q(s, a|θcrc) is the
Q-value predicted by the critic network.

To stabilize training, DDPG uses target networks (target actor and target critic). To
provide target Q-values and target actions, these target networks are soft-copied from the
main networks on a regular basis. A broad variety of robotic control and continuous control
problems in RL have been successfully implemented using DDPG, which is renowned
for its capacity to handle continuous action spaces. It is a successful method for learning
complex control policies because it strikes a balance between exploration and exploitation
in continuous action domains.

(b) Twin delayed deep deterministic policy gradients (TD3): TD3 [55] is an advanced RL
algorithm that builds upon the foundation of the DDPG algorithm. TD3 was developed
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to address some of the key challenges associated with training DRL agents, particularly
in tasks with continuous action spaces. The critic network’s tendency to overestimate Q-
values in DDPG and other comparable algorithms is a key problem that can cause training
instability and poor performance. By using twin critics—basically, two distinct Q-value
estimation networks—TD3 tackles this problem. It takes the minimum of the Q-values
provided by these twin critics as the target value during the learning process. This helps in
reducing the overestimation bias and leads to more accurate value estimates.

The addition of twin delays for updating the actor (policy) and target networks is
another significant aspect of TD3. TD3 updates the actor network less frequently, typically
after every two updates to the critic network, in contrast to conventional algorithms that
update both the actor and critic networks simultaneously. This “twin delay” approach
improves training stability and reduces overfitting problems, making TD3 more reliable
in real-world applications. During the learning process, TD3 also adds noise to the target
action and target policy. By regularizing the learning process, this noise injection makes it
harder for the agent’s policy to take advantage of Q-value estimation errors. Overall, TD3’s
advances work together to make DRL training more efficient and reliable, especially in
continuous action space settings where accurate action selection is essential.

(c) Soft actor–critic (SAC): SAC [56] is an advanced RL algorithm designed for tasks
with continuous action spaces. In SAC, the actor–critic framework is improved, and entropy
regularization is incorporated to promote exploration and improve stochastic policies. SAC
is renowned for its ability to handle challenging continuous control problems and produce
improved action space exploration.

Being an actor–critic type of algorithm, SAC consists of actor (policy network) and
critic (Q-value network). The actor network, denoted as π(a|s), is a stochastic policy that
maps states s to probability distributions over actions a. In contrast to deterministic policies,
SAC represents policies using a probabilistic method. It models the policy as a Gaussian
distribution with mean µ(s) and standard deviation σ(s). The policy network’s output
represents the parameters of this distribution. Similarly, the critic network, denoted as
Q(s, a), estimates the expected cumulative reward (Q-value) associated with taking action a
in state s. Like in traditional actor–critic methods, the critic’s role is to provide feedback on
the quality of actions selected by the actor. To promote exploration, SAC adds an entropy
term to the objective function. The entropy regularization term is defined as H(π(s)),
where H represents the entropy of the policy distribution. The objective function is a
combination of the expected cumulative reward (Q-value) and entropy:

J(θ) = E(s,a)∼ρπ

[
∞

∑
t=0

γtr(st, at) + αH(π(s))

]
(12)

where θ represents the parameters of both the actor and critic networks; ρπ is the state-action
distribution induced by the policy π; γ is the discount factor; r(st, at) is the immediate
reward received after taking action at in state st; and α is a temperature parameter that
determines the tradeoff between exploration (entropy) and exploitation (reward).

The actor network is updated to maximize the combined objective function, which
includes the expected cumulative reward and the entropy term. The actor aims to find the
policy parameters that maximize the expected reward while also maximizing entropy:

∇θactor J(θactor) = Es∼ρπ [∇θactor log π(a|s, θactor)Q(s, a|θcritic)] + α∇θactor H(π(s|θactor)) (13)

The critic network is updated to minimize the mean squared error (MSE) between its
predicted Q-values and the target Q-values. The target Q-values are computed using the
Bellman equation:

L(θcritic) = E[(Q(s, a|θcritic)− (r + γ(1− done)Q(s′, π(s′|θactor)|θcritic))
2] (14)



Electricity 2023, 4 349

where s′ is the next state; and done is an indicator variable that is 1 if the episode terminates
at the next step and 0 otherwise.

The temperature parameter α in (12) and (13) is updated through optimization to find
the optimal tradeoff between exploration and exploitation.

SAC is renowned for its capability to manage continuous action areas with efficiency
while fostering exploration via entropy regularization. It has achieved remarkable success
in various tasks including robotic control [57] and Volt-VAR optimization [58], making it a
valuable algorithm in the field of RL.

3. Deep Reinforcement Learning Applications in Different Aspects of Resilient Power
and Energy Systems

This section presents an in-depth exploration of the multifaceted applications of DRL
within various critical aspects of resilient power and energy systems. Power and energy
system resilience refers to the capacity of a power and energy infrastructure to endure,
absorb, and promptly recover from various disruptions, including natural disasters and
man-made events, while maintaining the continuity and reliability of power supply to end
consumers [59]. This concept acknowledges the increasing challenges posed by extreme
weather events, cyber-attacks, climate change, and the need for adaptive responses in the
power sector. Evaluating the resilience of a complex system, particularly in the context of
power and energy systems, necessitates a comprehensive and systematic approach. The
Disturbance and Impact Resilience Evaluation (DIRE) methodology offers precisely such
a framework for assessing and enhancing resilience [60]. In Figure 5, the various stages
within the DIRE approach are illustrated, each of which plays a critical role in resilience
assessment and evaluation. The DIRE framework consists of five distinct stages, namely,
reconnaissance (recon), resist, respond, recover, and restore. These stages are integral in
assessing a system’s ability to endure and adapt to disruptions. DRL emerges as a powerful
tool that finds applications across all of these resilience stages. DRL offers the capacity
to adapt, optimize, and enhance system behavior in response to evolving conditions and
disturbances, making it a valuable asset in the pursuit of resilience.
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Figure 5. The DIRE curve showing different stages of resilience.

Figure 5 not only depicts the stages but also showcases typical DIRE curves for both
resilient and unresilient systems. These curves offer a visual representation of how system
performance evolves over time in the face of extreme events and disturbances. It is clear
from the figure that after an extreme event occurs, at time t1, the performance level of
the system undergoes a deterioration. This decline in performance persists throughout
the “resist” stage until reaching time t2. However, the “respond” stage, which extends to
t3, marks the onset of a slow but steady performance improvement. Subsequently, as the
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system enters the “recover” and “restore” stages, its performance continues to improve,
ultimately returning to pre-disturbance levels.

Power and energy system resilience encompasses a spectrum of research areas and
methodologies, including the development of resilience metrics, resilience planning, and
operational resilience enhancement, each addressing critical aspects of ensuring the ro-
bustness of power and energy systems. Figure 6 shows five different aspect categories
of resilient power and energy systems that are outlined in this section. Understanding
these aspects of resilient power and energy systems is critical for devising comprehensive
strategies to ensure the reliability and robustness of power and energy infrastructure in the
face of evolving challenges and disruptions. Each aspect contributes to a holistic approach
aimed at enhancing the resilience of power and energy systems and safeguarding the
uninterrupted supply of electricity to end consumers.

Resilient Power & 

Energy Systems

Energy Management & 

Control

Restoration & Recovery

Communications & 

Cybersecurity

Resilience Planning & 

Metrics Development

Dynamic Response

Figure 6. Different aspects of resilient power and energy systems.

3.1. Dynamic Response

Dynamic response consists of adaptive measures and strategies aimed at addressing
and mitigating the consequences of unforeseen and critical events or disasters, whether
natural or human-made. These events may include hurricanes, earthquakes, floods, wild-
fires, cyber-attacks, industrial accidents, or acts of terrorism. Dynamic response can operate
proactively, linking situational awareness with resilience enhancement and ensuring effec-
tive and efficient responses in both preventive and emergency contexts [61]. The primary
objectives of emergency response in the context of power and energy systems resilience
include ensuring the integrity and functionality of critical infrastructure, minimizing down-
time, and restoring operations swiftly and effectively. Table 4 presents a summary of papers
on DRL applications in the dynamic response aspect of resilient power and energy systems.

In [62], a new model-free online dynamic multi-microgrid formation (MMGF) scheme
for enhancing power system resilience was introduced. This approach formulated the
dynamic MMGF challenge as a Markov decision process and tailored a comprehensive DRL
framework for microgrids capable of changing their topologies. To address the complexity
of operating network switches, a search space reduction technique based on spanning forest
was introduced, and an action-independent value function was implemented. Subsequently,
an advanced approach utilizing a CNN-based double DQN was designed to enhance
the learning capabilities beyond the original DQN approach. This DRL approach has
been supposed to provide real-time computational support for online dynamic MMGF,
effectively addressing long-term resilience enhancement challenges by adaptively forming
microgrids in response to changing conditions. Validation of the proposed method was
carried out using both a 7-bus system and the IEEE 123-bus system, demonstrating its robust
learning ability, timely response to varying system conditions, and effective enhancement
of resilience.
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Table 4. Summary of papers on DRL applications in dynamic response.

Paper (Authors and Reference) DRL Algorithm Main Contributions

Zhao et al. [62] CNN-based double DQN
MDP-based multi-microgrid formation

for enhanced resilience using CNN-based
double DQN.

Zhou et al. [63] Q-learning, VPG, and PPO
Framework for rescheduling

optimization in distribution systems,
applicable in various network topologies.

Kamruzzaman et al. [64] Hybrid soft actor–critic
Multi-agent voltage violation mitigation
during windstorms, scalable and flexible

control.

Chen et al. [65] Deep recurrent Q-network (DRQN)
Active power correction control in
large-scale power systems through

cooperative stochastic games.

Abdelmalak et al. [66] Actor–critic algorithm
Distribution network reconfiguration

during extreme weather events with high
action accuracy.

Kadir et al. [67] DDPG
Proactive power grid control during
wildfires, minimizing outages and

improving emergency response.

Badakhshan et al. [68] PPO RL-based intentional islanding for
voltage stability during outages.

Huang et al. [69] DQN
Model-free microgrid formation for

resilient distribution networks,
addressing complex scenarios.

Liang et al. [70] Safe reinforcement learning with
combination of DQN and CVaR method

Resilient proactive scheduling for
commercial buildings during extreme

weather, optimizing comfort while
conserving energy.

In [63], a model-free optimization framework rooted in DRL was introduced to opti-
mize rescheduling strategies, thereby enhancing the responsiveness of resilient distribution
systems. The proposed approach leveraged deep neural networks to extract and process
extensive features from a complex and stochastic state space. Multivariate Gaussian distri-
butions were employed to manage high-dimensional continuous control actions effectively.
The study conducted comprehensive testing and comparison of the proposed framework
against a basic RL method (i.e, Q-learning) and two distinct DRL algorithms (VPG and
PPO) across various power system configurations, including the IEEE 9-bus, IEEE 39-bus,
and IEEE 123-bus systems. The empirical results underscored the remarkable effectiveness
of the proposed DRL-based framework in both radial and meshed topologies.

In [64], a data-driven multi-agent framework based on a DRL algorithm was devel-
oped to address power system resilience in emergency scenarios, focusing on voltage
violations during windstorms. The framework utilized a hybrid soft actor–critic algorithm
for both offline and online tasks related to shunt reactive power compensators’ deploy-
ment and control. The multi-agent system learned from past experiences to determine
optimal locations and sizes for shunts, mitigating voltage violations during line failures.
Demonstrated on the IEEE 57-bus and IEEE 300-bus systems, the approach effectively
improved power system resilience by enhancing the scalability of existing DRL-based
methods, offering flexibility for various control problems, and ensuring a balance between
exploration and exploitation. This work streamlined information sharing among actors
and critics, reducing the computational burden for large-scale integrated power systems.

In [65], a distributed DRL framework was employed to address the active power cor-
rection control (APCC) problem in large-scale power systems. They established an APCC
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model, including topology reconfiguration actions, and utilized a fully cooperative stochas-
tic game to represent interactions among active power controllers. A model-free approach
was adopted to find the Nash equilibrium for the game, with the discrete nature of the
APCC problem addressed using the QMIX method. To meet practical application require-
ments for large-scale power systems, they proposed a structure involving centralized online
training and offline distributed execution. The method’s effectiveness was verified using
an open-source platform with relevant scenarios and cases. This research demonstrated the
potential of distributed DRL in managing complex power systems, opening avenues for
future work to address control problems with high dimensionality and nonlinearity.

In [66], an RL-based method has been introduced for distribution network reconfigura-
tion (DNR) aimed at improving the resilience of electric power supply systems. Resilience
improvements often involve tackling computationally intensive and sometimes infeasible
large-scale stochastic optimization challenges. The study leveraged the exceptional perfor-
mance of RL techniques in power system control applications, particularly for real-time
resilience-based scenarios. They developed a single-agent framework using an actor–critic
algorithm (ACA) to determine the statuses of tie-switches in a distribution network im-
pacted by extreme weather events. The approach reconfigured the feeder topology to
minimize or eliminate load shedding, treating the problem as a discrete Markov decision
process. Actions involved opening or closing specific tie-switches, with rewards computed
to evaluate their practicality and advantages. Through iterative Markov processes, the ACA
was trained under various failure scenarios and demonstrated on a 33-node distribution
system, achieving action accuracy exceeding 93%.

In [67], the authors worked on addressing the proactive control problem within the
context of resilient power and energy systems during extreme events, specifically wildfires.
They formulated the problem as an MDP to minimize load outages, taking into account
the dynamic nature of wildfire events. Their approach introduced an integrated testbed
that combined a wildfire propagation simulator with a power-system simulator, enabling
comprehensive evaluations. By leveraging DRL for power generation coordination, their ap-
proach aimed to provide intelligent proactive control for power grid operators. The results
demonstrated its effectiveness in reducing load outages during extreme events, offering a
valuable contribution to enhancing emergency response in power and energy systems.

In [68], the authors developed an RL-based model to facilitate intentional islanding in
power systems, offering real-time switching control and adaptability to changing system
conditions. They framed the intentional islanding process as an MDP and utilized RL
to learn the optimal transmission switching policy. This approach incorporated a PSS/E
model of the power transmission system, interfacing with the OpenAI Gym [71]. The
primary goal was to create stable and self-sustainable islands while maintaining voltage
stability and reducing power mismatches. They implemented a PPO algorithm with
multilayer perceptrons for policy and value networks to control switch statuses. Their
framework’s effectiveness in grid self-recovery through intentional islanding was validated
on a modified IEEE 39-bus test network using dynamic simulations, demonstrating its
potential for online topology control in transmission networks during outages.

In [69], the authors worked on addressing the need for resilience in power grids
during extreme weather events, focusing on microgrid formation for resilient distribution
networks (RDNs) when the primary utility power is unavailable. They proposed a model-
free RDN-oriented microgrid formation method based on DRL techniques. The approach
treated microgrid formation as an MDP, considering intricate factors like unbalanced power
flow analysis of the microgrid along with its operational limitations. They developed a
simulation environment utilizing OpenAI Gym [71], facilitating the application of the DRL
methodology. The DQN was employed to find the optimal configuration of microgrids.
Furthermore, a framework based on an offline training and real-time implementation
was developed. Thorough examination of numerical results was conducted, offering a
model-free solution for microgrid formation with complex scenarios and fast application
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efficiency. Key contributions included the MDP formulation, simulator-based environment,
and the introduction of DRL for near-optimal solutions.

In [70], the authors worked on addressing the challenge of ensuring the resilience of
commercial buildings (CBs) during high-impact, low-frequency extreme weather events.
They introduced a resilient proactive scheduling strategy based on safe reinforcement
learning (SRL) to optimize customer comfort levels while minimizing energy reserve costs.
The strategy leveraged the correlation between various CB components equipped with
demand response capabilities to maintain desired comfort levels with limited energy re-
serves. To handle uncertainties associated with extreme weather events, they developed an
SRL algorithm by combining DQN and conditional-value-at-risk (CVaR) methods. This ap-
proach enabled proactive scheduling decisions that balanced exploration and exploitation,
effectively mitigating the impact of extreme events during the learning process. Extensive
simulations using real-world commercial campus data demonstrated the capability of
the proposed framework to enhance both power and heating/cooling resilience, ensuring
power balance and maintaining comfort levels in CBs subject to extreme weather conditions.
The study presented a valuable contribution by integrating correlated demand response
with proactive scheduling to support maximum comfort levels while conserving energy
reserves in commercial buildings exposed to extreme weather events.

3.2. Recovery and Restoration

The phases of recovery and restoration are of utmost importance in the context of
power and energy system resilience. These phases cover the plans and methods used
to restore order to the power and energy system after a disruptive event. Recovery and
restoration are intrinsically linked to dynamic response methods, with subsequent recovery
efforts being made easier by the initial response phase.

Recovery entails a diverse strategy aimed at determining the degree of damage,
stabilizing the power and energy system, and starting the restoration and repair operations.
This step comprises a thorough assessment of the state of the power system, including the
identification of crucial elements that might have been jeopardized during the incident [72].
Critical loads quickly regain access to power due to recovery mechanisms that prioritize
the restoration of key services.

On the other hand, restoration concentrates on the systematic approach of returning
the entire power and energy system to its pre-disruption state [73]. In this phase, damaged
infrastructure is coordinately repaired and reconnected, system integrity is tested and veri-
fied, and non-essential services are gradually brought back online. The goal of restoration
efforts is to bring the power and energy system back to full functionality so that it can
efficiently meet consumer needs [74].

This subsection examines the application of DRL approaches to speed up recovery
and restoration procedures in power and energy systems. In-depth discussion is provided
regarding how DRL may improve prioritizing, resource allocation, and decision making
during these crucial times, thereby improving the overall resilience and dependability of
the power and energy system. Table 5 presents a summary of papers on DRL applications
in the restoration and recovery aspect of resilient power and energy systems.

In [75], a DRL-based model was developed to efficiently restore distribution systems
following major outages. The model employed a Monte Carlo tree search (MCTS) to expe-
dite training and enhance decision making in scenarios with partial and asynchronous infor-
mation. Through iterative exploration and exploitation, the model determined restoration
actions, including load prioritization, resource allocation, and power system performance
evaluation. A reward function incentivized actions that served critical loads, ensured sys-
tem security, and minimized restoration efforts. The integration of a power flow simulation
tool (OpenDSS) and MCTS improved training performance and scalability. While the paper
focused on distribution systems’ resilience, the DRL-based model demonstrated poten-
tial applicability to resilience challenges at both the transmission and distribution levels,
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particularly in the context of extreme events and the increasing complexity of modern
distribution grids with DERs and low observability.

Table 5. Summary of papers on DRL applications in restoration and recovery.

Paper (Authors and Reference) DRL Algorithm Main Contributions

Bedoya et al. [75] Deep Q-learning DRL model for efficient restoration of
distribution systems after outages.

Hosseini et al. [76] DDPG
Intelligent resilience controller (IRC) for
real-time operational decisions during

outages.

Du et al. [77] A modified DDPG Two-stage learning framework for DER
scheduling in microgrids.

Gautam [78] DQN Distribution system resilience through
planning and operation-based strategies.

Dehghani et al. [79] Advantage actor–critic (A2C)
Planning framework for enhancing

distribution system resilience against
climatic events.

Li et al. [80] Q-learning
Integrated recovery strategy for

maximizing electricity supply during
grid restoration.

Zhao et al. [81] Graph RL using Q-learning Optimization of distribution service
restoration in power grids.

Wang et al. [82] Double DQN Real-time routing and scheduling for
MESSs.

Qiu et al. [83] Hierarchical multi-agent PPO Decentralized repair crew dispatch in
coupled networks.

Nie et al. [84] DQN and DDPG Optimization of islanded microgrid
operation with limited resources.

Abdelmalak et al. [85] Multi-agent DDPG Efficient DER dispatch for operational
resilience of islanded power systems.

Gautam et al. [86] VPG Critical load restoration within active
distribution systems.

Gautam et al. [87] DQN Optimization of distribution network
reconfiguration during extreme events.

Yao et al. [74] TD3 Optimal scheduling of MESSs for
distribution system resilience.

Zhang et al. [73] VPG Improved load restoration using RL in
uncertain renewable energy scenarios.

Wang et al. [88] Hierarchical multi-agent PPO
Hierarchical method for coordination of
mobile power sources and repair crews to

enhance microgrid resilience.

In [76], DRL was employed to create an intelligent resilience controller (IRC) capable
of making rapid real-time operational decisions for dispatching distributed generation and
energy storage units to restore power following sudden outages. The IRC was designed
to learn the patterns associated with uncertain high-impact events, exemplified by a spa-
tiotemporal hurricane impact analysis model, and used this knowledge to explore a wide
range of actions in partially observable states of distribution grids during extensive outages.
The distribution grid’s operation under uncertainty was modeled as an MDP, and operator
actions were rewarded based on operational costs. To address scalability challenges due to
several DERs, the problem was reformulated as a sequential MDP. Implementation of the
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proposed model on a hurricane-affected test distribution grid demonstrated its superiority
in terms of reduced operation costs and nearly instantaneous decision making, showcasing
its adaptability to hurricanes of varying intensities. This study introduced an intelligent
approach to enhance the resilience of distribution grids during extreme weather conditions,
utilizing DRL and a spatiotemporal hurricane model to inform real-time dispatch decisions
for DERs.

In [77], the authors addressed the challenge of efficiently scheduling and dispatching
DERs in islanded microgrids to support service restoration and enhance system resilience
during utility grid outages. Conventional model-based methods for DER coordination
often lack generalization and adaptability, relying on precise distribution network models.
To overcome these limitations, the authors proposed a two-stage learning framework based
on deep deterministic policy gradient from demonstrations (DDPGfD). During the initial
training phase, imitation learning was employed to provide the control agent with expert
experiences, ensuring a satisfactory starting level of performance. In the subsequent online
training phase, techniques such as reward shaping, action clipping, and the inclusion of
expert demonstrations were harnessed to support secure exploration and expedite the
training procedure. The proposed approach, applied to the IEEE 123-node system, was
shown to outperform representative model-based methods and the standard DDPG method,
demonstrating both solution accuracy and increased computational efficiency. This study
introduced a pioneering application of DRL from demonstrations for distribution service
restoration, addressing the high-dimensional complexity of continuous action spaces and
providing a valuable contribution to enhancing microgrid resilience.

In [78], the concerns of electric utilities, government agencies, and the public regarding
the impacts of natural disasters and extreme weather events on distribution systems’ secu-
rity, reliability, and resilience was addressed through the use of movable energy resources
(MERs). The study focused on MERs, which are flexible and dispatchable to power outage
locations following disasters. The dissertation encompassed three interdependent tasks for
enhancing distribution system resilience using MERs. The first task involved determining
the optimal total size and number of MERs, employing graph theory and combinatorial
techniques. The second task focused on pre-positioning MERs using cooperative game
theory, based on weather forecasts and monitoring data. The final task was post-disaster
routing of MERs, which was addressed using a DRL-based model. The research’s overar-
ching thesis was that a combination of planning and operation-based strategies for MERs
would significantly enhance the resilience of electric distribution systems.

In [79], the authors focused on enhancing the long-term resilience of power distribu-
tion systems faced with extreme climatic events by employing grid-hardening strategies.
To address the challenges of limited budgets and resources, a planning framework based on
DRL was developed. The resilience enhancement problem was treated as an MDP, and an
approach was developed, combining ranking strategies, neural networks, and RL. Unlike
conventional methods that target resilience against single future hazards, this framework
quantified life-cycle resilience, considering the possibility of multiple stochastic events
during the system’s lifetime. A temporal reliability model was introduced to account for
gradual deterioration and hazard effects, particularly in the context of stochastic hurricane
occurrences. The framework was applied to a substantial power distribution system with
thousands of poles, and the results demonstrated a significant improvement in long-term re-
silience compared to existing strategies, including the National Electric Safety Code (NESC)
strategy, with an enhancement of over 30% for a 100-year planning horizon. Additionally,
the DRL-based approach provided optimal solutions for computationally challenging prob-
lems that were difficult to solve using the branch and bound (BB) algorithm, making it a
promising approach for enhancing system resilience in the face of extreme events.

In [80], the authors addressed the vulnerability of power grids to extreme events and
the critical need for efficient restoration strategies to bolster grid resilience. They proposed
an integrated recovery strategy that aimed to maximize the total electricity supplied to
loads during the recovery process, taking into account various time scales of restoration
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methods. This strategy harmoniously combined the gradual component repair process
with the swift restoration method of optimal power dispatch. To achieve this, they utilized
the Q-learning algorithm to determine the sequence for repairing damaged components
and updating the network topology. Additionally, linear optimization was employed
to maximize power supply on a given network structure. Simulation results, based on
testing the proposed method on the IEEE 14-bus and IEEE 39-bus systems, indicated its
effectiveness in coordinating available resources and manpower to swiftly restore the
power grid following extreme events. This research is supposed to offer valuable insights
for power operators aiming to enhance grid resilience.

In [81], a distribution service restoration (DSR) algorithm was presented as a crucial
component of resilient power systems, offering optimal coordination for enhanced restora-
tion performance. Typically, model-based control methods were employed for this purpose,
but they suffered from low scalability and required precise models. To overcome these chal-
lenges, the study introduced an approach based on graph-reinforcement learning (G-RL).
G-RL integrated graph convolutional networks (GCNs) with DRL to address the intricacies
of network restoration in power grids, capturing interactions among controllable devices.
The scalability of the solution was ensured by treating DERs as agents within a multi-
agent environment. This framework utilized latent features derived from graphical power
networks, which were processed by GCN layers to guide network restoration decisions
through RL. Comparative evaluations conducted on the IEEE 123-node and 8500-node test
systems demonstrated the effectiveness and scalability of the proposed approach, offering
a versatile solution for dynamic DSR problems in power systems.

In [82], the authors focused on addressing the real-time routing and scheduling chal-
lenges posed by multiple mobile energy storage systems (MESSs) within power and trans-
portation networks, to enhance system resilience. Prior research primarily employed
model-based optimization for MESS routing, which was time consuming and demanded
extensive global network information, raising privacy concerns. Moreover, real-time con-
trol of MESSs was challenging due to system variability. To address these issues, the
study introduced a model-free real-time multi-agent DRL approach. In this approach,
parameterized double DQNs were employed to reconfigure the coordination of MESS
scheduling, accommodating both continuous and discrete types of actions. The RL envi-
ronment was represented by the interconnected transportation network and a linearized
AC optimal power flow solver, which integrated uncertainties arising from factors such as
renewable generation, line outage information, etc., into the learning process. Thorough
numerical studies performed on 6-bus and 33-bus power networks confirmed the superior
performance of the proposed approach over traditional model-based optimization methods,
making it a valuable contribution to resilience enhancement.

In [83], the authors focused on addressing the challenges posed by extreme events on
microgrids, which could lead to significant outages and restoration costs. Repair crews
(RCs) are essential for system resilience due to their mobility and adaptability in both
transportation and energy systems. Coordinating RC dispatch is complex, particularly in
multi-energy microgrids with dynamic uncertainties. The paper tackled this by formulating
the RC dispatch problem in an integrated power–gas transportation network as an MDP. A
hierarchical MARL algorithm was introduced, featuring a two-level optimization problem
with switching decisions being the higher-level optimization and routing and repairing
decisions of RCs the lower-level optimization. An abstracted critic network was integrated
to capture the system dynamics and stabilize the training performance while preserving
privacy. Thorough numerical investigations on an integrated power–gas transportation
network demonstrated the algorithm’s superiority over traditional MARL methods based
on various efficiency metrics. The approach’s scalability was also validated on a larger
33-bus power and 15-bus gas network with an 18-node 27-edge transportation network.

In [84], the authors focused on enhancing the post-disaster resilience of a distribution
system that experiences power supply interruptions due to extreme disasters, forcing it
to operate as an islanded microgrid. To optimize the utilization of limited generation
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resources and provide extended power supply to critical loads during the outage, a multi-
agent DRL approach was developed. This method implemented dual control policies
for managing energy storage and load shedding within the microgrid. The goal was to
maximize the cumulative utility value of the microgrid over the duration of the power
outage. A comprehensive simulation environment, constructed using OpenAI Gym and
OpenDSS, facilitated testing and validation. The results demonstrated the adaptability of
the proposed approach under various conditions, including different available generation
resources and microgrid outage durations. The main contributions of this work included the
development of a multi-agent DRL model for sequential decision making, the formulation
of dual optimal control policies for source and load sides, and the creation of an RL
environment for islanded microgrid operation, accounting for generation limitations, power
flow, and microgrid uncertainties.

In [85], an RL-based approach was introduced to dispatch DERs and enhance the
operational resilience of electric distribution systems following severe outage events. The
escalating computational intricacies and the need for intricate modeling procedures in
resilience-based enhancement strategies prompted the adoption of intelligent algorithms
tailored for real-time control applications. The authors utilized a multi-agent DRL algorithm
to efficiently dispatch DERs in the aftermath of extreme events, with the primary objective
of providing a swift and effective control mechanism for improved resilient operation
of islanded distribution power systems. The problem was formulated as an iterative
MDP, encompassing system states, action spaces, and reward functions. Each agent was
responsible for dispatching a specific DER and was trained to maximize its cumulative
reward value. System states represented the system’s topology and characteristics, actions
denoted DER power-supply decisions, and rewards were computed based on the power
balance mismatch for each agent. The proposed model was trained using various failure
scenarios and demonstrated on a 33-node distribution system in islanded mode, illustrating
its capability to dispatch DERs for resilience enhancement.

In [86], a DRL approach was proposed for post-disaster critical load restoration within
active distribution systems, with the aim of forming microgrids using network reconfigu-
ration to reduce the amount of curtailed critical loads. The power distribution networks
(PDNs) were modeled using graph theory, and the best system configurations, involving
microgrids, were determined by finding the optimal spanning forest while adhering to
various distribution system-related constraints. In contrast to existing methods, which re-
quired repetitive calculations for every line outage case to determine the optimal spanning
forest, the proposed methodology, once adequately trained, could rapidly identify the best
spanning forest even when line outage cases varied. In situations involving multiple line
failures, the DRL-based model established microgrids with DERs, minimizing the need for
curtailing critical loads. The model underwent training using the REINFORCE algorithm,
an RL technique that relies on the VPG method. The paper was concluded with a numerical
investigation performed on a 33-node distribution system, illustrating the capability of the
proposed methodology in restoring critical loads after a disaster.

In [87], a DRL-based approach aimed at optimizing the reconfiguration of PDNs to
improve their resilience against extreme events was presented, with the primary objective
of reducing the amount of curtailed critical loads. The PDN was depicted as a graph
theoretic network, and the optimal system configuration was determined by seeking the
optimal spanning forest while adhering to various distribution system operational con-
straints. Differing from traditional techniques that necessitate repeated calculations for
each system operating state to find the optimal network configuration, the DRL-based
approach, once adequately trained, exhibited the capability to rapidly identify the optimal
or near-optimal configuration even in the face of changing system states. To minimize
critical-load curtailment resulting from multiple line outages during extreme events, the
proposed approach formed microgrids incorporating DERs. A DQN-based model was
utilized. The paper was supported by a numerical analysis conducted on a 33-node distri-
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bution test system, confirming the efficiency of the proposed methodology for enhancing
PDN resilience through reconfiguration.

In [74], the authors explored the utilization of mobile energy storage systems (MESSs)
to bolster distribution system resilience. They devised an MDP framework that integrated
service restoration strategy by orchestrating MESS scheduling and microgrid resource
dispatching while considering load consumption uncertainties. Their objective was to
maximize service restoration in microgrids by effectively coordinating microgrid resource
dispatching and MESS scheduling, with MESS fleets being dynamically dispatched among
microgrids to facilitate load restoration in tandem with microgrid operation. To optimally
schedule these processes, they employed a DRL algorithm, specifically the twin delayed
deep deterministic policy gradient (TD3), which facilitated the training of deep Q-networks
and policy networks. The well-trained policy network was then applied online to execute
multiple actions simultaneously. Their proposed model was assessed using an integrated
test system comprising three microgrids interconnected by the Sioux Falls transporta-
tion network. Simulation results underscored the successful coordination of mobile and
stationary energy resources in enhancing system resilience.

In [73], the authors focused on enhancing grid resilience by utilizing DERs in distri-
bution systems to restore critical loads following extreme events. They recognized the
complexity of coordinating multiple DERs in a sequential restoration process, especially
in the presence of uncertainties related to renewable energy sources and fuel availability.
To address this challenge, the researchers turned to RL due to its capability to handle
system nonlinearity and uncertainty effectively. RL’s ability to be trained offline and pro-
vide immediate actions during online operations made it well suited for time-sensitive
scenarios like load restoration. Their study centered on prioritized load restoration within
a simplified distribution system, considering imperfect renewable generation forecasts, and
compared the performance of an RL controller with that of a deterministic model predictive
control (MPC) approach. The results demonstrated that the RL controller, by learning from
experience and adapting to imperfect forecasts, offered a more reliable restoration process
compared to the baseline controller. This study underscored the potential of RL-based con-
trollers in addressing load restoration challenges in uncertain environments, particularly
when coupled with high-performance computing (HPC), showcasing their effectiveness in
the power system domain.

Reference [88] focused on enhancing the resilience of microgrids through the coor-
dinated deployment of mobile power sources (MPSs) and repair crews (RCs) following
extreme events. Unlike previous centralized approaches, which assumed uninterrupted
communication networks, this research adopted a decentralized framework to address
real-world scenarios where communication infrastructure might be compromised. They
introduced a two-level hierarchical MARL method. At the high level, this approach de-
termined when to prioritize power or transport networks, while the low level handled
scheduling and routing within these networks. To improve learning stability and scalability,
an embedded function capturing system dynamics was incorporated. Case studies using
power networks validated the method’s effectiveness in microgrid load restoration. This
work represents a significant advancement in decentralized coordination for enhancing
microgrid resilience, offering privacy preservation and robustness while outperforming
existing centralized and decentralized methods.

3.3. Energy Management and Control

Energy management (EM) and adaptive control within the context of resilient power
and energy systems are integral strategies and methodologies employed to enhance the
reliability, efficiency, and robustness of energy distribution and consumption. Energy
management encompasses a range of practices that involve monitoring, optimizing, and
controlling various aspects of energy usage, generation, and distribution. These practices
aim to achieve multiple objectives, including minimizing energy costs, reducing peak loads,
maintaining a balance between electricity supply and demand, and ensuring the stable
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operation of energy systems. EM plays a crucial role in enhancing resilience by allowing
for proactive responses to disruptions, optimizing resource allocation, and minimizing
the impact of unforeseen events [70]. Adaptive control, on the other hand, refers to the
ability of an energy system to autonomously adjust its operation in real time based on
changing conditions and requirements. It involves the use of feedback mechanisms, data
analytics, and control algorithms to continuously monitor system performance, detect
anomalies or faults, and make rapid and informed decisions to maintain system stability
and reliability. Adaptive control is essential in resilient energy systems as it enables them
to self-regulate, adapt to dynamic situations, and recover quickly from disturbances or fail-
ures [89]. Together, energy management and adaptive control form a dynamic framework
that ensures the efficient use of energy resources, maintains grid stability, and responds
effectively to various challenges, including load variations, demand fluctuations, cyber
threats, equipment faults, and other disruptions. These strategies are critical for enhancing
the resilience and sustainability of power and energy systems in the face of evolving com-
plexities and uncertainties. Table 6 presents a summary of papers on DRL applications in
energy management and control aspects of resilient power and energy systems.

Table 6. Summary of papers on DRL applications in energy management and control.

Paper (Authors and Reference) DRL Algorithm Main Contributions

Deshpande et al. [90] PPO
Focus on energy management within

microgrids, addressing renewable energy
source variability.

Zhang et al. [91] Bayesian DDPG Proposed Bayesian DDPG for resilient
multi-energy microgrid control.

Wang et al. [92] Dueling DQN
Introduced Dueling DQN-based DRL for

incentive demand response with
interruptible load.

Raman et al. [93] Q-learning
Compared RL-based controller to MPC

for resilient energy supply during
disasters.

Tightiz et al. [94] DDPG and SAC
Applied DRL for microgrid energy

management and participation in the
electricity market.

Hasan et al. [95] Q-learning Developed control strategy for a resilient
community microgrid.

In [90], the authors focused on energy management within microgrids, anticipating
the growing role of small-scale renewable energy sources like photovoltaic panels and wind
turbines. To address the inherent variability of renewables, the researchers applied MARL,
with each agent representing a component of the microgrid. These agents were trained
to autonomously optimize energy distribution, leveraging historical energy consumption
and renewable production data. The simulation results demonstrated effective energy flow
management, and a quantitative evaluation compared the approach to linear programming
solutions. Furthermore, the study emphasized decentralization, envisioning systems capa-
ble of independently responding to grid disturbances. Real-world energy data and input
from industrial users contributed to the model’s development, and a generalization method
was introduced to enhance its adaptability, ultimately leading to improved resilience and
reliability in microgrid energy management compared to models trained on specific data.

In [91], the authors addressed the global shift towards cleaner energy systems with
increased reliance on renewable energy sources (RESs) and recognized the vulnerability
of power systems to extreme events due to reduced backup capacity and heightened un-
certainty in RES generation. To confront these challenges in multi-energy microgrids, a
Bayesian DRL approach was proposed. Unlike traditional deterministic RL, this approach
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incorporated a Bayesian probabilistic network to approximate the value function distribu-
tion, mitigating the Q-value overestimation problem. The study compared this Bayesian
approach, known as Bayesian deep deterministic policy gradient (BDDPG), with the con-
ventional DDPG and optimization methods across various operational scenarios. Case
studies revealed that BDDPG, by utilizing the Monte Carlo posterior mean of the Bayesian
value function distribution, could achieve near-optimal policies with enhanced stability,
underscoring its robustness and practicality in resilient multi-energy microgrid control,
particularly in the face of uncertainties associated with extreme events.

In [92], the authors focused on enhancing incentive demand response (DR) with inter-
ruptible load (IL), which allows for swift response and improved demand-side resilience.
Conventional model-based optimization algorithms for IL necessitate explicit system mod-
els, posing challenges in adapting to real-world operational conditions. Therefore, a
model-free DRL approach, employing the dueling deep Q-network (DDQN) structure, was
introduced to optimize IL-driven DR management under time-of-use (TOU) tariffs and
varying electricity consumption patterns. The authors constructed an automatic demand
response (ADR) architecture based on DDQN, enabling real-time DR applications. The
IL’s DR management problem was formulated as an MDP to maximize long-term profit,
defining state, action, and reward functions. The DDQN-based DRL algorithm effectively
addressed noise and instability issues observed in traditional DQN methods, achieving the
dual objectives of reducing peak load demand and operational costs while maintaining
voltage within safe limits.

Ref. [93] focused on addressing the escalating need for resilient energy supply in the
face of rising natural disasters, which often disrupt the conventional electrical grid. The
study built upon prior research, which demonstrated that intelligent control systems could
reduce the size of PV-plus-battery setups while maintaining post-blackout service quality.
However, the established approach, reliant on MPC, encountered challenges related to the
necessity for accurate yet straightforward models and the complexities surrounding the
discrete control of residential loads. To surmount these obstacles, the paper introduced an
alternative method employing RL. The RL-based controller was then rigorously compared
to the previously proposed MPC system and a non-intelligent baseline controller. The
results indicated that the RL controller could deliver resilient performance on par with
MPC but with significantly reduced computational demands. The research centered on a
single-family dwelling equipped with solar PV panels, a battery storage system, and three
distinct loads, with a primary focus on preserving refrigerator temperature and prolonging
battery life during extended power outages. Despite the inherent challenges, including state
constraints, the RL-based formulation was supposed to effectively address these issues,
demonstrating its potential for robust energy management in the face of grid disruptions.

In [94], the authors focused on addressing the challenges associated with integrating
renewable energy resources into microgrid energy management systems (EMSs) while
participating in the electricity market and providing ancillary services to the utility grid. To
tackle these complexities, the researchers deployed DDPG and SAC methods within an
RL framework. This approach aimed to optimize the microgrid’s energy management in a
high-dimensional, continuous, and stochastic environment. Additionally, the microgrid
was designed to act as a participant in the power system integrity protection scheme,
responding promptly to utility grid protection requirements using its available resources.
A real-world dataset was used to validate the proposed methods. The key contributions
of the paper included defining the microgrid’s structure, elements, and constraints for
the MDP, introducing a DRL framework for microgrid EMS using DDPG and SAC, and
evaluating the technique’s performance in both normal and contingency scenarios.

In [95], a control strategy for a resilient community microgrid was developed. This
microgrid model incorporated solar PV generation, electric vehicles (EVs), and an improved
inverter control system. To enhance the microgrid’s ability to operate in both grid-connected
and islanded modes and improve system stability, a combination of universal droop control,
virtual inertia control, and RL-based control mechanisms was employed. These mechanisms
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dynamically adjusted the control parameters online to fine-tune controller influence. The
model and control strategies were implemented in MATLAB/Simulink and subjected
to real-time simulation to assess their feasibility and effectiveness. The experimental
results demonstrated the controller’s effectiveness in regulating frequency and voltage
under various operating conditions and microgrid scenarios, contributing to enhanced
energy reliability and resilience for communities. The study also addressed the challenges
posed by multiple solar PV systems and EVs in the microgrid, providing a more accurate
approach to power sharing and improved stability and power quality through dynamic
control adjustments.

3.4. Communications and Cybersecurity

The rise of smart grid technologies and the integration of advanced communica-
tion systems within power and energy networks have led to cybersecurity becoming a
paramount concern for these systems’ operators [96]. Within this context, the security of
critical elements such as data availability, data integrity, and data confidentiality is seen as
crucial for ensuring cyber resiliency. These fundamental elements are strategically targeted
by cyber adversaries, with the aim of compromising the integrity and reliability of data
transmitted across the communication networks of the power grid. The objectives pursued
by these adversaries encompass a range of disruptive actions, including tampering with
grid operations, the interruption of the secure functioning of power systems, financial
exploitation, and the potential infliction of physical damage to the grid infrastructure. To
counteract these threats, extensive research efforts have been devoted to the development
of preventive measures within the realm of communications and cybersecurity. These
measures are designed to deter cyber intruders from infiltrating network devices and
databases [97]. The overarching goal of these preventative measures is to enhance the secu-
rity posture of power and energy systems by safeguarding their communication channels
and the associated cyber assets.

In this subsection, an exploration of the pertinent literature addressing the multifaceted
dimensions of communications and cybersecurity within the realm of resilient power
and energy systems is undertaken. Through this examination, insights are provided
into the diverse strategies contributing to the protection and resilience of critical power
infrastructure in the face of evolving cyber threats. Table 7 presents a summary of papers
on DRL applications in the communications and cybersecurity aspects of resilient power
and energy systems.

In [98], the authors focused on addressing the efficiency challenges associated with
resource allocation and user scheduling within wireless networks to support near-real-time
control of community resilience microgrids. To address these challenges, they introduced
a DQN-based resource allocation methodology leveraging DRL. This approach aimed to
optimize resource allocation for both macrocell base stations and small-cell base stations
within densely populated wireless networks. The DQN scheme outperformed traditional
proportional fairness (PF) and an optimization-based algorithm called distributed iterative
resource allocation (DIRA) by achieving a 66% and 33% reduction in latency, respectively.
Additionally, DQN demonstrated improved throughput and fairness, making it a valuable
solution for latency-critical applications like future smart grids’ connected microgrids. The
algorithm’s distributed nature reduced signaling overhead and enhanced adaptability in the
network. Overall, DQN showcased its potential for various latency-sensitive applications.

In [99], the focus was on the optimal placement of phasor measurement units (PMUs)
in smart grids to ensure complete system observability while minimizing the number
of PMUs required. The proposed approach, termed the attack-resilient optimal PMU
placement strategy, addressed the specific order in which PMUs should be placed. Using
RL-guided tree search, the study employed sequential decision making to explore effective
placement orders. The strategy began by identifying vulnerable buses, aiming to protect as
many buses as possible during staged PMU installation to mitigate costs. This reduced the
state and action space in large-scale smart grid environments. The RL-guided tree search
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method efficiently determined key buses for PMU placement, resulting in a reasonable
order of PMU installation. Extensive testing on IEEE standard test systems confirmed the
effectiveness of this approach, demonstrating its superiority over existing methods. The
study’s main contributions included the introduction of a new approach that considered
placement order, the use of tree search to enhance learning efficiency, and the application
of a least-effort attack model for identifying vulnerable buses, making it well suited for
large-scale grid environments.

Table 7. Summary of papers on DRL applications in communications and cybersecurity.

Paper (Authors and Reference) DRL Algorithm Main Contributions

Elsayed et al. [98] Q-learning Resource allocation for latency reduction
in community resilience microgrids.

Zhang et al. [99] DQN Attack-resilient optimal PMU placement
strategy.

Wei et al. [100] DDPG Cyber-attack recovery with optimal
reclosing time.

Zhang et al. [101] DDPG Fuzzy-system-based DRL for
demand-side management.

Etezadifar et al. [102] DQN
Event detection in non-intrusive load

monitoring with cybersecurity
enhancement.

Zhang et al. [103] Distributed DDPG Distributed DRL for defending
microgrids against FDI attacks.

Sahu et al. [104] - Mixed-domain RL environment for
cyber-physical resilience.

Zeng et al. [105] SAC Adversarial MARL for cybersecurity in
demand response.

Fard et al. [106] DQN
Analysis of the resilience of data
transmission when subjected to

gradient-based adversarial attacks.

Chen et al. [107] Asynchronous advantage actor–critic
(A3C)

Decentralized secondary control for
BESSs.

Guo et al. [108] Minimax Q-learning Dynamic defense against dynamic
load-altering attacks.

Huang et al. [109] - Review of RL’s role in cyber resilience
and defense mechanisms.

In [100], a comprehensive strategy for mitigating the impact of cyber-attacks on
critical power infrastructures was presented. The integration of cyber-physical systems
has introduced vulnerabilities that can be exploited by malicious attackers, potentially
disrupting power transfer by tripping transmission lines. To effectively recover from such
attacks, the paper proposed an innovative recovery strategy focused on determining the
optimal reclosing time for the tripped transmission lines. This strategy leveraged the power
of DRL, specifically utilizing the DDPG algorithm. The continuous action space of the
problem makes DDPG a suitable choice for this task. The DDPG framework consisted of a
critic network and an actor network, with the former approximating the value function
and the latter generating actions. To develop and train the strategy, an environment was
established to simulate the power system’s state transitions during cyber-attack recovery
processes. Additionally, a reward mechanism based on transient energy function was
used to evaluate the performance of recovery actions. Through offline training using state,
action, and reward data, the DDPG-based strategy was equipped to make optimal reclosing
decisions during online cyber-attack recovery. This approach was shown to outperform
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existing recovery strategies that either reclose immediately or follow fixed time-delay
protocols. The paper’s contributions encompassed the introduction of an adaptive cyber-
attack recovery strategy, the development of a simulation environment for replicating
power system dynamics under attack conditions, and the ability to continuously yield
optimal or near-optimal actions for different cyber-attack scenarios, effectively reducing
the risks associated with cascading outages in critical power infrastructure.

In [101], a resilient optimal defensive strategy was introduced to address the challenges
posed by false data injection (FDI) in demand-side management, which can impact security,
voltage stability, power flow, and economic costs in interconnected microgrids. The ap-
proach utilized a Takagi–Sugeuo–Kang (TSK) fuzzy-system-based RL method, specifically
employing the DDPG algorithm to train both actor and critic networks. These networks
aid in security switching control strategies and multi-index assessment. An improved
alternating direction method of multipliers (ADMM) method was employed for policy
gradient with online coordination, ensuring convergence and optimality. Moreover, a
penalty-based boundary intersection (PBI)-based multiobjective optimization technique
was utilized to simultaneously address economic cost, emissions, voltage stability, and rate
of change of frequency (RoCoF) limits. Simulation results validated the effectiveness of the
resilient strategy in mitigating uncertain attacks on interconnected microgrids, offering an
adaptable and promising solution.

In [102], an event detection algorithm based on RL was proposed for non-intrusive
load monitoring (NILM) in residential applications. The method involved a feedback
system that utilized several traditional event detection algorithms to train the RL agent
without direct access to consumer data. The RL agent, equipped with a dual replay
memory (DRM) structure, learned the knowledge of existing event detection algorithms
and combined them into a versatile model. A real-world dataset was used to validate the
algorithm’s performance under various scenarios, including non-ideal conditions. The
results showed that the proposed algorithm outperformed traditional event detection
algorithms and improved the cybersecurity of participating households by isolating the
agent from consumer data. The contributions of this work included the development of an
RL-based event detection algorithm that excels in both ideal and non-ideal conditions, the
proposal of a cybersecurity-enhancing architecture inspired by federated learning, and the
introduction of a DRM structure to significantly enhance the RL algorithm performance in
NILM applications.

In the context of the increasing threat of FDI attacks on the demand side of intercon-
nected microgrids, the study by Zhang et al. [103] introduced a resilient optimal defensive
strategy using distributed DRL. To assess the impact of FDI attacks on demand response,
an online evaluation method employing the recursive least-square (RLS) technique was
devised to gauge the effect on supply security and voltage stability. Based on this security
confidence assessment, a distributed actor network learning approach was proposed to
derive optimal network weights, facilitating the generation of an optimal defensive plan
that addresses both economic and security concerns within the microgrids system. This
methodology not only enhanced the autonomy of each microgrid but also improved DRL
efficiency. Simulation results demonstrated the effectiveness of the approach in evaluating
FDI attack impacts, highlighting the potential of an enhanced distributed DRL approach
for robustly defending microgrids against demand-side FDI attacks. The key contributions
of this work encompassed the development of a two-stage optimal defensive strategy,
the introduction of a regularized RLS method for online FDI impact evaluation, and the
proposal of a distributed RL approach to ensure microgrid economic and security resilience
with improved autonomy and learning efficiency compared to existing methods.

In [104], the authors delved into the realm of data-driven approaches for control-
ling electric grids using machine learning, with a particular focus on RL. RL techniques,
renowned for their adaptability in uncertain environments like those influenced by renew-
able generation and cyber system variations, present a compelling alternative to traditional
optimization-based solvers. However, effectively training RL agents necessitates extensive
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interactions with the environment to acquire optimal policies. While RL environments for
power systems and communication systems exist separately, bridging the gap between
them in a unified, mixed-domain cyber-physical RL environment has been a significant
challenge. Existing co-simulation methods, while efficient, demanded substantial resources
and time for generating extensive datasets to train RL agents. Therefore, this study concen-
trated on crafting and validating such a mixed-domain RL environment, utilizing OpenDSS
for power systems and SimPy, a versatile discrete event simulator in Python, for cyber
systems, ensuring compatibility across different operating systems. The primary objective
was to empower the distribution feeder system to exhibit resilience in both the cyber and
physical domains. This was achieved through the training of agents for tasks like network
reconfiguration, voltage control, and rerouting, thereby minimizing the steps required to
restore communication and power networks in the face of various threats and contingen-
cies. The key contributions of this paper included the development of a discrete event
simulation-based cyber RL environment for training agents, the creation of an OpenDSS-
based RL environment for distribution grid reconfiguration, the integration of SimPy and
OpenDSS for comprehensive cyber-physical defense, validation across different power
and cyber system sizes, and the successful training of well-known RL agents using these
environments, applying the MDP model to rerouting and network reconfiguration tasks in
their respective environments.

In [105], the role of demand response in enhancing grid security by maintaining the
demand–supply balance in real time through consumer flexibility adjustments was ex-
plored. The proliferation of digital communication technologies and advanced metering
infrastructures has led to the adoption of data-driven approaches, such as MARL, for
solving demand response challenges. However, the increased data interactions within
and outside the demand response management system have introduced significant cy-
bersecurity threats. This study aimed to address the cybersecurity aspect by presenting a
resilient adversarial MARL framework for demand response. The framework constructed
an adversary agent responsible for formulating adversarial attacks to achieve worst-case
performance. It then employed periodic alternating robust adversarial training with the
optimal adversary to mitigate the impacts of adversarial attacks. Empirical assessments
conducted within the CityLearn Gym environment highlighted the vulnerability of MARL-
based demand response systems to adversary agents. However, the proposed approach
exhibited substantial improvements in system resilience, reducing net demand ramping by
approximately 38.85%. The work introduced new adversarial training methods, addressed
robustness challenges, and provided insights into the impact of pre-training on control
policies, contributing significantly to enhancing the cybersecurity of MARL-based demand
response systems.

In [106], an investigation was conducted into the resilience of data transmission
between agents in a cluster-based, heterogeneous, MADRL system when subjected to
gradient-based adversarial attacks. To address this challenge, an algorithm utilizing a
DQN approach, in combination with a proportional feedback controller, was introduced
to enhance the defense mechanism against fast gradient sign method (FGSM) attacks
and improve the performance of DQN agents. The feedback control system served as a
valuable auxiliary tool for mitigating system vulnerabilities. The resilience of the developed
system was evaluated under FGSM adversarial attacks, categorized into robust, semi-
robust, and non-robust scenarios based on average reward and DQN loss. Data transfers
were examined within the MADRL system, considering both real-time and time-delayed
interactions, in leaderless and leader–follower scenarios. The contributions of this research
included the design of a proportional controller to bolster the DQN algorithm against FGSM
adversarial attacks, the exploration of on-time and time-delayed data transmissions to
enhance the defense strategy, and the demonstration of the superior performance achieved
by integrating the proportional controller into the DQN learning process, resulting in higher
average cumulative team discounted rewards for the MADRL system.
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In [107], a decentralized secondary control scheme was presented for multiple hetero-
geneous BESSs within islanded microgrids. Unlike prior approaches, that involve extensive
information transmission among secondary controllers, this scheme eliminated the need for
excessive real-time data exchange, reducing communication costs and minimizing vulnera-
bility to cyber-attacks. The secondary control method simultaneously achieved frequency
regulation and state-of-charge (SoC) balancing for BESSs, all without necessitating precise
BESS models. This was achieved through an asynchronous advantage actor–critic (A3C)-
based MADRL algorithm, featuring centralized offline learning with shared convolutional
neural networks (CNNs) to maximize global rewards. A decentralized online execution
mechanism was employed for each BESS. Additionally, to counter potential denial-of-
service (DoS) attacks on local communication networks, a signal-to-interference-plus-noise
ratio (SINR)-based dynamic and proactive event-triggered communication mechanism was
introduced, reducing the impact of DoS attacks and conserving communication resources.
Simulation results demonstrated that the proposed decentralized secondary controller
effectively accomplishes simultaneous frequency regulation and SoC balancing. Compara-
tive analysis against other event-triggered methods and MA-DRL algorithms highlighted
the superiority of the A3C-based MA-DRL algorithm with CNN, capable of adapting its
release frequency based on real-time SINR to mitigate network bandwidth occupation
and packet loss rates induced by DoS attacks. The paper contributed to the development
of a data-driven decentralized secondary control system for microgrids with multiple
heterogeneous BESSs, offering a new approach to address these challenges.

In [108], a dynamic defense strategy was introduced to counter dynamic load-altering
attacks (D-LAAs) in the context of cyber-physical threats to interconnected power grids.
Unlike traditional static defense approaches, this strategy has been designed to consider
a multistage game between the attacker and defender, where both parties’ actions evolve
dynamically. Minimax Q-learning was applied to determine the optimal strategies at each
state, with the attacker adjusting their actions based on feedback, particularly the cascading
failure and load shedding measurements. The proposed model’s effectiveness was assessed
using the IEEE 39-bus system, demonstrating its superiority over passive defense strategies.
This dynamic defense approach was supposed to offer improved power system resilience
by addressing evolving cyber-physical threats, making it a valuable preemptive strategy for
safeguarding critical infrastructure. Key contributions included the extension of one-shot
D-LAAs to sequential attacks, a two-player multistage game framework, and empirical
evidence showcasing its effectiveness in reducing load losses caused by D-LAAs.

In [109], the authors addressed the growing vulnerability of cyber systems due to
the increasing number of connected devices and the sophistication of cyber attackers.
Traditional cybersecurity measures, such as intrusion detection and firewalls, are deemed
insufficient in the face of evolving threats. Cyber resilience, as a complementary security
paradigm, was introduced to adapt to both known and zero-day threats in real time,
ensuring that the critical functions of cyber systems remain intact even after successful
attacks. The cyber-resilient mechanism (CRM) has been central to this concept, relying on
feedback architectures to sense, reason, and act against threats. RL plays a vital role in
enabling CRMs to provide dynamic responses to attacks, even with limited prior knowledge.
The paper reviewed RL’s application in cyber resilience and discussed its effectiveness
against posture-related, information-related, and human-related vulnerabilities. It also
addressed vulnerabilities within RL algorithms and introduced various attack models
aimed at manipulating information exchanged between agents and their environment. The
authors proposed defense methods to safeguard RL-enabled systems from such attacks.
While discussing future challenges and emerging applications, the paper highlighted the
need for further research in defensive mechanisms for RL-enabled systems.

3.5. Resilience Planning and Metric Development

Resilience planning in the context of power and energy systems involves planning
efforts to develop comprehensive strategies for fortifying electricity infrastructure to with-
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stand and recover from potential extreme events in the future [110]. It primarily focuses
on identifying and prioritizing investments in the electricity grid to ensure the reliable
and resilient supply of power to end-use customers. These planning-based strategies
may encompass initiatives such as the installation of underground cables, strategic energy
storage planning, and other infrastructure enhancements aimed at reinforcing the system’s
ability to deliver uninterrupted electricity [78]. On the other hand, metric development
within the realm of power and energy system resilience is a foundational component for
quantifying and evaluating a power and energy system’s ability to endure and rebound
from disruptions. These metrics serve as precise and measurable indicators, offering a
quantitative means to assess the performance of a power system concerning its resilience.
They provide valuable insights into how the system operates under normal conditions
and its ability to withstand stressors or adverse situations. Metric development plays
a crucial role in systematically gauging and enhancing the resilience of power systems,
allowing for informed decision making and the optimization of infrastructure investments.
Table 8 presents a summary of papers on DRL applications in resilience planning and
metric development aspect of resilient power and energy systems.

Table 8. Summary of papers on DRL applications in resilience planning and metric development.

Paper (Authors and
Reference) DRL Algorithm Main Contributions

Pang et al. [111] -
Incorporating battery

degradation into microgrid
expansion planning.

Pang et al. [112] Double DQN
Cost-effective microgrid
expansion considering

uncertainties.

Paul et al. [113] Q-learning
Risk-based approach for

enhancing distribution grid
resilience.

Ibrahim et al. [114] DQN, Double DQN, and
REINFORCE

Introducing level-of-resilience
(LoR) metric and evaluating

power system resiliency.

In [111], the primary objective was to enhance power resilience while minimizing
overall costs in long-term microgrid expansion planning. Unlike the existing literature,
this study incorporated the real-world battery degradation mechanism into the micro-
grid expansion planning model. The approach involved employing RL-based simulation
methods to derive an optimal expansion policy for microgrids. Through case studies, the
effectiveness of this model was confirmed, and the impact of battery degradation was
investigated. Additionally, the paper explored how the unavailability of power plants
during extreme outages affected optimal microgrid expansion planning. Battery capacity
naturally diminishes over time and use due to chemical reactions within the battery, ulti-
mately leading to its disposal. Considering this battery degradation in storage-expansion
planning for microgrids, the paper introduced a long-term expansion planning framework
using a DRL algorithm and simulation-based techniques.

In [112], the authors focused on developing a model for long-term microgrid expansion
planning using various DRL algorithms including DQN, Double DQN, and REINFORCE.
This model introduced multiple energy resources and their associated uncertainties, such
as battery cycle degradation. The study employed a DRL approach to derive cost-effective
microgrid expansion strategies aimed at enhancing power resilience, particularly during
grid outages. Through case studies, the paper demonstrated the effectiveness of this
approach, showcasing how it optimized microgrid expansion planning while accounting
for factors like battery degradation and resilience constraints. The proposed method
offered valuable insights into creating backup power solutions for customers during grid
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disruptions, considering the real-world characteristics and uncertainties associated with
various power generation and energy storage units.

In [113], the authors focused on enhancing the resilience of power distribution sys-
tems against extreme events, particularly high-impact low-probability (HILP) incidents,
through the optimization of grid-hardening strategies. The study employed a risk-based
metric for quantifying resilience and used a Q-learning algorithm to determine the optimal
sequence of grid-hardening actions while adhering to a budget constraint. The objective
was to minimize the conditional value at risk (CVaR) for the loss of load. The research
demonstrated the practical application of this approach through a case study involving the
IEEE 123-bus test feeder, highlighting its effectiveness in strategically allocating limited
resources for resilient distribution system planning. This study contributed to the field by
providing a risk-aware framework for enhancing distribution grid resilience, with a specific
focus on undergrounding distribution lines to withstand wind storms, offering valuable in-
sights for power distribution system operators aiming to strengthen their networks against
extreme events.

In [114], an assessment of power system resilience was performed by introducing a
metric called the level of resilience (LoR), which quantified system resilience in terms of
the minimum number of faults required to induce a blackout through sequential topology
attacks. The study employed four DRL methods, namely, DQN, double DQN, REINFORCE,
and REINFORCE with baseline, to determine the LoR. The research conducted three case
studies using the IEEE 6-bus test system, focusing on evaluating the agents’ performance.
Notably, the double DQN agent excelled by achieving the highest success rate and demon-
strating superior efficiency compared to the other agents. This work’s main contribution
was to utilize DRL techniques to evaluate power system resilience by determining the
minimum fault count necessary for a system blackout under sequential topological attacks,
offering valuable insights for system designers in selecting the most resilient topology.

4. Challenges, Limitations, and Future Research Directions

In this section, the challenges and limitations encountered when applying DRL for re-
silient power and energy systems are confronted. Potential future research directions aimed
at addressing these challenges and maximizing the effectiveness of DRL are envisioned in
enhancing power and energy system resilience.

4.1. Challenges and Limitations

The integration of DRL into resilient power and energy systems, while promising, is
not without its set of challenges and limitations. Understanding these hurdles is crucial
for devising effective strategies and solutions. Here, these challenges and limitations are
discussed in detail.

4.1.1. Sub-Optimal Solutions in DRL Applications

A significant and recurrent challenge within the domain of DRL applications is the
propensity to produce sub-optimal solutions. This issue arises when DRL agents have
not undergone sufficient training or when the delicate balance between exploration and
exploitation is not adequately maintained. The consequences of sub-optimal solutions
can be particularly critical in scenarios where resilient decision making is paramount. To
elucidate this challenge, insights can be drawn from recent research.

The work by Abdelmoaty et al. [115] provides valuable insights into the sub-optimality
concern. In their study, the authors conducted a comparative analysis between two ap-
proaches: resilient topology design for wireless backhaul using integer linear programming
(ILP) and employing a DRL-based method. Their findings shed light on the sub-optimal
nature of solutions derived from DRL techniques. This research underscores the need for
careful consideration when applying DRL in the context of enhancing resilience in power
and energy systems.
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Moreover, the study conducted by Nguyen et al. [116] emphasizes that in complex
and intricate environments, DRL agents are susceptible to becoming ensnared in sub-
optimal solutions. This highlights the significance of exploring alternative training method-
ologies to ensure that DRL agents are equipped to discover optimal solutions even in
intricate scenarios.

Addressing the challenge of sub-optimal solutions in DRL applications demands
meticulous attention and innovative approaches. Striking a balance between exploration
and exploitation, optimizing training regimes, and continuously refining DRL algorithms
are pivotal steps toward mitigating this limitation. As we advance in harnessing the poten-
tial of DRL for resilience enhancement in power and energy systems, an acute awareness
of the sub-optimality challenge will be instrumental in driving progress and ensuring the
reliability of critical infrastructure.

4.1.2. Addressing Scalability Challenges in DRL Applications

One of the formidable challenges encountered in applying DRL to power and en-
ergy systems lies in scalability. The inherent complexities of these systems can result in
exceedingly large state spaces, rendering the training process computationally demanding
and time consuming. Tackling scalability concerns becomes imperative to harness the
full potential of DRL in this domain. A deeper examination of this challenge, along with
potential solutions, can provide valuable insights.

An illustrative example of scalability concerns is discussed in the work by
Sami et al. [117], where they specifically address the issue of action space size and the
limitations associated with tabular Q-learning in the context of MDP design. This research
not only highlights the challenges posed by scalability but also demonstrates that careful
design considerations can mitigate these concerns. By presenting a practical implementa-
tion example related to fog and service placement problems, they showcase how thoughtful
DRL solutions can effectively address scalability hurdles.

In the realm of multi-agent DRL, scalability challenges take on a different dimension.
Qu et al. [118] delve into this aspect by emphasizing that even when individual agents have
relatively small state or action spaces, the global state or action space can grow exponentially
with the number of agents. This exponential explosion in complexity necessitates innovative
techniques to enhance scalability in multi-agent DRL scenarios.

Applying these insights to the domain of resilient power and energy systems, it be-
comes evident that a nuanced and strategic approach is vital in addressing scalability
concerns. Tailoring DRL algorithms to accommodate the intricacies of these systems, opti-
mizing the representation of state and action spaces, and exploring innovative techniques
for multi-agent scenarios are all critical steps. In this way, researchers and practitioners
can unlock the potential of DRL to efficiently navigate the vast and complex landscapes of
power and energy infrastructure, ultimately enhancing resilience and reliability.

4.1.3. Navigating the Time–Accuracy Balance in DRL Applications

In the realm of DRL, a compelling aspect is its capacity to make swift decisions, often
outpacing traditional optimization methods. However, this agility comes with a noteworthy
tradeoff between speed and accuracy. While DRL can excel in delivering rapid responses,
achieving the utmost level of precision may necessitate extended training periods and
exploration phases. It is crucial to understand this tradeoff and its implications, especially
when applying DRL to enhance the resilience of power and energy systems.

In situations where immediate decisions are paramount, DRL can prove advantageous.
For instance, in the context of cloud robotics, as demonstrated by Penmetcha et al. [119],
DRL-based dynamic computational offloading methods can yield rapid decisions, with
a mean computation time of 71.28 milliseconds, while achieving a commendable final
accuracy of 84%. This showcases the potential of DRL in scenarios where timely responses
are essential.
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However, it is equally important to acknowledge that certain applications within
the realm of power and energy systems may prioritize accuracy over speed. In critical
situations, where the resilience and reliability of the energy infrastructure are at stake,
precision becomes paramount. In such cases, sacrificing accuracy for expediency may not
be a viable option, and DRL may not align with the requirements of the application.

Thus, striking the right balance between time and accuracy is a pivotal consideration
when employing DRL in the context of power and energy systems’ resilience. Careful
evaluation of the specific demands of each application, along with a nuanced understanding
of the tradeoffs involved, will guide the judicious use of DRL, ensuring that it aligns with
the objectives and constraints of the given scenario.

4.1.4. Navigating Complexity with Model-Free DRL Algorithms

In the landscape of RL, several dimensions of complexity have been explored, encom-
passing space complexity, computational complexity, and sample complexity, as elucidated
in the comprehensive work by Strehl et al. [120]. Within this intricate landscape, a specific
category known as model-free RL algorithms emerges, offering distinctive advantages
and challenges.

Strehl et al. [120] provide valuable insights into what constitutes a model-free RL
algorithm. Specifically, a model-free RL algorithm is characterized by its space complex-
ity, which is asymptotically lower than the space required to store a Markov decision
process (MDP). This succinct definition encapsulates the essence of model-free RL, empha-
sizing its fundamental departure from traditional RL paradigms that rely on MDPs for
decision making.

The model-free approach of DRL assumes paramount significance when dealing with
the intricacies of power and energy systems. These systems often defy precise modeling
due to their inherent complexities, dynamic nature, and the influence of external factors. In
such scenarios, attempting to construct an accurate MDP becomes a formidable challenge,
if not an impossibility. This is precisely where model-free DRL shines, as it does not depend
on a predefined MDP structure.

However, the adoption of a model-free stance introduces its own set of complexities.
For the DRL agent to navigate and make decisions effectively, it must essentially start
from scratch. This implies that the agent undertakes a process of learning by trial and
error, relying on interactions with the environment to glean insights and refine its decision
making. This iterative learning process can be computationally demanding and often
necessitates copious amounts of training data.

The computational complexity inherent in model-free DRL can pose challenges, es-
pecially in resource-constrained environments or real-time applications. Moreover, the
agent’s ability to generalize from its experiences and effectively explore the vast state-action
space can be a delicate balancing act, requiring careful consideration.

In a nutshell, model-free DRL adds a new level of complexity while liberating deci-
sion making from the restrictions of explicit MDP modeling. Model-free DRL’s benefits
and computational requirements must be balanced in order for it to be successfully ap-
plied in the field of resilient power and energy systems. To fully utilize the promise of
model-free DRL in improving the robustness and effectiveness of these crucial systems,
careful consideration of data needs, training methodologies, and computational resources
is important.

4.1.5. Safety Considerations

The integration of DRL algorithms in the context of enhancing the resilience of power
and energy systems necessitates robust safety measures. The implementation of RL tech-
niques introduces various safety concerns that warrant careful consideration. The authors
in [121] conducted a comprehensive examination of safety-related issues associated with
RL. In their study, they delve into the realm of safety policies, safety complexity, safety
applications, safety benchmarks, and safety challenges concerning RL.
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One of the primary concerns when employing DRL in power and energy systems
is the potential for incorrect actions or policies generated during training or deployment.
These erroneous decisions have the potential to result in system instability or even physical
damage. Therefore, ensuring the safety and reliability of DRL-driven decisions within the
context of resilient power and energy systems emerges as a critical and non-negotiable
challenge. Safeguarding against adverse outcomes and unforeseen consequences remains a
paramount consideration in the deployment of DRL applications, especially in scenarios
where the consequences of failure can be severe and far-reaching. Consequently, addressing
safety concerns is an imperative aspect of successfully implementing DRL applications in
this domain.

4.1.6. Generalization Challenges

Despite the impressive capabilities exhibited by state-of-the-art DRL algorithms in
solving complex tasks, their ability to generalize between tasks and adapt to new environ-
ments remains a formidable challenge. This limitation becomes apparent when considering
the difficulty of transferring an agent’s learned experience to novel situations, as discussed
by [122]. While RL agents may excel in mastering multiple levels of a video game, they
often face catastrophic failures when confronted with a slightly different, previously unseen
level. In stark contrast, humans exhibit the remarkable ability to seamlessly generalize
their knowledge and skills across similar tasks, a capacity that remains largely absent in
RL agents. This phenomenon results in RL agents becoming overly specialized in the
specific environments encountered during their training, making them less adaptable to
new challenges and hindering their ability to generalize effectively [122].

Furthermore, the study conducted by [123] underscores the challenges faced by deep
RL in terms of generalization beyond the scope of their training environments. To address
this issue, the researchers introduce a benchmark and experimental protocol designed to
assess the generalization capabilities of deep RL algorithms. Their extensive evaluation
reveals that, in some cases, standard deep RL algorithms outperform specialized ones
explicitly designed for generalization. This suggests that while RL has achieved significant
success in various tasks, its ability to generalize effectively to diverse and previously unseen
scenarios remains a research frontier. In the context of resilient power and energy systems,
where adapting to a wide range of unforeseen challenges is crucial, the capacity of DRL
models to generalize and provide effective solutions is of paramount importance and an
ongoing area of investigation.

4.1.7. Ethical Considerations

The integration of DRL into resilient power and energy systems raises significant ethi-
cal considerations that must be addressed. DRL systems, often operating as complex neural
networks, pose challenges related to transparency and accountability [124]. Ensuring that
these systems’ decision-making processes are transparent and that there is accountability
for their actions is crucial to identify and rectify issues effectively. Additionally, fairness
and equity are paramount concerns, as unintended biases in training data or algorithms
can result in unfair treatment and unequal resource distribution [125].

Protecting privacy and data security is both a legal and ethical obligation, particularly
when DRL systems rely on sensitive information [126]. Furthermore, ethical DRL applica-
tions should prioritize environmental sustainability, incorporating eco-friendly practices,
and allow human experts to intervene or override automated decisions in critical situations.
Resource allocation guided by ethical principles ensures fair and efficient distribution of
resources. Addressing these ethical concerns is essential to build trust and ensure the
responsible and ethical deployment of DRL in resilient power and energy systems.

4.2. Future Research Directions

Exploring the potential of DRL in enhancing the resilience of power and energy
systems has opened up a myriad of opportunities and challenges. As DRL continues to
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evolve and mature as a field, there are several promising avenues for future research that
can further advance the application of DRL in resilient power and energy systems. These
directions not only aim to address existing limitations but also seek to leverage the unique
capabilities of DRL to transform the way we manage and optimize energy infrastructure in
the face of disruptions and uncertainties. In this subsection, some key areas are outlined
where future research in this domain can make significant contributions.

4.2.1. Development of Resilience Metrics

Quantifying and assessing the resilience of power and energy systems is fundamental
for effective decision making during extreme events or disruptions. As these systems are
increasingly exposed to a wide range of challenges, the development of robust resilience
metrics becomes paramount. DRL offers a promising avenue for the advancement of such
metrics. Building upon the foundations laid by researchers like those in [114], who have
introduced novel approaches for measuring system resilience in different contexts, there is
an opportunity to extend this work to the realm of power and energy systems.

Future research can focus on harnessing the capabilities of DRL to create sophisticated
resilience metrics tailored to the specific challenges faced by energy infrastructure. These
metrics can encompass a variety of factors, including system topology, fault tolerance,
response times, and resource allocation. By leveraging DRL algorithms, which excel at
learning and adapting in dynamic environments, it becomes possible to develop metrics
that evolve and adapt as the system’s conditions change.

Moreover, the integration of real-time data streams into DRL-based resilience metrics
can enable continuous monitoring and assessment, providing operators with timely insights
into the system’s resilience status. This fusion of machine learning and resilience assessment
has the potential to revolutionize how we gauge the robustness of power and energy
systems, ultimately leading to more informed decision making and enhanced preparedness
for future challenges. Therefore, the development of resilience metrics through DRL stands
as a crucial and promising avenue for future research in this field.

4.2.2. Enhancing Training Strategies

Enhancing the training process of DRL approaches holds significant promise for im-
proving their applicability in resilient power and energy systems. Researchers, as demon-
strated in [127], have explored asynchronous variants of conventional RL algorithms. These
variants leverage parallel actor–learners to stabilize the training process, thereby enhancing
the effectiveness of various RL methods in training neural networks. By investigating
similar techniques in the context of power and energy systems, we can potentially mitigate
some of the challenges posed by large-scale and complex environments.

Curriculum learning, as introduced in [128], presents another avenue for refining DRL
training. This methodology focuses on optimizing the order in which the agent accumulates
experiences, aiming to boost overall performance and training speed on a predefined set of
tasks. In the context of power and energy systems, designing curricula that expose DRL
agents to progressively more complex scenarios could expedite learning and result in more
efficient and resilient systems.

Additionally, transfer learning, also known as knowledge transfer, is emerging as a
critical technique in RL, as highlighted in [129]. This approach leverages external expertise
to enhance the learning process in a target domain. In the context of resilient energy systems,
the application of transfer learning could involve adapting pre-trained DRL models from
related domains to expedite the training and deployment of agents in energy-related tasks.

Furthermore, meta-learning, as discussed in [130], involves optimizing meta-parameters
in RL algorithms to facilitate more efficient learning. Future research should delve into
these innovative training techniques, tailoring them to the unique challenges of power
and energy systems. In this way, we can potentially accelerate the convergence of DRL
algorithms, making them more adaptable and effective in managing the resilience of large-
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scale energy infrastructure. This research direction holds promise for enhancing the speed
and efficiency of DRL-based solutions, ensuring their practicality in real-world scenarios.

4.2.3. Enhancing Transparency with Explainable AI (XAI) in DRL

In the realm of DRL, the adoption of explainable AI (XAI) principles emerges as a
crucial endeavor. XAI aims to address the pressing issues of trust and confidence in AI
systems, especially in scenarios where safety considerations are paramount [131]. This
aspect assumes heightened significance when applied to power and energy systems, where
operational reliability and resilience are non-negotiable.

A thought-provoking article by [132] underscores the pivotal role of XAI technology
within the domain of DRL models for power system emergency control. The core motiva-
tion here is to establish transparency and trust in AI-driven decision-making processes, a
prerequisite for effective resilience enhancement. The article introduces a method known as
Deep-SHAP, designed explicitly to inject interpretability into these complex DRL models.

By integrating XAI principles into DRL models, the way can be paved for an enhanced
understanding of AI-driven decisions. This newfound transparency empowers power sys-
tem operators and stakeholders, enabling them to grasp the rationale behind AI-generated
actions. Consequently, the decision-making process becomes more understandable and
trustworthy, fostering collaborative efforts to bolster the resilience of power and energy
systems. As we delve deeper into this research direction, we hold the potential to bridge
the gap between advanced AI techniques and human oversight, ultimately advancing the
robustness and dependability of energy infrastructure in the face of adversity.

4.2.4. Leveraging Hybrid Approaches for Enhanced Resilience

In the pursuit of fortifying the resilience of power and energy systems, it becomes in-
creasingly evident that a one-size-fits-all solution may not suffice. Instead, adopting hybrid
approaches that seamlessly blend various optimization techniques with DRL emerges as a
promising avenue.

A notable illustration of this concept can be found in the work of [133], where they
introduce a novel hybrid approach. Their methodology combines the prowess of stochastic
programming with the adaptability of DRL to tackle the intricate challenge of Volt-VAR
optimization within active distribution systems. By synergizing these diverse techniques,
they enhance the system’s ability to maintain voltage levels while minimizing power
losses—a testament to the potential of hybridization.

Future research endeavors should delve into the uncharted territory of hybrid ap-
proaches, seeking to unlock the synergistic potential lying at the intersection of DRL
and traditional optimization methods. In this way, we can harness the strengths of both
worlds, augmenting the robustness and efficiency of resilience strategies for power and
energy systems. These hybrid methodologies promise to offer tailored solutions that can
adeptly navigate the multifaceted landscape of resilience challenges, ultimately ensuring
the dependable operation of critical infrastructure during adverse conditions.

4.2.5. Human-in-the-Loop DRL: A Fusion of Human Expertise and Machine Learning

Human-in-the-loop DRL has been gaining traction across various domains, show-
casing its potential to revolutionize learning paradigms. A pioneering work by [134]
introduced the concept of “protocol programs,” an agent-agnostic framework tailored
for human-in-the-loop reinforcement learning. This innovative schema seeks to augment
learning by seamlessly integrating human guidance, all without imposing rigid constraints
on agent representations. In a compelling demonstration, the authors illustrated that
established techniques like action pruning, reward shaping, and simulation-driven train-
ing can be elegantly encapsulated as special instances of this versatile framework. Their
preliminary experiments in relatively straightforward domains illuminate the promise of
this approach.
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Moreover, the realm of continuous action spaces witnessed a breakthrough in the
paper by [135], which introduced the Q-value-dependent policy-based human-in-the-loop
reinforcement learning (QDP-HRL) algorithm. This novel approach, seamlessly integrated
with the twin delayed deep deterministic policy gradient algorithm (TD3), employed
human expertise judiciously. During the initial stages of learning, the human expert
selectively provided guidance, guided by discrepancies in the twin Q-networks’ output.
To further bolster learning efficacy and performance in diverse continuous action space
tasks, the authors devised an advantage loss function, drawing insights from both expert
experience and agent policies.

As the field of DRL continues to evolve, one promising avenue for future research lies
in the seamless integration of human expertise into resilience frameworks for power and
energy systems. This collaborative approach aims to forge synergistic human–machine
partnerships, capitalizing on the unique strengths of each component. In this way, we can
envision a future where human intuition and domain knowledge harmoniously merge
with the adaptive capabilities of DRL, paving the way for more resilient, efficient, and
trustworthy energy infrastructure.

4.2.6. Setting Standards in Benchmarking and Evaluation

In the realm of RL, research by [136] has unveiled continual reinforcement learning
agents (CORA), a pioneering platform designed to propel the field forward. CORA’s
significance lies in its ability to surmount obstacles in continual RL, offering a holistic
solution encompassing benchmarks, metrics, and baselines, all conveniently encapsulated
within a unified code package. This transformative platform facilitates rigorous evalua-
tions spanning various dimensions of continual RL, operating seamlessly across diverse
environments and tasks. In essence, CORA acts as a catalyst, nurturing the growth in novel
algorithms within the continual RL community.

Drawing inspiration from this paradigm-shifting approach, a promising future re-
search avenue emerges for the field of DRL applied to power and energy system resilience.
Herein, the proposal is to establish standardized benchmarks and evaluation metrics tailor-
made for DRL applications within this critical domain. In this way, the research community
can pave the way for equitable comparisons and foster advancements in the field.

Much like CORA, these benchmarks and metrics would serve as essential tools, en-
abling researchers and practitioners to gauge the effectiveness of DRL algorithms within
power and energy systems. By providing a common ground for assessment, such standard-
ized measures would not only enhance the transparency and reproducibility of research
but also facilitate the identification of cutting-edge solutions and best practices. Ultimately,
this endeavor holds the potential to accelerate the development of robust, efficient, and
resilient energy infrastructure, benefiting society as a whole.

4.2.7. Physics-Inspired Reinforcement Learning

A study by [137] introduces an innovative fusion of physics-inspired principles and
DRL to tackle the intricate challenges of optimizing DERs within modern power systems.
The research showcases a new architecture encompassing a graph convolutional neural
network (GCN) combined with RL techniques. This dynamic approach focuses on training
online controller policies, particularly targeting Volt/Var and Volt/Watt control logic within
smart inverters.

Intriguingly, the study not only highlights the efficacy of the GCN-based framework
in voltage regulation but also underscores its capability to mitigate voltage dynamics
induced by cyber-attacks. Moreover, its robustness in the face of dynamic changes in grid
configurations and its potential for transfer learning make it a powerful tool for enhancing
power system resilience.

Building upon this innovative approach, the application of physics-inspired RL holds
significant promise for fortifying the resilience of power and energy systems. As elucidated
in Section 4.1.4, the utilization of model-free DRL can be computationally intensive and time
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consuming, especially when dealing with intricate system models. Consequently, in scenar-
ios where rapid adaptability and accurate decision making are imperative, the incorporation
of model-based and physics-inspired DRL models emerges as a pragmatic solution. By
seamlessly integrating domain knowledge and physical principles, such hybrid approaches
can bridge the gap between computational efficiency and robust resilience, ensuring the
stability and adaptability of power and energy systems in the face of diverse challenges.

4.2.8. Safe Reinforcement Learning

Safe reinforcement learning (safe RL) represents a pivotal paradigm for fortifying
the resilience of power and energy systems. This approach encompasses the acquisition
of policies that not only maximize return but also ensure the maintenance of reasonable
system performance and adherence to vital safety constraints throughout the learning and
deployment phases.

A comprehensive exploration of safe RL in [138] categorizes this domain into two
distinct approaches, shedding light on their potential applications in enhancing power and
energy system resilience. The first approach introduces a modification to the traditional
optimality criterion, typically governed by discounted finite or infinite horizons, by incor-
porating a safety factor. This alteration equips RL algorithms with the capacity to consider
safety as a paramount objective, thus mitigating the risk of hazardous actions.

In contrast, the second approach harnesses external knowledge or risk metrics to
guide the exploration process effectively. By integrating domain-specific insights and risk-
awareness metrics, this approach empowers RL agents to navigate complex environments
with a heightened awareness of potential dangers and system vulnerabilities.

Considering the safety concerns discussed in Section 4.1.5, the incorporation of safe
RL into the toolkit for resilient power and energy systems emerges as a compelling future
research direction. By ensuring that RL-driven decisions prioritize safety alongside perfor-
mance, this approach can contribute significantly to the development of robust and secure
energy infrastructures capable of withstanding diverse challenges and uncertainties.

5. Summary

In this review article, a comprehensive exploration of DRL in the context of resilient
power and energy systems was provided, highlighting its applications, current progress,
challenges, and potential for future research. The article began by outlining the origin of
DRL as a fusion of RL and deep learning, setting the foundation for understanding its
multifaceted applications.

The article subsequently delved into various DRL methods and algorithms, meticu-
lously dissecting their merits and drawbacks. This analytical foundation served as a starting
point for highlighting applications of DRL across different aspects of resilient power and
energy systems. These aspects included dynamic response, restoration and recovery, energy
management and control, communications and cybersecurity, and resilience planning and
metrics development.

One distinguishing feature of this review was its in-depth analysis of the limita-
tions and challenges inherent in DRL. These challenges included concerns related to
sub-optimality, scalability, the delicate balance between speed and accuracy, intricacies
associated with system complexity, safety considerations, and the pursuit of robust general-
ization. This comprehensive examination not only shed light on the present hurdles but
also unveiled a spectrum of future research opportunities.

The future avenues discussed encompassed enhancing training methodologies, fos-
tering transparency through Explainable AI, leveraging hybrid approaches, integrating
human expertise into DRL through human-in-the-loop paradigms, drawing inspiration
from physics-based RL, and establishing the foundations of safe RL. This article equipped
researchers and practitioners with a roadmap for navigating the evolving landscape of DRL
in resilient power and energy systems, thereby contributing to the continual advancement
of this critical field.
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