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Abstract: In this paper an efficient, compact, and cheap power source design for an off-grid PV
water pumping system is investigated. The proposed system consists of a PV array, battery, three-
port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is
extracted from PV sources during the daytime and used to charge batteries through the three-port
converter, then used later to supply load during the nighttime. An intelligent MPPT method is used
to obtain PV maximum power; a jellyfish optimization technique with different control algorithms
is used to optimize and tune controllers’ parameters among the system. Different modes for the
TPC are discussed depending on PV power availability. The proposed system is simulated to assess
system performance under different conditions; also the system is efficient with reduced number of
components than conventional converters. A complete unified power management over PV input
port, battery port, and load port has occurred for all operation modes. At all operation modes, the
system has been feeding load without any unmet loads. A real case study in Al-Kharijah oasis is
studied and simulation results are listed; for the Dom case DC bus ripple factor voltage percentage
equals 0.8%, in the Dim case equals 3%, and in the Siso mode equals 9%.

Keywords: renewable energy; three-port converter; water pumping

1. Introduction

Egypt is aiming to increasing generated electricity from renewable sources to 42%
by 2035, with wind providing 14%, hydropower 1.98%, photovoltaic (PV) 21.3%, and
conventional energy sources 57.33% [1]. Clean energy production is a very important issue,
as it can afford the required amount of energy needed; it also avoids environmental dam-
age. Production of environmentally friendly energy helps improve system sustainability,
controlling energy resources wisely. The United Nations announced that the world should
move towards sustainability by achieving 17 sustainable goals as per the 2030 agenda [2].
One of these goals is to increase energy share in the global energy production to move
towards a green energy future, also reducing harmful emissions to support health and
welfare to all human beings [2]. A lack of electricity in remote areas is related to high
poverty rates. There is a direct proportional relation between energy consumption and
economic growth. Extending the electricity network to some remote areas would be very
expensive; thus, using renewable energy sources is more economical. A hybrid micro grid
renewable energy system that consists of (PV), a wind energy system, battery, and diesel
generator is proposed to meet the energy requirements in a city called Bernice, located in
the Red Sea, Egypt [3].

Water plays an important role in any country’s development, as development depends
on water quality and quantity [4]. Pumps that are powered by diesel are widely used in
irrigation applications. However, oil is very expensive, harmful, and burning it results in
polluted emissions. Also, pumps’ maintenance costs are high, so it is important to find
different alternatives. Renewable energy can limit the use of fossil fuel, as many researchers
move towards solar powered pumping systems [4].
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Different types of motors can be used for water pumping applications. The Brushless
DC motor has a high efficiency between 80% and 90%, a high torque to weight ratio, and
low maintenance. Efficiency of the system excluding the PV part can reach up to 50%. The
switched reluctance motor has a higher efficiency and lower cost compared to the DC or
induction motor (IM), as efficiency can reach 85% [4].

In solar PV pumping applications, IM is widely used, as it has a reliable mechanical
design and good performance for certain load ranges, as induction motor drive (IMD)
behaves like a constant speed motor [5].

The authors in [6] use a scheme to improve PV system efficiency. This can be achieved
by using new MPPT techniques. This scheme is enhanced by investigating a PV generator
and DC shunt motor using a fuzzy logic controller. A power electronics system based on a
boost DC–DC converter is used along with the PV module to improve the performance
by shifting the converter control input duty cycle [6]. In [7], the proposed converter can
consider power flow and has a high voltage gain with fewer components; the switched
capacitor and coupled inductor have succeeded to achieve high voltage gain.

Many types of DC–DC converters are used in water pumping systems for controlling
DC bus voltage. The authors in [8] present a grid connected multi-source hybrid renewable
energy system consisting of a multi-port DC–DC converter, and a DC–AC PWM power
inverter. The converter has several input sources, PV modules, fuel cells, and wind turbine
generators. The multi-port converter can maintain the DC output voltage of the sources to
a regulated DC voltage matched with the inverter input, and can also track the maximum
power point for different renewable sources. The study in [9] discusses a novel two-phase
parallel bidirectional DC–DC converter; this converter combines advantages of a Z-source
network and interleaved parallel structure effectively. A three-port converter (TPC) is one
type of multi-port converter with a bidirectional port for energy storage system along with
an input port and output port; no separate converter is required for ESS [10]. Proposed
TPC topology in [11] is based on using auxiliary switches connected to active bridge at TPC
ports to guarantee zero circulating current flow between the battery and PV.

TPC reduces the conversion, which is why it has higher efficiency, compact size, and
unity power management over the three ports where centralized control can be applied.
Different studies have investigated TPC converters, as shown in [12].

Numerous studies have been conducted on water pumping applications; however,
there is a need for more studies on the possibility of utilizing renewable sources to construct
a comfortable and sustainable watering system. This proposed study focuses on suppling
the required energy to operate a sustainable system, by constructing an efficient, compact,
and cheap design for an off-grid PV water pumping system using 3-phases (IM). This
strategy is achieved using a very compact converter with a reduced number of components,
high efficiency, and low cost. The system consists of PV modules, TPC, battery, LC filter
circuit, inverter, and motor pump. A jellyfish optimization technique, intelligent MPPT
technique, and control algorithm are used to control different modes of the TPC. The
whole system is developed via utilizing the MATLAB/Simulink software to simulate the
suggested model and performing the overall system analysis. Different modes for the TPC
are discussed depending on PV power availability which is affected by the sun irradiation
profile. First, the article describes and the model system components in detail. Second, it
describes different control strategies and optimization tools applied on the system. The
system has been designed based on a case study in Al-Kharijah oasis city, Egypt. Finally,
the simulation results are listed and discussed with conclusions.

2. System Description

The proposed PV water pumping system in this study consists of a 5.6 kW PV array
connected to the TPC input port, a non-isolated boost three-port converter, a battery
connected to the second port of TPC, a charger controller, an LC filter circuit, a three-phase
inverter, and a motor pump connected to the TPC output port, as shown in Figure 1.
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When solar irradiation is highly available, the MPPT technique extracts maximum
power from a PV system. The TPC supplies power to the IM pump through an inverter,
and when there is excess energy, the TPC controls batteries’ charging process to save
extra energy.

During cloudy and rainy days, PV power may be insufficient to feed load; the TPC
controls the battery discharging process to supply load through inverter and filters. Each
cycle, PV power and load power are calculated to determine which mode the TPC shall
work in.

3. System Modeling

This section describes the system elements in detail; at first it describes the PV array
used in the paper, the storage system, the TPC with different modes, the inverter, and the
motor pump.

3.1. PV Array

In Figure 2, a photovoltaic array is composed of series and parallel modules. The
following mathematical model is valid for any array that consists of Nser × Npar mod-
ules [13,14]:

I = IpvNpar − INpar[exp(
V + Rs

(
Nser
Npar

)
I

V.α.Nser
)− 1]−

V + Rs

(
Nser
Npar

)
I

Rp

(
Nser
Npar

) (1)

Electricity 2024, 5, FOR PEER REVIEW 3 
 

 

2. System Description 
The proposed PV water pumping system in this study consists of a 5.6 kW PV array 

connected to the TPC input port, a non-isolated boost three-port converter, a battery con-
nected to the second port of TPC, a charger controller, an LC filter circuit, a three-phase 
inverter, and a motor pump connected to the TPC output port, as shown in Figure 1. 

 
Figure 1. Schematic diagram of the PV water pumping system. 

When solar irradiation is highly available, the MPPT technique extracts maximum 
power from a PV system. The TPC supplies power to the IM pump through an inverter, 
and when there is excess energy, the TPC controls batteries’ charging process to save extra 
energy. 

During cloudy and rainy days, PV power may be insufficient to feed load; the TPC 
controls the battery discharging process to supply load through inverter and filters. Each 
cycle, PV power and load power are calculated to determine which mode the TPC shall 
work in. 

3. System Modeling 
This section describes the system elements in detail; at first it describes the PV array 

used in the paper, the storage system, the TPC with different modes, the inverter, and the 
motor pump. 

3.1. PV Array 
In Figure 2, a photovoltaic array is composed of series and parallel modules. The 

following mathematical model is valid for any array that consists of Nser × Npar modules 
[13,14]: 

I = I୮୴N୮ୟ୰ − IN୮ୟ୰[exp( V + Rୱ ൬Nୱୣ୰N୮ୟ୰൰ IV. α. Nୱୣ୰ ) − 1] − V + Rୱ ൬Nୱୣ୰N୮ୟ୰൰ IR୮ ൬Nୱୣ୰N୮ୟ୰൰  (1)

 
Figure 2. The PV array has Nser and Npar modules [13].



Electricity 2024, 5 230

3.2. Non-Isolated Three-Port DC–DC Boost Converter

The three-port DC–DC converter consists of three controlled semiconductor switches
that turn on and off according to operating mode, three capacitors that are used to smooth
the voltage and inductor, and three diodes. The controlled semiconductor switches (S1, S2,
and S3) are used to extract the maximum power from the PV module, regulate the output
voltage, and store the surplus power extracted from the PV module in the battery. The
PV is connected to the input port (Vpv), load is connected to the output port (Vo), and the
battery is connected to a bidirectional port in a single circuit (Vb). The TPC reduces the
conversion stages, so the system is more efficient, has small packing, and a unified central
power management is applied through three ports. Figure 3 shows a schematic diagram of
the TPC [15].
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3.3. Modes of Operation and Power Flow for TPC

The power flow of the converter is shown in Figure 4, where the PV inputs power
to the converter (PPV), the load power (Pout), and the bidirectional power of the battery
(Pbattery). According to the power–balance principle, the relation between the three ports’
power is obtained as [15]; TPC operating modes are determined based on the difference
between PPV and Pbattery as described in Figure 4.
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Figure 5 shows a flow chart that describes how each mode is being selected, indicating
that it depends on (PPV–Pload).
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3.3.1. Dual Output Mode

The dual output mode (Dom) has three modes of operation. Mode I, when S1 is ON,
S2 and S3 are OFF, is valid for a time interval of D1 × Ts. Mode II, when S2 is ON and S1
and S3 are OFF, is valid for a time interval of D2 × Ts. In mode III, all switches are OFF and
it is valid for a time interval of (1 − D1 − D2) × Ts. Figure 6 describes the circuit diagram
in the Dom mode:
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The state-space averaged model of the TPC in Dom can be expressed as [15]
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3.3.2. Dual Input Mode (Dim)

When Ppv is less than the load power, PV and batteries share together to feed the load,
which is called Dim mode. There are two cases in the Dim mode, when D1 > D3, and when
D1 < D3.

When D1 > D3
In mode I interval, S1 and S3 are ON, and S2 is OFF is for a time equals D3×Ts. Mode

II’s interval is for a time (D1 − D3) × Ts, where S1 is ON, and S2 and S3 are OFF. Mode III’s
interval is for a time (1 − D1) × Ts, in which S1, S2, and S3 are OFF.

When D1 < D3
The mode I interval equals a time of D1 × Ts, in which S1 and S3 are ON, and S2 is

OFF. The mode II interval equals (D3 − D1) × Ts, where S3 is ON, and S1 and S2 are OFF.
The mode III interval equals (1 − D3) × Ts, in which S1, S2, and S3 are OFF.

Figure 7 shows the Dim circuit diagram. It is found that the two cases give the same
ADim average matrix. Similarly, due to the matrices BDim, CDim, and EDim, the state-space
averaged model of the TPC in Dim can be expressed as [15]:

d
dt
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3.3.3. Single Input Single Output PV to Load (Siso)

This mode has two modes of operation. The mode I interval, equals a time of D1 × Ts,
where S1 is ON, S2 and S3 are OFF. The mode II interval equals (1 − D1) × Ts, where S1, S2,
and S3 are OFF. Figure 8 shows circuit diagram for the PV to load mode.
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The state-space averaged model of the TPC in PV-load (Siso) can be expressed as [15]

d
dt


iL f
Vcin
Vcb
Vo

 =


0 1/L f 0 −(1 − D1)/L f

−1/Cin −1/RinCin 0 0
0 0 −1/RbCb 0

(1 − D1)/Cb 0 0 −1/RbCb




iL f
Vcin
Vcb
Vo



+


0

1/RinCin
0
0

0
0

1/RbCb
0

(
Vpv
Vb

)
+


Vco/L f

0
0

−IL f /Cb

(d◦1)

(4)

3.3.4. Single Input Single Output Battery to Load (Siso)

This mode has two modes of operation. The mode I interval, equals a time of D1×Ts,
in which S1 and S3 are ON, but S2 is OFF. Mode II interval is for a time (1 − D1) × Ts,
where S3 is still ON but S1 and S2 are OFF. Figure 9 shows circuit diagram for the battery to
load mode.
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The state-space averaged model of the TPC in battery-load (Siso) can be expressed
as [15]

d
dt


iL f
Vcin
Vcb
Vo

 =


0 1/L f 0 −(1 − D1)/L f

−1/Cin −1/RinCin 0 0
0 0 −1/RbCb 0

(1 − D1)/Cb 0 0 −1/RbCb




iL f
Vcin
Vcb
Vo



+


0

1/RinCin
0
0

0
0

1/RbCb
0

(
Vpv
Vb

)
+


Vo/L f

0
0

−IL f /Cb

(d◦1)

(5)

3.4. Modelling of Three-Phase Induction Motor

The motor model has four state variables: Istator components isd, isq, λrd, and ωr. The
continuous state-space model for (IM) is shown as the following [16]:

•
X = A(x)x + Bu + δ (6)

y = Cx (7)

A state-space vector x ∈ ℜ(4×1) given by x = [isd isq λrd ωr]T; u ∈ ℜ (2 × 1) is an
input vector consisting of terminal voltage, indicated by u = [Vsd Vsq]T; δ ∈ ℜ (4 × 1) is the
disturbance vector, given by δ = [0 0 0 (−p/Jt)Tl]T, with Jt that is total inertia moment of
coupled rotating parts; and A(x) ∈ ℜ (4 × 4) is the matrix characteristics of the system, given
by [16]:

A =


−1/τ′ ωs Lm/L′

sLrτr 0
−ωs −1/τ′ −ωrLm/L′

sLr 0
Lm/τr 0 −1/τ′

r 0
0 kϕrd 0 0

 (8)

With k = 3
2

p
Jt

Lm
Lr

and τ′
s =

L′
s

Rs
as the stator transient time constant; τr =

Lr
Rr

is the rotor

time constant; τ′
r =

L′
r

Rr
is the rotor transient time constant 1

τ′ = Rs + Rr(Lm + Lr)
2/L′

s; Lm
is the magnetizing inductance; and ωs is the synchronous speed (rad/s), as following [16]:

ωs = ωr + ωslip = ωr +
Lmisq

τrλrd
(9)

in which ωslip is the slip speed. B ∈ ℜ (4 × 2) is input matrix given by [16]:

B =


1/L′

S 0
0 1/L′

S
0 0
0 0

 (10)

y ∈ ℜ (2 × 1) is output-matrix vector given by y = [λrd ωr]T; output matrix C ∈ ℜ (2 × 4) is
given by

C =

(
0 0 1 0
0 0 0 1

)
(11)

3.5. Pump Modelling Equations

The hydraulic power to drive a pump depends on liquid density, height to lift the
fluid, and flow rate of the material [17]:

HaydroulicPower =
QH ρg
1000

(12)
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4. Control Strategies and Optimization
4.1. Control Strategies

The overall system discussed in this paper needs control over the following:

1. PV power. Fuzzy logic is applied to gain maximum power from the PV array.
2. A PI controller is used with the battery to regulate the DC bus voltage at refer-

ence value.
3. A PI controller shall be used with the inverter to obtain a pure sinusoidal wave at the

load terminals.

Figure 10 shows a fuzzy controller block diagram. Input signals can be processed
by fuzzification block and fuzzy values are assigned for these signals. The data can be
interpreted by the inference mechanism considering rules and their membership functions
with the defuzzification block [18].
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The input variables are error € and change of error (CE) as a function of sample time
(t) [18]:

E(t) =
P(t)− P(t − 1)
V(t)− V(t − 1)

=
∆P
∆V

(13)

CE(t) = E(t)− E(t − 1) = ∆E (14)

The input E(t) is the P–V curve slope and defines the MPP position in the PV module,
increment in the duty cycle (∆D), and can be considered the output variable, which may
be positive or negative depending on the operating point location. The DC–DC converter
receives the output to operate the load. Using ∆D value delivered by the controller, an
accumulator was made to obtain the value of the duty cycle.

D(t) = D(t − 1) + ∆D(t) (15)

4.2. Optimization

The jellyfish optimization technique is applied to obtain the optimal values of the PI
controller gains. The JF optimization technique is a metaheuristic algorithm that observes
the behavior in oceans. Simulation of search behavior by the JF technique includes following
ocean current, active and passive motions inside a JF swarm, and their convergences into
JF bloom as shown in Figure 11 [19].

The JF technique has been applied to selected PI gains with the following parameters
values as shown in Figure 12.
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Population number = 40,
Number of iterations = 5,
The objective function for selecting PI gains is minimizing error signal as

Integral absolute error =
∫

IeI.dt (16)

The error signal (e) in the first PI controller equals VDC − Vload.
The error signal in the second PI is the difference between reference AC voltage and

actual AC output voltage.

Direction of the ocean current (
−−−→
trend ) is determined by averaging all vectors using

equation [19]:
−−−→
trend = X∗ − β x rand (0, 1) x µ (17)

New location of JF can be determined by the following [19]:

Xi (t + 1) = Xi (t) + rand (0, 1) x (X∗ − β x rand (0, 1) x µ) (18)
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In swarm, jellyfish show passive (type A) and active (type B) motions, respectively.
When the swarm is created, jellyfish mostly exhibit type A motions, then they increasingly
exhibit type B motions. Type A motion is the motion of JF is given by [19]:

Xi (t + 1) = Xi (t) + γ x rand (0, 1) x (upper bond − lower bound) (19)

The simulation of JF motion and direction location and updated location respectively
can be calculated by [19]:

−−−−−→
Direction =

XJ (t)− Xi (t) i f f (X i
)
≥ f (X j )

Xi (t)− Xj(t) i f f (X i
)
< f (X j )

(20)

Xi (t + 1) = Xi (t) +
−−−→

Step (21)

Figure 13 shows JF algorithm flow chart. Two cascaded PI controllers are connected to
the TPC and battery in order to regulate DC bus voltage; the third PI controller is connected
to the inverter to obtain a pure sinusoidal waveform. Table 1 lists all PI controller gains.
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Define objective function that is selecting PI 
gains which minimize error signal shown in eq 
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i=1 End

Figure 13. JF algorithm flowchart.

Table 1. PI Controller gains.

Dom Dim Siso

KP1 = 50 KP1 = 61.2

KP3 = 62.9KI1 = 30 KI1 = 84.3

KP2 = 109.2 KP2 = 5

KI2 = 86.9 KI2 = 3

KI3 = 121.9KP3 = 82.7 KP3 = 164.9

KI3 = 28.3 KI3 = 188.3



Electricity 2024, 5 238

5. System Design

The Al-Kharijah oasis is located in the Western desert, around 200 km to the west of
the Nile valley, Al-Kharijah’s coordinates are 25◦26′18′′ N 30◦33′30′′ E [20]. A group of five
houses are located in Egypt’s AL-Kharijah Oasis. Each house consists of four members;
the average consumption of water is 0.83 m3/h, so total consumption is 4.1 m3/h. Water
pump parameters are selected and shown in Table 2. IM parameters are selected to be
suitable enough to drive the water pump. The average solar energy throughout the year in
the Al-Kharijah oasis is shown in Figure 14; also, Figure 15 shows the average number of
daylight hours throughout the year [21].
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Ppv can be calculated at head height 65 m with the following equation [22,23]:

Ppv =
g.ρs.Qs.Th

3600.G.ηp.(1 − ρl)
(22)

where, g = 9.18 (m/s2), ρs = 1000 (kg/m3), Qs = 20 (m3/day/house), G = 6.9 (kW/m2),
Th = 65 (m), ηp, and ρ1 for the pump are selected from [24], Substitute in Equation (17)
then, Ppv = 5.7 kW. The PV array consists of five parallel strings, and six series modules
per string. PV module data and TPC circuit parameters are calculated and listed; motor
parameters are selected as shown in Table 2 [25].
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Table 2. System parameters [25].

PV module power (W) 195.4

Voc open circuit voltage (V) 45

Isc short circuit current (A) 5.56

Voltage at maximum power (V) 37.5

Current at maximum power (A) 5.21

Number of cells per module 72

Battery type Lithium-ion

Battery nominal voltage (V) 12 × 25

Initial state of charge (%) 75

Rated battery capacity (AH) 250

Capacitor Cin (µF) 300

Inductor Lf (mH) 3

Capacitor Co (µF) 500

Motor rated power (hp) 5.5

Motor nominal voltage (V) 400

Motor rated speed (rpm) 1430

Pump rated power (hp) 5

Max. head height (m) 95

Pump body material Stainless steel

6. Simulation Results and Discussion

The system described in Figure 1 has been simulated at different TPC modes. Each
mode of the TPC has been simulated, and results are listed in each mode.

Case study I: Dual output mode (Dom)

In this mode, the sun irradiance is about 1000 W/m2. The PV output power is high
enough to operate the motor, with excess power to charge the batteries; the motor operates
at rated torque 27 N.m. The previously discussed control technique manages to set the DC
bus voltage to 600 V, as shown in Figure 16a. The maximum DC bus ripple factor voltage
percentage equals nearly 0.8%, as shown in Figure 16b.
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Figure 16. (a) DC bus voltage. (b) DC bus percentage voltage ripple factor percentage.
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Figure 17 shows the RMS value of three-phase AC line voltage (inverter output voltage)
that equals about 380 V which is controlled by the previously discussed control technique,
and an RMS value of three-phase AC current that equals nearly 8.5 A.
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Figure 17. (a) RMS value of three-phase AC output voltage. (b) RMS value of three-phase AC
output current.

Figure 18 shows the motor speed, at rated torque speed which equals 1430 rpm as
indicated. Also, motor actual torque is simulated which equals nearly 27 N.m.

Electricity 2024, 5, FOR PEER REVIEW 14 
 

 

 
(a)  

 
(b) 

Figure 16. (a) DC bus voltage. (b) DC bus percentage voltage ripple factor percentage. 

(a) (b) 

Figure 17. (a) RMS value of three-phase AC output voltage. (b) RMS value of three-phase AC output 
current. 

  
(a) (b) 

Figure 18. (a) Motor speed. (b) Motor torque. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

500

550

600

650

DC bus voltage

Reference DC bus voltage

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

-1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

200

250

300

350

400

Phase A
Phase B
Phase C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

6

7

8

9

10

11

12
Phase C
Phase B
Phase A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

0

10

20

30

40

50

60

70

80
Motor torque
Rated motor torque

Figure 18. (a) Motor speed. (b) Motor torque.

In this mode, the motor works at rated speed and rated torque, as PV supplies the
motor with needed power.

Figure 19 shows the PV array output power which equals nearly 5.6 kW at irradiation
1000 W/m2 as MPPT is applied and PV power is at the maximum value; also load power
equals 4 kW. It can be noticed that actual motor speed and actual PV power are at the rated
values. Figure 20 shows Dom mode power management. It shows PV power, load power,
and battery state of charge versus time, where the excess PV power charges batteries.
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Figure 19. (a) PV array output power. (b) Motor power.
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Case II: Dual input mode (Dim)

In the dual input mode, PV irradiation is about 300 W/m2 and the motor operates at
rated torque, so the PV output power is not high enough to operate this load, as PV equals
nearly 1.6 kW; hence, the battery supplies more power. Figure 21 shows DC bus voltage
and DC bus ripple factor. The DC bus ripple factor equals nearly 3%, which is higher than
the Dom case, as in the Dim case, PV feeds load with less power than the Dom case; load is
fed by both PV and batteries.

Figure 22 shows the RMS value of 3-phase AC line voltage that equals about 380 V,
the RMS value for AC current at the Dim mode, which equals around 8.5 A, same as in the
Dom case. Figure 23 shows the motor speed at rated torque where speed equals nearly
1430 rpm, and actual motor torque equals nearly 27 N.m. The motor works at rated speed
and rated power as PV, and the batteries share in suppling load without interruptions,
irrespective of sun irradiation.

Figure 24 shows the PV array output power which equals about 1.6 kW, and load
power equals around 4 kW.

Figure 25a shows the Dim mode power management, as it shows PV power, load
power, and battery discharging power. Figure 25b shows the battery state of charge where
in Dim mode the batteries discharge power.
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Figure 21. (a) DC bus voltage. (b) DC bus voltage ripple factor percentage.
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Figure 22. (a) RMS value for the AC voltage. (b) RMS value for AC current.
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Figure 23. (a) Motor speed. (b) Motor torque.
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Figure 24. (a) PV power. (b) Load power.
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Figure 25. (a) System power management. (b) Battery state of charge.

Case III: Single input single output Siso (battery to load):

Siso mode is active when PV irradiation is not available at sunset or night times, so the
PV output power equals zero, making battery responsible for motor operation. Siso mode
is simulated when the motor operates at a torque rate of 27 N.m. Figure 26 shows DC bus
voltage which is controlled at 600 V, and shows the DC bus ripple factor percentage equals
nearly 9%, which is higher than previous modes, as battery only operates and PV power
equals zero at Siso mode. Figure 27 shows the RMS value for the AC voltage which equals
nearly 380 V, and the RMS value for AC current which equals nearly 8.5 A.
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Figure 26. (a) DC bus voltage. (b) DC bus voltage ripple factor percentage.
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Figure 27. (a) RMS value of three-phase AC output voltage. (b) RMS value of three-phase AC
output current.

Figure 28 shows the motor speed at the rated torque which equals nearly 1430 rpm,
and motor torque equals around 27 N.m. Figure 29 shows motor power which equals
nearly 4 kW, and battery discharging power that nearly equals 4 kW. Figure 30 shows the
battery state of charge where at Siso (Battery to load) mode batteries discharge power.
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Figure 28. (a) Motor speed. (b) Motor torque.
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Figure 29. (a) Motor power. (b) Battery discharging power.
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Figure 30. Battery state of charge.

Case IV: Simulation for (Dom-Dim-Siso battery to load) Modes Simultaneously

Each mode works depending on the difference between the PV power and the load
power. If the PV power is greater than the load power, Dom mode starts working; if the PV
power is less than the load power, then Dim mode starts working. Otherwise, Siso mode
works. the system is simulated at selected torque that equals 15 N.m.

Figure 31 shows solar radiation, where at Dom the sun profile is high, almost 1000 W/m2,
at Dim irradiation is 300 W/m2, and at the Siso no sun irradiation is available.
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The DC bus voltage at different modes is shown simultaneously in Figure 32. There is
a drop in the DC voltage at (0.7 s) due to the mode transition from Dom to Dim mode; also
there is change at (1.4 s) due to transition from Dim to Siso mode. In this paper, control
techniques are used to maintain DC bus voltage at 600 V. The DC bus voltage and DC bus
voltage ripple factor are shown; it is clear that DC voltage ripples increase in the Siso mode
when the battery operates to feed motor.

Figure 33 shows the RMS value of three-phase AC output voltage among different
modes and the RMS value of three-phase AC output current. Figure 34 shows motor speed
and motor torque.

Figure 35 shows the PV output power among different modes, where power equals
5.6 kW/m2 in the Dom mode, 1.6 kW/m2 in the Dim mode, and zero in the Siso battery
to load mode. The motor power equals nearly 2.2 kW as it works at a reduced torque of
15 N.m. The motor runs at a speed rate of 1430 as inverter output voltage is controlled at
380 V. Figure 36 shows the battery state of charge, where the battery charges in the Dom
mode and discharges in the Dim and Siso modes.
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Figure 32. (a) DC bus voltage. (b) DC bus voltage ripple factor percentage.
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Figure 33. (a) RMS value of three-phase AC output voltage. (b) RMS value of three-phase AC
output current.
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Figure 34. (a) Motor speed. (b) Motor torque.
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Figure 35. (a) PV array output power. (b) Motor power.
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Figure 36. Battery state of charge.

Case study (V) Al-Kharijah Oasis

A real case study has been taken from the Al-Kharijah oasis; the solar irradiation on a
random day in August has been studied. Each mode works depending on the difference
between PV power and load power.

Figure 37 shows the average solar irradiation through the day where grey lines show
corresponding days with minimum and maximum solar energy, also Figure 38 shows solar
irradiation where the maximum radiation occurs between 11 am and 1 pm and the TPC
works at Dom mode. The Dom mode works from nearly 8:30 am to 2 pm, where Dim mode
works between 2 pm and 7:30 pm, and 7 am and 8:30 am. The Siso works for the rest of the
hours when there is no available sun irradiation.
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Figure 38. Solar irradiations.

Figure 39 shows the DC bus voltage at different modes, where there is a drop in the
DC voltage at (2 pm) due to mode transition from Dom to Dim mode; also, there is change
at (8:30 pm) due to the transition from Dim to Siso mode. The DC bus voltage and DC bus
voltage ripple factor are shown; it is clear that DC voltage ripples increase at the Siso mode
when battery operates to feed motor.
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Figure 39. (a) DC bus voltage. (b) DC bus voltage ripple factor percentage.

Figure 40 shows the RMS value of the three-phase AC output voltage among different
modes, and the RMS value of three-phase AC output current. Figure 41 shows the motor
speed at 1430 rpm and motor torque at 15 N.m. The motor power equals nearly 2.2 kW
as it works at reduced torque of 15 N.m, and the motor runs at a speed rate of 1430 as the
inverter output voltage is controlled at 380 V. Figure 42 shows the PV output power among
different modes, where power is high in the Dom mode and charges battery, low at the
Dim mode and battery shares with PV feeding load, and has zero power in the Siso battery
to load mode. Figure 43 shows the battery state of charge, where the battery charges in the
Dom mode between 9 am and 2 pm, and discharges in the Dim and Siso modes. Figure 44
shows the THD value of AC current, and the THD value of AC voltage respectively. See
Table 3 for more details of individual measurements.

Table 3. Individual measurements of the Al-Kharijah system case study.

Time (S) Irradiation
W/m2

PV Power
(kW)

Battery
power (kW)

Load Power
(kW)

Duty Cycle
(S1)

Duty Cycle
(S2)

Duty Cycle
(S3)

9 am 750 5 −2.8 2.2 0.4 0.7 0

11 am 980 5.6 −3.4 2.2 0.4 0.7 0
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Table 3. Cont.

Time (S) Irradiation
W/m2

PV Power
(kW)

Battery
power (kW)

Load Power
(kW)

Duty Cycle
(S1)

Duty Cycle
(S2)

Duty Cycle
(S3)

1 pm 850 4.3 −2.1 2.2 0.4 0.5 0

3 pm 500 1.5 +0.7 2.2 0.58 0.5 0

5 pm 200 1 +1.2 2.2 0.55 0 0.3

7 pm 100 0.5 +1.7 2.2 0.55 0 0.6

9 pm 0 0 +2.2 2.2 0.42 0 1

11 pm 0 0 +2.2 2.2 0.42 0 1

1 am 0 0 +2.2 2.2 0.42 0 1
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Figure 40. (a) RMS value of three-phase AC output voltage. (b) RMS value of three-phase AC
output current.
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Figure 41. (a) Motor speed. (b) Motor torque.
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Figure 42. (a) PV array output power. (b) Motor power.
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Figure 43. Battery state of charge.
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Figure 44. (a) THD value of three-phase AC output voltage. (b) THD value of three-phase AC
output current.

7. Conclusions

The proposed system consists of the PV array, TPC converter, batteries, and 3-ph
induction motor, all of which are used together in the water pumping application. The
fuzzy logic MPPT technique is applied on the PV system to extract maximum output
power, and the jellyfish optimization technique is applied to system controllers to optimize
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controller gains and system parameters. The proposed system is efficient due to a reduced
number of components compared to conventional converters. A real case study in the
Al-Kharijah oasis is studied and simulation results are listed. In the Dom case, the DC
bus ripple factor voltage percentage is 0.8%, in the Dim case it equals 3%, and in the Siso
mode it equals 9%. These advantages make the proposed system suitable for Standalone
PV-Based pumping applications.
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Nomenclature

ADom System matrix during Dom
ADim System matrix during Dim
BDom Input matrix during Dom
BDim Input matrix during Dim
Co Output capacitor (F)
Cb Battery capacitor (F)
Cin Input capacitor (F)
CDom Output matrix during Dom
CDim Output matrix during Dim
D1 Duty cycle for switch 1
D2 Duty cycle for switch 2
D3 Duty cycle for switch 3
d◦1 Small signal perturbation
d◦2 Small signal perturbation
DDom Feedforward matrices during Dom
DDim Feedforward matrices during Dim
g Gravity acceleration (m/s2)
H Total head in (m)
Id Diode current (A)
Ipv PV current (A)
I0 Average output current (A)
Jt Total inertia moment (kg.m2)
L

′
s Stator Transient inductance (H)

Lr Rotor inductance (H)
Npar Number of parallel modules
Nser Number of series modules
Ppv PV input power (W)
Pout Load power (W)
Pbattery Battery power (W)
Q Flow rate in (m3/s)
Rb Battery resistance (Ω)
Rin Input resistance (Ω)
Rp Parallel resistance (Ω)
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Rs Series resistance (Ω)
RL Load resistance (Ω)
Vo Output voltage (V)
Vpv PV input voltage (V)
Vcin Input capacitor voltage (V)
Vcb Battery capacitor voltage (V)
VLf Inductor voltage (V)
Vgs1 Gate signal voltage across switch 1 (V)
Vgs2 Gate signal voltage across switch 2 (V)
Vgs3 Gate signal voltage across switch 3 (V)
X* Currently Jellyfish with best location in the swarm
τ
′
r Rotor transient time constant

τ
′

Transient time constant
τr Rotor time constant
α Diode ideality constant
ρ Fluid density (kg/L)
ηp Pump efficiency (%)
ρl System losses (%)
µ Mean location of all jellyfish
β Distribution coefficient
γ Motion coefficient
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