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Abstract: Understanding how climatic variables impact the reference evapotranspiration (ETo) is
essential for water resource management, especially considering potential fluctuations due to climate
change. Therefore, we used the Sobol’ method to analyze the spatiotemporal variations of Penman–
Monteith ETo sensitivity to the climatic variables: downward solar radiation, relative humidity,
maximum and minimum air temperature, and wind speed. The Sobol’ indices variances were
estimated by Monte Carlo integration, with sample limits set to the 2.5th and 97.5th percentiles of the
daily data of 33 automatic weather stations located in the state of Mato Grosso, Brazil. The results of
the Sobol’ analysis indicate considerable spatiotemporal variations in the sensitivity of ETo to climatic
variables and their interactions. The dominant climatic variable responsible for ETo fluctuations in
Mato Grosso is incident solar radiation (53% to 93% of annual total sensitivity—Stot), which has a
more significant impact in humid environments (70% to 90% of Stot), as observed in the areas of the
Amazon biome in the state. Air relative humidity and wind speed have higher sensitivity indices
during the dry season in the Cerrado biome (savanna) areas in Mato Grosso (20% and 30% of the Stot,
respectively). Our findings show that changes in solar radiation, relative humidity, and wind speed
are the main driving forces that impact the reference evapotranspiration.

Keywords: Sobol’s method; climatic change; Amazon; Cerrado

1. Introduction

Reference evapotranspiration (ETo) is the potential evapotranspiration of a hypotheti-
cal well-watered and actively growing grass surface of uniform height [1]. Understanding
the mechanism of ETo is crucial in agricultural and hydrological studies and projects at
local, regional, or global scales [2–8], as it plays an essential role in the hydrological cycle.

Given the importance of ETo, different methods have been developed to model it,
which, based on their fundamental factors, can be divided into three categories: mass
transfer, radiation, and temperature equations [9–14]. The choice of the most suitable
methodology typically depends on the availability of meteorological data and the required
level of precision. However, it is crucial to highlight that selecting the appropriate methodol-
ogy significantly and directly impacts estimating ETo and calculating hydro-climatological
parameters, as stated by [15–19]. For instance, in [15], considerable uncertainties were ob-
served in aridity index analysis when employing three different PET methods, potentially
resulting in incorrect climatic classifications at different locations. And [16], when calculat-
ing standardized precipitation-evapotranspiration indices using the Thornthwaite model
and the Hargreaves–Samani model, found that drought events appeared more severe when
ETo was computed with the Thornthwaite approach.

Furthermore, choosing the right ETo methods can introduce additional uncertainties
when evaluating hydro-climatological parameters, especially when considering the po-
tential impacts of future climate changes. In many studies of climate change impacts on
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hydrological and water resources, only the changes in temperature and precipitation are
investigated using temperature-based ETo estimation methods [20–22], which could lead
to inaccuracies by not considering changes in solar radiation, wind speed, and relative
humidity. For example, [23], in their analysis of annual ETo changes in Spain, found that
relative humidity (RH), wind speed (WS), and maximum temperature (Tmax) exerted more
significant influence on ETo than solar radiation (SRD) and minimum temperature (Tmin).
Conversely, in Guangdong, a humid subtropical province in South China, ETo exhibited
higher sensitivity to RH and temperature (T) compared to SRD and WS, as reported by [24].
In contrast, in the eastern Himalayan region of Sikkim, India [25], and the Qinghai–Tibet
Plateau [26], the most influential parameter affecting ETo estimation was Tmax, followed
by SRD, while WS, Tmin, and RH demonstrated varying effects on mean ETo.

In this regard, the Penman–Monteith equation, which is the standard ETo methodology
recommended by the Food and Agriculture Organization (FAO), could provide better
insights into how changes in climate variables can affect the ETo once it is a physical model
that combines mass transfer and radiation methods, which is jointly determined by climatic
variables such as downward solar radiation (SRD), relative humidity (RH), maximum and
minimum temperature (Tmax and Tmin), and wind speed (WS) [1].

Currently, there is no consensus on each of the main variables causing ETo variation,
especially because the Penman–Monteith ETo is influenced by a combination of changes
in its climate variables, as well as the complex non-linear relationship between ETo and
these parameters’ factors [27,28]. The use of sensitivity analysis can provide insight into
the domain variables responsible for the fluctuations of ETo, and can provide valuable
information about the response of the ETo to different climate change scenarios. Sensitivity
analysis evaluates the relationships between a system’s input and output variables [29].
The methodology has been widely employed in environmental sciences, ecology, and
hydrology [30]. In studies related to evapotranspiration, sensitivity analysis enables the
inspection of the impact of climate variables on ETo fluctuation and the identification of its
dominant variables [31–33].

The sensitivity analysis methodologies are commonly divided into local sensitivity
analysis (LSA) and global sensitivity analysis (GSA). Although local sensitivity analysis
has been widely used to identify the influence of climatic variables on ETo [34–38], the LSA
method has no self-verification. It only reflects the local effects of individual variables [30].
On the other hand, global sensitivity analysis has the advantage of estimating the impact of
all inputs and their combined effects on output changes [39,40]. The Sobol’ method is a GSA
method based on variance decomposition analysis that provides a more robust performance
than nonlinear models like the FAO–Penman–Monteith ETo [40,41]. Additionally, the
Sobol’ method can assess the impact of uncertainties in the variables by encompassing
their entire range of values, thus providing more information to quantify the influence of
meteorological variables on ETo.

Amidst the Brazilian territory, the state of Mato Grosso stands out for its vast territo-
rial area, which encompasses three biomes: the Pantanal wetlands, savanna formations
(Cerrado), and the Amazon rainforest, as well as two climate types: Aw climate (tropical
savanna climate) and Cwa (tropical climate) [42]. The main economic activity in the state is
agricultural production, with Mato Grosso being the largest grain producer in Brazil [43].
However, despite the high demand for water resources and the potential for expanding
irrigated agriculture systems, there is still a lack of research focused on the impacts that
changes in climate variables have on the fluctuation of evapotranspiration in the state of
Mato Grosso [44,45].

Therefore, as it is critical to identify the dominant climatic variables that control ETo
in the region to better plan the use of water resources, this study has three objectives:
(i) Analyzing the spatiotemporal variations in ETo and its related climatic variables (SRD,
RH, Tmax, Tmin, and WS) in the state of Mato Grosso, Brazil; (ii) Determining and dis-
cussing the sensitivity of ETo to the climatic variables; (iii) Determining the dominant
climatic variable attributed to ETo variability in the region.



Earth 2023, 4 716

2. Materials and Methods
2.1. Study Area and Data

The state of Mato Grosso is located between the coordinates 06◦00′ S, 19◦45′ S and
50◦06′ W, 62◦45′ W and has a large territorial extension, with an area of 903,202,446 km2,
which represents 10.61% of the territory of Brazil. Climate-wise, the state has two well-
defined seasons: the wet season, from October to April, and the dry season, from May
to September. The total annual precipitation ranges from 1200 to 2000 mm, with higher
levels in the north and east-north regions and in areas with altitudes close to 800 m. The
predominant climate is classified as Aw (tropical savanna climate) and Cwa (tropical
climate) according to the Köppen classification [42].

The study used daily time series data from 2008 to 2020 of the climatic variables: down-
ward solar radiation (SRD in MJ m−2 day−1), relative air humidity (RH in %), maximum air
temperature (Tmax in ◦C), minimum air temperature (Tmin in ◦C), and mean wind speed
at 2 m (WS in m s−1). These data were collected from 33 automatic weather stations (AWSs)
belonging to the National Institute of Meteorology (INMET), distributed throughout Mato
Grosso, Brazil (Figure 1, Supplementary Table S1). Given that the wind speed variable in
the INMET AWS is obtained at 10 m, the average wind speed at 2 m was calculated using
Equation (1), as proposed by [1].

WS2 =
WS10 × 4.87

ln(67.8 ×(H− 5.42))
(1)

where WS2—is the wind speed at 2 m (m s−1), WS10—is the wind speed at 10 m (m s−1),
and H—is the height at which the wind speed was obtained (m)—10 m.

Earth 2023, 4, FOR PEER REVIEW 3 
 

 

Analyzing the spatiotemporal variations in ETo and its related climatic variables (SRD, 
RH, Tmax, Tmin, and WS) in the state of Mato Grosso, Brazil; (ii) Determining and dis-
cussing the sensitivity of ETo to the climatic variables; (iii) Determining the dominant cli-
matic variable attributed to ETo variability in the region. 

2. Materials and Methods 
2.1. Study Area and Data 

The state of Mato Grosso is located between the coordinates 06°00′ S, 19°45′ S and 
50°06′ W, 62°45′ W and has a large territorial extension, with an area of 903,202,446 km2, 
which represents 10.61% of the territory of Brazil. Climate-wise, the state has two well-
defined seasons: the wet season, from October to April, and the dry season, from May to 
September. The total annual precipitation ranges from 1200 to 2000 mm, with higher levels 
in the north and east-north regions and in areas with altitudes close to 800 m. The pre-
dominant climate is classified as Aw (tropical savanna climate) and Cwa (tropical climate) 
according to the Köppen classification [42]. 

The study used daily time series data from 2008 to 2020 of the climatic variables: 
downward solar radiation (SRD in MJ m−2 day−1), relative air humidity (RH in %), maxi-
mum air temperature (Tmax in °C), minimum air temperature (Tmin in °C), and mean 
wind speed at 2 m (WS in m s−1). These data were collected from 33 automatic weather 
stations (AWSs) belonging to the National Institute of Meteorology (INMET), distributed 
throughout Mato Grosso, Brazil (Figure 1, Supplementary Table S1). Given that the wind 
speed variable in the INMET AWS is obtained at 10 m, the average wind speed at 2 m was 
calculated using Equation (1), as proposed by [1]. 

 
Figure 1. Topographic and biomes maps, and location of INMET automatic weather stations 
(AWSs), in Mato Grosso, Brazil. Numerical identification according to Supplementary Table S1. 

WS2 = 
WS10 × 4.87

ln 67.8 × H-5.42
 (1) 

Figure 1. Topographic and biomes maps, and location of INMET automatic weather stations (AWSs),
in Mato Grosso, Brazil. Numerical identification according to Supplementary Table S1.

2.2. Data Quality Control and Homogeneity

A straightforward quality control check was conducted on the raw data by the proce-
dures outlined by [46]. This involved removing any data that did not pass the following
screening tests: (1) SRD values had to fall within the range of 3% to 100% of the radiation
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at the top of the atmosphere (Ra) (0.03 Ra ≤ SRD ≤ 1 Ra); (2) RH values had to range from
0% to 100% (0 ≤ RH ≤ 100); (3) Tmax had to be greater than Tmin, with both temperatures
falling within the range of −30 ◦C to 50 ◦C (−30 ≤ Tmin ≤ Tmax ≤ 50); and (4) WS values
had to be within the range of 0 m s−1 to 100 m s−1 (0 ≤WS ≤ 100).

Additionally, a visual homogeneity check was conducted. This visual test involved
plotting the time series data from the candidate station alongside the average data from
several neighboring stations. We ensured we had a minimum of five surrounding datasets
to calculate the average. No noticeable inhomogeneity was observed in the dataset, so no
data was excluded.

After applying all the data treatment procedures, it was noted that there was an
average of 18.6% missing values across all the datasets. Specifically, there were average
missing values of 22.7% in the SRD variable, 16.4% in RH, 13.6% in Tmax, 17.9% in Tmin,
and 22.5% in WS. To address these missing data points, we employed the simple linear
gap-filling method provided by GapMET software, following the recommendation by [47]
for AWSs in the Mato Grosso region.

2.3. Reference Evapotranspiration (ETo) Calculation

The FAO Penman–Monteith (FAO-PM) is a standardized method recognized by the
Food and Agriculture Organization for estimating reference evapotranspiration (ETo). This
method is based on physics and combines physiological and meteorological parameters
(i.e., SRD, RH, Tmax, Tmin, and WS) to evaluate ETo at a hypothetical grass crop reference
surface with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s·m−1, and
an albedo of 0.23 [1]. In this study, we employ the widely used FAO-56 Penman–Monteith
method to calculate ETo [1], which is formulated as follows:

ETo =
0.408∆(Rn−G ) + γ

( 900
T+273

)
WS(es− ea)

∆+γ(1 + 0.34WS)
, (2)

where ETo = reference evapotranspiration (mm d−1), Rn = net radiation at the crop surface
(MJ·m−2·day−1), G = soil heat flux density at the soil surface (MJ·m−2·day−1), T = mean
daily air temperature at 2 m height (mean value of Tmax and Tmin, ◦C), WS = wind speed
at 2 m height (m·s−1), es = saturation vapor pressure (kPa), ea = actual vapor pressure
(kPa), ∆ = slope of saturation vapor pressure versus air temperature curve (kPa·◦C−1), and
γ = psychometric constant (kPa·◦C−1). The detailed calculations of Rn, ∆, γ, and other
parameters needed for computing ETo were obtained according to the procedure described
in [1]. The G values were ignored for daily estimation (G = 0 MJ m−2 d−1).

2.4. Sobol’s Sensitivity Analysis Method

Sobol’s sensitivity analysis method [48] was utilized to evaluate the monthly sensitivity
of ETo to the five meteorological variables (SRD, RH, Tmax, Tmin, WS). Sobol’s method
was chosen based on its ability to perform variance decomposition analysis and its supe-
rior performance in sensitivity analysis of nonlinear and nonmonotonic models [40,41,49].
Moreover, this method allows for examining the individual variables, their interactions, and
their impact on the model outputs [50]. The fundamental concept behind Sobol’s method
is the decomposition of the output variance of the model (Var(Y)) (Equation (3)), allowing
verification of the contribution that each variable (X1, X2,. . ., Xd) and their interaction has on
the output.

Var(Y) = ∑d
i=1 Vi + ∑d

i<j Vij + · · · + V1,2,· · · ,d, (3)

where Vi is the contribution to Var(Y) due solely to the effect of Xi, and Vi,2,. . .,d is the
contribution to Var(Y) due to the interaction of {X1, X2,. . ., Xd}. Subsequently, the method
allows separating the contribution of each variable by estimating the Sobol’ first-order
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index (S1) (Equation (4)), as well as the variable interactions contribution by estimating the
Sobol’ total-sensitivity index (Stot) (Equation (5)):

S1 =
Vi

Var(Y)
, (4)

Stot= 1−
VarX~

i

Var(Y)
, (5)

The detailed Sobol’ decomposition analyses can be found in [51]. This study calculated
the Sobol’ decomposition and its indices using the Global Sensitivity Analysis Toolbox
Version 1.57 of the program MATLAB [52]. To calculate the Sobol’ Index, we first needed
to generate samples for each meteorological variable (SRD, RH, Tmax, Tmin, WS). This
involved initially dividing the datasets of each variable from the AWSs into 12 subsets, each
representing a month. From these subsets, we extracted the variables’ probability density
function (PDF), along with their maximum and minimum ranges. The variable ranges were
determined as the 2.5th and 97.5th percentiles of the daily observed data for each month
and AWS (see Supplementary Tables S5 and S6). Subsequently, we used Monte Carlo
quasi-random numerical integration to create 20,000 samples for each variable per month
per AWS. These samples were then utilized to estimate ETo, and the Global Sensitivity
Analysis Toolbox was applied to compute the Sobol’ Indices based on the variance of the
estimated ETo.

Given that Tmin cannot exceed Tmax, we followed the approach recommended
by [39,53] when generating samples for these variables using the Monte Carlo method.
Initially, we calculated the mean and the difference between Tmax and Tmin. Subsequently,
we generated samples for mean temperature and temperature differences using the Monte
Carlo technique. Finally, we reconstructed the minimum and maximum temperatures from
the generated samples.

2.5. Spatial Interpolation

The ESRI ArcGIS® 10.8 (Environmental Systems Research Institute, Redlands, CA,
USA), ordinary kriging model was used to create interpolation maps for ETo and its
variables and sensitivity results across the entire study area. The ArcGIS Geostatistical
Analyst tools were employed to generate a nested variogram with multiple model fits
automatically. Additionally, a cross-validation method was executed to compare predicted
and observed values, enabling the assessment of the model’s performance and fine-tuning
of variogram parameters.

3. Results
3.1. Climatic Variables and Penman–Monteith ETo Spatiotemporal Distribution

The monthly mean of solar radiation (SRD), relative humidity (RH), maximum and
minimum air temperature (Tmax, Tmin), wind speed (WS), and reference evapotranspira-
tion (ETo) at the 33 AWS in Mato Grosso, Brazil are represented by the boxplots in Figure 2.
All variables follow a seasonal pattern between wet and dry seasons. Tmax and WS reach
their highest mean at the end of the dry season (38.4 ± 1.3 ◦C and 1.3 ± 0.5 m s−1), whereas
their lowest mean happens at the end of the wet season (33.8 ± 1.3 ◦C and 0.9 ± 0.3 m
s−1). Tmin and RH means range from 14.6 ± 1.0 ◦C to 20.0 ± 1.0 ◦C, and 52.6 ± 7.1% to
83.0 ± 2.5%, with a maximum in the wet season and minimum in the dry season. The
lowest mean SRD is during the beginning of the dry season (16.2 ± 2.2 MJ m−2 d−1)
and gradually increases until the end of the dry season when it reaches its highest mean
(19.1 ± 1.4 MJ m−2 d−1). The beginning of the dry season also exhibits the lowest ETo
(3.5 ± 0.3 mm d−1). The evapotranspiration demand increases during the dry period,
reaching its maximum in September (5.0 ± 0.6 mm d−1) and remaining relatively constant
during the wet season (about 4.1 ± 0.3 mm d−1).
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Figure 2. Boxplot showing the monthly variation of Penman–Monteith reference evapotranspiration
(ETo) and its climatic variables obtained on 33 weather stations (AWSs) of Mato Grosso, Brazil.
(Data series from 2008–2020). Climatic variables: SRD—downward solar radiation; RH—relative
humidity; Tmax—maximum air temperature; Tmin—minimum air temperature; WS—wind speed at
2 m. The top and bottom edges of the box represent the 75th and 25th percentiles. The top and bottom
whiskers represent the nonoutlier maximum and minimum. The line inside each box is the median.
The gray-shaded background represents the rainy season. Empty and full boxes also indicate monthly
values in the rainy and dry seasons, respectively. The different colors represent the meteorological
variables evaluated (yellow—SRD; purple—RH; red—Tmax; blue—Tmin; green—WS; black—ETo).

The spatial distribution of evapotranspiration and its climatic variables on an annual
and seasonal scale is displayed in Figure 3. The results show a zonal variation that follows
the distribution of biomes and topography in Mato Grosso. The Amazon region of the
state exhibits the lowest values of SRD, Tmax, WS, and ETo, and the highest values of
Tmin and RH. In the Cerrado region, the influence of topography can also be observed in
higher-altitude areas (southeast part of the state), where there is a decrease in SRD, Tmax,
Tmin, and ETo compared to the rest of the biome in the state. The spatial distribution of
variables within the state is less noticeable during the wet season because there is a similar
pattern in the average values of SRD, RH, and Tmin across both biomes in Mato Grosso.
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Figure 3. Spatial distribution of Penman–Monteith reference evapotranspiration (ETo) and climatic
variables in the 33 weather stations (AWSs) of Mato Grosso, Brazil. (Data series from 2008–2020).
Climatic variables: SRD—downward solar radiation; RH—relative humidity; Tmax—maximum
air temperature; Tmin—minimum air temperature; WS—wind speed at 2 m. Lines on the map
represent the biome limits, and points represent the automatic weather stations (AWSs) of the state of
Mato Grosso.

3.2. Sobol’ Sensitivity Coefficients Spatiotemporal Distribution

Figure 4 shows the variation of sensitivity indices for the meteorological variables of
ETo obtained from the 33 AWSs on an annual and seasonal time scale. Figure 5 presents
the monthly variation of these sensitivity indices. Based on the method proposed by [51],
the sensitivity indices of the first order (S1) and total (Stot) can be classified into three levels
of sensitivity: insensitive (S < 0.01), sensitive (S ≥ 0.01), and highly sensitive (S ≥ 0.1).
Thus, among the five meteorological variables, ETo is highly sensitive to SRD, RH, and WS
sensitive to Tmax; and insensitive to Tmin.

On the annual scale, the sensitivity indices of ETo for each variable generally followed
the following order: SRD > WS > RH > Tmax > Tmin. Solar radiation (SRD) accounted
for the largest variance, representing at least 59% of the total and first-order sensitivity
indices during the dry period and reaching an average of 91% during the months of the
rainy season. RH and WS explained approximately 8% and 11% of the Stot, and 6% and
9% of the S1 variation on an annual scale, respectively. RH and WS also alternated as the
second most influential variable during the seasonal periods, with RH dominating during
the rainy season and WS during the dry season. The temperature variables had a lesser
influence on ETo in Mato Grosso. Throughout the year, the sensitivity indices of Tmax
ranged from 3% to 10%, while Tmin reached a maximum value of approximately 1%.
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The spatial distributions of the annual and seasonal averages of S1 and Stot are pre-
sented in Figure 6. The results indicate that, in addition to the seasonal behavior, the
coefficients exhibit zonal characteristics that resemble the distribution of biomes in the state
of Mato Grosso. Although SRD is the dominant variable in determining ETo in the state,
the influence of radiation differs in the Amazon and Cerrado biomes. While in most of
the Amazon region, the sensitivity indices of SRD are on average higher than 80%, in the
Cerrado biome, the sensitivity of ETo to radiation ranges from 40% to 80%, indicating that
RH, WS, and Tmax also influence ETo fluctuations in the Cerrado.
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wind speed at 2 m. Lines on the map represent the biome limits, and points represent the automatic
weather stations (AWSs) in Mato Grosso.
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During the dry season of the Cerrado biome, when the sensitivity indices of SRD are
around 50%, it is possible to observe that the second dominant variable varies according to
the spatial distribution. In the southeast of the Cerrado, RH becomes the second dominant
variable, accounting for 20% to 30% of the ETo variation. In the northeastern region of the
Cerrado, Tmax becomes the second dominant variable, with approximately 20% to 30%
influence. In the central region of the Cerrado, the second dominant variable is WS, with
sensitivity indices ranging from 30% to 40%.

4. Discussion

Understanding the causes of ETo variations is essential for water resources manage-
ment and agriculture in Mato Grosso. The results of this study have highlighted the high
sensitivity of Penman–Monteith ETo to solar radiation in the study area. Overall, the
sensitivity of ETo to the five meteorological variables in the state can be ranked as follows:
SRD > WS ≥ RH > Tmax > Tmin. Although SRD is the dominant climatic variable, ex-
plaining 60% to 90% of the ETo variability throughout the year, the sensitivity of ETo the
climatic variables, similar to findings in the literature, showed strong indications of spatial
variability (Figures 4 and 6); [32,54,55], with RH playing an important role in determining
the spatial and seasonal variations of ETo sensitivity indices in Mato Grosso.

In the Mato Grosso Amazon biome portion, higher and relatively constant relative
humidity percentages are observed throughout the year, along with lower values and
greater fluctuation of incident radiation measurements (Figures 3 and 4). The main cause
for this pattern is that the Amazon region is characterized as a humid tropical area where
convective activity forces the upward movement of moisture, forming a thicker cloud cover
than the Cerrado region of Mato Grosso [56]. Consequently, in this biome, not only is there
a greater attenuation of solar radiation, but there is also a greater reduction in temperature
amplitude. This combination of factors could explain why solar radiation is the limiting
factor in the evapotranspiration process in the Amazon biome.

These results are consistent with those found in other humid subtropical and tropical
areas, such as in the forests of China [55,57], where it is reported that changes in incident
solar radiation are the main driving force for ETo variability. Similar behavior can also
be observed in the Cerrado region of Mato Grosso during the wet season, when relative
humidity generally exceeds 80%. During this season, maximum temperature and tempera-
ture amplitude are lower, and cloud cover increases due to the predominant circulation of
the continental equatorial mass (mEc) and the South Atlantic Convergence Zone (ZCAS),
which transport moisture from the Amazon to the Cerrado region (Figure 6) [56,58,59],
impacting the solar radiation sensitivity indices.

During the dry season in the Cerrado biome region, the spatial distribution of sensi-
tivity indices indicates three areas of influence analogous to the subdivision of the biome
proposed by [58]: Cerrado Meridional (southeastern region of the Mato Grosso Cerrado),
Cerrado Central, and Cerrado Setentrional (northeastern region of the Mato Grosso Cer-
rado). In the Cerrado Meridional region, the occasional incursion of air circulation masses
from the polar mass (mP), combined with the topography, leads to increased cloudiness and
lower average incident radiation (Figure 6) [59–61]. However, an increase in RH sensitivity
indices is observed due to lower averages and greater fluctuations in relative humidity
(RH) compared to the Amazon biome. In the Cerrado Central and Setentrional regions,
the reduction in atmospheric humidity caused by the tropical Atlantic mass and the flat
topography creates clearer sky conditions [56,58,59,61], thereby reducing fluctuations in
incident solar radiation. In this scenario, the increase in sensitivity indices for the variables
is linked to their ability to increase water retention in the atmosphere. Therefore, in the
Cerrado Setentrional region, where Tmax reaches the highest values in the state, Tmax has
greater sensitivity than RH and WS, as it allows for an increase in the saturation vapor
pressure deficit. On the other hand, in the Cerrado Central region, where Tmax is lower
and WS is higher, wind speed has a greater influence due to disturbances and movement
in the atmospheric boundary layer.
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These results are consistent with those found by [41,55,62,63], which indicate that
atmospheric air circulation directly influences the spatial patterns of global ETo sensitivity.
These authors also agree that high cloudiness and relative humidity conditions are the main
factors that increase the sensitivity indices of radiation. In contrast, clear sky conditions
and low relative humidity increase the sensitivity indices of wind speed. Thus, ETo is more
sensitive to changes in SRD, WS, and RH variables in arid and semi-arid regions.

The temperature variables (Tmax and Tmin) generally accounted for less than 10% of
ETo. Although higher temperatures, resulting in reduced RH and increased energy supply
to the process, tend to increase ETo, the effects of Tmax and Tmin on ETo sensitivity, as
observed in studies by [41,55,62,64], were almost insignificant compared to other factors.

The Sobol’ method has provided valuable insights for understanding the impact of
climatic variables on ETo. Based on our results, caution should be exercised when making
future ETo estimates in Mato Grosso State using formulations that do not account for
changes in solar radiation, wind speed, and relative humidity. Please pay special attention
to the estimation of Rs, as it is the dominant variable in Penman–Monteith ETo calculations.
Furthermore, in the Mato Grosso Cerrado region, particularly during the dry period,
the interactions between relative humidity and wind speed cannot be disregarded when
determining evapotranspiration using the Penman–Monteith method.

5. Conclusions

The global sensitivity of ETo estimated by the Penman–Monteith method to meteo-
rological variables (downward solar radiation—SRD, relative humidity—RH, maximum
air temperature—Tmax, minimum air temperature—Tmin, and wind speed at 2 m—WS)
exhibits seasonal and spatial distribution in Mato Grosso State.

Regardless of the period, the dominant variable for evapotranspiration in Mato Grosso
is solar radiation (SRD), which has the greatest influence during the rainy season and in
humid regions such as the Amazon. The other variables that have a secondary impact on
sensitivity follow the ranking of WS > RH > Tmax > Tmin.

ETo estimated by the Penman–Monteith method is most sensitive to changes in WS,
RH, and Tmax in arid and semi-arid environments, such as the Cerrado during the dry
season. However, the sensitivity to RH and WS is higher in the Meridional and Central
regions of the Cerrado biome. In contrast, in the Setentrional region, the secondary variable
with the highest sensitivity is Tmax.

The meteorological variable Tmin does not significantly influence ETo estimated by
the Penman–Monteith method in the Mato Grosso State.

The estimation of ETo using the Penman–Monteith method for Mato Grosso State
needs more accurate and precise data on incident solar radiation (SRD), whether obtained
from observed data series at meteorological stations or estimated through gap-filling
methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/earth4030038/s1. Table S1: INMET automatic weather stations
(AWSs) in Mato Grosso, Brazil. Table S2: Lower and upper sample limits (Inf—Sup), correspond-
ing to the 2.5th and 97.5th percentiles, of the meteorological variable downward solar radiation
(SRD—MJ m−2 day−1) observed in the 33 AWSs of Mato Grosso State, Brazil. Table S3: Lower and
upper sample limits (Inf—Sup), corresponding to the 2.5th and 97.5th percentiles, of the meteoro-
logical variable relative humidity (RH—%) observed in the 33 AWSs of Mato Grosso State, Brazil.
Table S4: Lower and upper sample limits (Inf—Sup), corresponding to the 2.5th and 97.5th percentiles,
of the meteorological variable maximum air temperature (Tmax—◦C) observed in the 33 AWSs of
Mato Grosso State, Brazil. Table S5: Lower and upper sample limits (Inf—Sup), corresponding to the
2.5th and 97.5th percentiles, of the meteorological variable minimum air temperature (Tmin—◦C)
observed in the 33 AWSs of Mato Grosso State, Brazil. Table S6: Lower and upper sample limits
(Inf—Sup), corresponding to the 2.5th and 97.5th percentiles, of the meteorological variable wind
speed at 2 m. (WS—m s−1) observed in the 33 AWSs of Mato Grosso State, Brazil.
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