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Abstract: This study employs the Soil and Water Assessment Tool (SWAT) model to evaluate soil
loss within the Shilabati and Dwarkeswar River Basin of West Bengal, serving as a pilot investigation
into soil erosion levels at ungauged stations during the post-monsoon season. Detailed data for
temperature, precipitation, wind speed, solar radiation, and relative humidity for 2000–2022 were
collected. A land use map, soil map, and slope map were prepared to execute the model. The model
categorizes the watershed region into 19 sub-basins and 227 Hydrological Response Units (HRUs). A
detailed study with regard to soil loss was carried out. A detailed examination of soil erosion patterns
over four distinct time periods (2003–2007, 2007–2012, 2013–2017, and 2018–2022) indicated variability
in soil loss severity across sub-basins. The years 2008–2012, characterized by lower precipitation,
witnessed reduced soil erosion. Sub-basins 6, 16, 17, and 19 consistently faced substantial soil loss,
while minimal erosion was observed in sub-basins 14 and 18. The absence of a definitive soil loss
pattern highlights the region’s susceptibility to climatic variables. Reduced soil erosion from 2018
to 2022 is attributed to diminished precipitation and subsequent lower discharge levels. The study
emphasizes the intricate relationship between climatic factors and soil erosion dynamics.

Keywords: SWAT; watershed modeling; soil loss; post-monsoon season; ungauged stations; sensitivity
analysis; SUFI-2

1. Introduction

Soil, a finite resource, plays a vital role in sustaining life by serving as the foundation
for food production, carbon sequestration, biodiversity enhancement, and the regulation of
water and climate [1,2]. The wearing away of the topsoil layer is known as soil erosion and
contributes to soil degradation. One of the biggest difficulties for land managers is land
degradation, which includes soil erosion, as it affects around 60% of the world’s land sur-
face [3,4]. According to one study [5], the risk of land degradation is expected to intensify
due to the dual impact of climate change and ineffective basin management. Alarmingly,
approximately 44 percent of India is reported to be grappling with the challenge of land
degradation. Because a considerable portion of the populations of developing nations
directly depend on agricultural and land resources for their livelihood, the economic and
social effects of soil erosion there are more severe than in industrialized countries [6–8].
Soil erosion models are helpful for planning land use plans, estimating soil loss and runoff
rates from agricultural land, providing relative soil loss indices, and guiding government
policy and strategy on soil and water conservation [9]. The estimated annual average rate
of soil loss is roughly 16.75 t/ha, which is far higher than the 7.5 to 12.5 t/ha/yr allowed
soil erosion rates for different regions of the nation [10]. In order to quantify and describe
erosion in terms of parameters like the rainfall erosivity index, soil erodibility, topography,
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and management techniques, among others, soil loss models often make an effort to inter-
pret physical laws and landscape processes into mathematical correlations [11,12]. Rainfall
serves as a catalyst for soil detachment and subsequent displacement, frequently involving
complicated regional geomorphic processes. It contributes to soil erosion, a widespread
issue that affects soil stability across the globe [13,14]. It is a major issue affecting environ-
mental quality, agricultural productivity, and food security in many nations throughout the
world [3,7,15,16]. As opposed to erosion caused by on-site deposition in micro-topographic
depressions, soil loss refers to the actual amount of material taken from a particular hill
slope or slope segment [12,17].

Unchecked soil loss from watersheds as a result of excessive human meddling has
become a significant concern for preserving crop production sustainability and maintaining
land productivity today [5,18,19]. Using various empirical and semi-empirical models,
several researchers have found that GIS and remote sensing are the most trustworthy and
dependable tools in the measurement of soil erosion [10,20–24]. Various models have been
developed to measure soil loss with respect to the geographical conditions over an area,
reflecting the regional heterogeneity of watershed parameters. These models include the
Modified Universal Soil Loss Equation (MUSLE) [25], the Areal Nonpoint Source Watershed
Environment Response Simulation (ANSWERS) [26], the Agricultural Nonpoint Source
Pollution model (AGNPS) [27], SHETRAN [28–30], the Agricultural Catchments Research
Unit (ACRU) [31], and the Soil and Water Assessment Tool (SWAT) [32]. Over decades
of model development, the Soil and Water Assessment Tool (SWAT) [32,33] model has
become one of the most extensively used water quality watershed- and river-basin-scale
models globally [34–37] and utilized for a wide variety of hydrologic and/or environmental
issues [36]. The SWAT model has gained immense popularity as it can simulate contin-
uously for a long time and can run on a daily time step [34], providing the best results
for minute changes. The model divides the entire watershed into sub-basins, which are
then further subdivided into hydrological response units (HRUs), land uses, vegetation
types, and soil characteristics [37,38]. This model, which explains water and sediment
circulation, vegetation development, and nutrient circulation, uses daily rainfall data, max-
imum and minimum temperatures, solar radiation, relative air humidity, and wind speed
as inputs [37,38].

Various strategies for calibration and uncertainty analysis are utilized in hydrological
modeling. Effective calibration and uncertainty analysis can be accomplished using a vari-
ety of techniques, such as the multi-start (M-Simplex), general algorithm (GA), parameter
solution (PARASOL), adaptive clustering covering (ACCO), SWAT Calibration Uncertainty
Procedure (including PSO, PARASOL, GLUE, MCMC, and SUFI-2), and uncertainty estima-
tion based on local error and clustering (UNEEC) [39]. SUFI-2 is the most widely used and
adaptable method [38], used for parameterization, sensitivity analysis, and daily/monthly
calibration and verification of hydrological parameters.

The significance of this study arises from its particular focus on the post-monsoon
season in West Bengal’s Shilabati and Dwarkeswar regions. During the rainy season, from
June to September, we normally devote a lot of attention to monitoring soil erosion and
river flow in West Bengal. However, there has been a lack of awareness of the loss of
sediment in the Shilabati and Dwarkeswar River basins. These areas are vulnerable to
erosion, particularly gully and rill erosion. Our research focused on the period immediately
following the rainy season, from 2003 through 2022, monitoring soil loss with the help of
the Soil and Water Assessment Tool (SWAT) model.

2. Study Area

The study area includes two main rivers—Shilabati River (also known as Shilai River),
and Dwarkeswar River (also known as Dhalkisor) along with its tributaries, as represented
in Figure 1. The Shilabati River originates in the Purulia district of West Bengal, close to the
Chak Gopalpur village, passing through the districts of Bankura and Paschim Medinipur
in a nearly southeast direction with a length of 26 km [40]. The main tributaries of this river
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are the Joyponda, Ketia, Donai, Kubai, and Champayan rivers [40]. The undulating surfaces
and plain topography with isolated lateritic soil pockets characterize the upper and lower
basin areas, respectively [41,42]. The Shilabati basin is a homogeneous physical entity due
to its granite gneiss geological formation, undulating plateau upland with inter-fluvial
lateritic upland, eastern flowing river system, low to medium rainfall (100–140 cm), high
temperature in summers (35–40 ◦C), and tropical dry deciduous forest cover [43]. Flooding
is common in Shilabati, especially in the Banka, Khirpai, and Ghatal regions.
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Figure 1. Map of (a) India showing West Bengal. (b) Study area showing the Shilabati and Dwarkeswar
rivers along with their tributaries.

The Dwarkeswar River originates from the Chota Nagpur Plateau in the Purulia
district, in the Panjioneya Pahar close to Tilboni Hill and moves towards the Chhatna
area, dividing the area into two equal blocks in the Bankura district. It flows through the
district headquarters as it cuts across the district before entering the southeast corner of
East Bardhhaman District and passes through Hooghly District with a length of around
113 km [40]. The tributaries of the river are Gandheshwari, Beko, Arkasha, Berai, and
Shankari [40]. Before entering the Bankura district as the Kumari Nala, the other left bank
tributary Dangra Nala already passes the undulating surface into a web of gullies [44]. The
average annual rainfall is between 140 and 150 cm [44], with seventy percent rain in the
monsoon season from June to September [45], and this region also faces high temperatures
from 35 to 40 ◦C during the summer season. In Ghatal, the Shilabati joins the Dwarkeswar
and becomes known as Rupnarayan entering the Howrah District’s Hooghly River close to
Gadiara, which empties into the Bay of Bengal.

3. Methodology
3.1. Data Used

After the selection of the study area, Landsat 9 imagery was acquired for the year
2022 from the United States Geological Survey (USGS) Earth Explorer website for the
month of March. A DEM (Digital Elevation Model) was downloaded from the Earth
Data website to delineate the watershed, and a soil map was provided by the Food and
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Agricultural Organization Digital Soil Map of the World (FAO-DSMW). Data for the five
climatic parameters, namely, precipitation, solar radiation, relative humidity, wind, and
temperature, were downloaded from the NASA Power Data website from 2000 to 2022 on a
daily basis for 30 gauge stations, in and around the study area, and all necessary corrections
were performed with the help of R software. Table 1 shows the list of all the data that were
used for this model.

The preparation of the Land Use and Land Cover (LULC) map utilized data from
Landsat and offered a comprehensive examination of the area’s land cover. Additionally, the
Digital Elevation Model (DEM) (Figure A1) was derived from ASTER data to ascertain the
region’s slope characteristics, while the soil map contributed insights into soil composition
and its spatial distribution within the study area. A detailed discussion of these mapping
efforts is presented in the results and discussion section. The amalgamation of these
maps provided a detailed understanding of the region’s underlying conditions, serving as
essential inputs for the SWAT model. Furthermore, the incorporation of weather parameters
played a crucial role in the processing of the SWAT modeling. Figure 2 provides a detailed
flowchart explaining the methodology adopted for this study.
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Table 1. List of data used for the study.

Sl. No. Data Description Source

1. Digital Elevation Model (DEM)
30 m × 30 m spatial resolution grid
used to delineate the boundary of
the watershed.

Advanced Spaceborne Thermal
Emission and Reflection Global
Radiometer (ASTER) data from
the United States Geological
Survey (USGS)

2. Landsat 9

To understand how the soil has been
used and the current landscape;
prepared by supervised classification.
Resolution: 30 m × 30 m

United States Geological
Survey (USGS)

3. Soil Data
To understand the soil structure and
geological structure of the watershed.
Scale: 1:5,000,000

Food and Agricultural Organization
Digital Soil Map of the World
(FAO-DSMW)

4. Weather

Precipitation, solar radiation, relative
humidity, wind, and temperature for 30
gauge stations in and around the area
from 2000 to 2022.
Resolution: 0.5◦ × 0.625◦

NASA Prediction of Worldwide Energy
Resources (POWER)

3.2. Preparation of Land Use and Land Cover (LULC) Maps

Land Use and Land Cover (LULC) maps were prepared in ArcGIS with the help of
a Support Vector Machine (SVM) classifier. A more precise LULC map can be obtained
with the SVM classifier when compared to other supervised learning techniques [46],
including maximum likelihood classification [47]. SVM is based on statistical learning
theory, which is nonparametric in nature and is constructed on the basis of a small number
of samples in the data found in the training text in order to achieve the best classification
outcomes [47,48]. The goal of SVM is to locate a hyperplane in an N-dimensional space
(where N is the number of features) that distinguishes data points into different classes. It
is a classification technique for determining the optimal hyperplane that separates various
classes in a dataset. SVM uses kernels if the classes are non-linearly separable. In this
study, radial basis function (RBF) kernel was used, because of its ability to handle non-
linear relationships between the training data and the entire dataset. RBF requires less
computational time and can work effectively for non-linearly separable classes.

3.3. SWAT Setup

The Soil and Water Assessment Tool (SWAT) is a model that was created at the level of
a river basin to assess the effects of land management techniques in substantial, intricate
reservoirs. The hydrological model deals with the following topics: weather, a surface
waterway, a return canal, a water source, soil loss, ventilation, transmission loss, pond
and reservoir storage, agricultural growth and irrigation, a reaching path, nutrient and
pesticide loading, and water transfers. The hydrological response unit (HRU) used by
SWAT, describes local variety, which includes the properties of the soil, the land cover, and
the land slope.

The equation of the SWAT model is shown in Equation (1):

SWt = SWo + ∑t
i=1

(
Rday − Qsur f − Ea − Wseep − Qgw

)
(1)

where SWt shows the final water content in millimeters (mm);

SWo is the quantity of water on the first soil of the day in millimeters;
t is the number of days;
Rday represents the amount of precipitation on day i (mm);
Qsurf represents the amount of surface runoff on a given day i (mm);
Ea represents the amount of evapotranspiration on day i (mm);
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Wseep represents the amount of water that percolated into the vadose zone from the soil
profile on day i (mm);
Qgw represents the amount of return flow on day i (mm).

With the help of the MUSLE provided in [9], the SWAT model forecasts soil loss. To
calculate the overall fluxes from sub-basins, sediment yield is determined individually at
the HRU scale using Equation (2)

Sy = 11.8
(

Qsur f .qpeak. Ahru

)0.56
.KUSLE.LSUSLE.CUSLE.PUSLE.CFRG (2)

where Sy is the daily sediment yield (in mg);

Qsurf shows the surface runoff;
qpeak represents the peak runoff rates;
Ahru is the HRU’s area (in ha), KUSLE is the soil erodibility component;
CUSLE shows the surface cover and crop management factor;
PUSLE represents the conservation practice factor;
LSUSLE is the topography factor; and
CFRG means the coarse fragment factor.

3.4. Model Calibration and Validation

SWAT includes a number of factors that indicate distinct hydrological conditions
and traits in a watershed. During the calibration procedure, the model parameters were
changed to provide outputs that were reasonably similar to the measured values. Following
the model setup, auto-calibration using the SUFI-2 algorithm was performed in SWAT-CUP
using the observed discharged data for the 15-year period from 2003 to 2017 at a daily time
step with three years as a warm-up period (2000–2002). During the calibration process,
the choice of sensitive parameters and parameter uncertainty were accessed. Utilizing
calibrated values for daily discharged values, validation of the model was performed for the
five-year period from 2018 to 2022. Based on the geophysical parameters of the sub-basins
and the sub-basin-wise model simulated sediment yield data, watershed prioritization was
carried out.

The effectiveness of the model was assessed using statistical measures such as co-
efficient of determination (R2) [49] (Equation (3)), Nash–Sutcliffe Efficiency (NSE) [50]
(Equation (4)), and percentage bias (PBIAS) [51] (Equation (5)).

R2 =

[
∑n

i=1
(
Si − S

)(
Oi − O

)]2

∑n
i=1

(
Si − S

)2. ∑n
i=1

(
Oi − O

)2 (3)

NSE = 1 − ∑N
i=1(Oi − Si)

2

∑N
i=1(Oi − O)2 (4)

PBIAS =
∑N

i=1(Oi − Si)

∑N
i=1 Oi

× 100 (5)

where Oi is the observed data on i-th day, Si is the model simulated value on i-th day, O
refers to the mean of observed data, S is the average of simulated data, and N indicates
the number of years of simulation. Better model performance is indicated by a higher R2

value [52,53]. The NSE shows the statistical association between observed and simulated
values from the model. Its value ranges from zero to one. According to [52,53], the model
performance increases with an increase in the value of the NSE. The average tendency
of simulated values, whether they are smaller or larger than their observed values, is
measured using the PBIAS. According to [53], the appropriate value lies between −20 and
+20%. Positive PBIAS values indicate model overestimation, whereas negative values
indicate model underestimation [53]. This algorithm also calculates the P-factor and R-
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factor during its calibration and validation. The fraction of observed data included within
the 95% prediction border is represented by the P-factor [53]. The P-factor has a range
of 0.0 to 1.0; a number close to 1.0 implies that the model is performing very well and
efficiently [53,54], and a value of >0.7 or 0.75 is considered to be sufficient for discharge [54].
On the other hand, the R-factor is the ratio of the standard deviation of the measured
variable to the average width of the 95PPU band. This index should have a value of 0 to
less than or equal to 1.5, again depending on the circumstances [38,54,55]. Values close
to 1 are acceptable for the calibration and validation of a catchment with respect to its
discharge [17,54,56]. The formulas for these calculations are shown in Equations (6) and (7).

P − f actor = nyti/N (6)

where nyti is the number of measured values bracketed by 95PPU and N total number of
observed data.

R − f actor =
1
N ∑n

ti=1

(
yM

ti,97.5%−yM
ti,2.5%

)
σo

(7)

where yM
ti,2.5% and yM

ti,97.5% are the lower and upper boundaries of the 95PPU band,
respectively, and σo is the standard deviation of the observed data.

3.5. Assessment of Sediment Yield

In the course of this study, the SWAT model’s output was meticulously scrutinized for
the designated study area. An intricate analysis was conducted to discern the correlations
among precipitation, discharge, and soil loss, shedding light on the extent of soil erosion.
To gauge the magnitude of soil loss in a granular manner, calculations were performed on a
sub-basin level, and maps were meticulously crafted to depict the distribution of soil loss.

4. Results and Discussion
4.1. Land Use Land Cover (LULC)

One of the most important parts of the hydrological process is the Land Use Land
Cover (LULC) map, and the area has been classified into five classes. Codes such as AGRC
(agriculture), BARR (barren/fallow land), FRSD (forest), WATR (water body), and URFD
(settlement) have been allocated to the LULC map, as illustrated in Figure 3. The figure
also includes a graphic representation stating the percentage covered by each land cover
type. Agriculture is an important source of revenue, particularly in the south, although
sparser agricultural zones can be found in the middle. As one moves towards the north,
barren land predominates, making farming unfeasible owing to gully erosion. There are
also sparse pockets of barren ground in the west, with smaller spots of thick vegetation
distributed around the territory, primarily towards the center. Clustered villages are most
common in the north. Due to inadequate irrigation resources, rain-fed agriculture prevails
in the drought-prone Purulia district.

The LULC map exhibits an overall accuracy of 89.10%, as reflected in Table A1, along
with a kappa coefficient of 0.85 (equivalent to 85% accuracy). However, the presence of
mixed land use and land cover in this region poses challenges, making it more intricate
to enhance the precision of the LULC results. Studies also reported that in their study
that rills (26%), gullies (11%), and sheet wash (63%) were the most often seen types of
erosion [57,58].
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4.2. Soil Map

The region is mainly divided into three major soil classes, namely, loam, sandy loam,
and sandy clay loam, which are subdivided into seven different categories of soil based
on their properties. The sandy loamy soil (Lf32-1b-3788) is mainly predominant in the
northeastern part of the area along with sandy loam soil (Je71-2a-3758) covering a small
portion while the sandy clay loam soil (Lf10-2a-6665 and Lf96-2ab-6668) is present in the
central part of the area. The southwestern part of the watershed is mainly a combination
of different categories of loamy soil (Be80-2a-3681, Je71-2a-3758, and Lo49-2a-3808). An
area of more than 3000 km2 covered by loamy soil is the best suited for agriculture, and it
can be seen that agriculture is also practiced in those regions. On the other side, the sandy
clay loam soil which covers more than 3500 km2 is unfit for agriculture as it comprises a
high proportion of sand. The sandy loam soil is the most unsuitable soil type containing
the highest amount of sand, covering an area around 2360 km2. If we correlate with the
prepared Land Use Land Cover map, it is observed that barren land is most predominant
in this soil type. Figure 4 shows the spatial distribution of soil in the area along with the
percentage coverage in the area.

4.3. Slope Map

The gradient or incline of the terrain is defined as the slope. A steep slope is an abrupt
incline, and a gentle slope is a gradual incline. The study region has been divided into five
separate slope classes, as shown in Figure 5. The first category, with slopes ranging from
0◦ to 2◦, is found in surrounding bodies of water, such as lakes, ponds, and rivers. It can
also be found in the southwest, where agriculture is prevalent. The second category, which
includes farming, barren land, and settlements, and ranges from 2◦ to 7◦, is prevalent in
the southern and southwestern regions. This slope range extends towards the northern
area, where barren ground and farmland can be found. The mid-range represents dense
vegetation zones, with slopes ranging from 7◦ to 20◦. Reserve woods of note include the
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Jangal Mahal, Gohaldanga Forest Range, Lalgarh-Jhitka Forest Range, Sijua Forest, Salboni
Forest Range, and Badutala Reserve Forest. The remaining two categories, with slopes
ranging from 20◦ to 35◦ and greater than 35◦, are less common. They congregate in the
northwest, near Shusunia Hill, beside villages and tourist attractions.
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vegetation zones, with slopes ranging from 7° to 20°. Reserve woods of note include the 
Jangal Mahal, Gohaldanga Forest Range, Lalgarh-Jhitka Forest Range, Sijua Forest, Salboni 
Forest Range, and Badutala Reserve Forest. The remaining two categories, with slopes 
ranging from 20° to 35° and greater than 35°, are less common. They congregate in the 
northwest, near Shusunia Hill, beside villages and tourist attractions. 

Figure 4. Soil map of the study area.
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4.4. Watershed Delineation, and the Identification of Sub-Basins and HRUs

A crucial initial step in the majority of environmental and natural resource assessments,
analysis, and research is the definition of watersheds and hydro-geomorphic features [59].
With the help of the Arc SWAT model, the watershed along with nineteen other sub-
basins has been delimitated, as represented in Figure 6. The total area of the watershed is
9039.43 km2, while sub-basin 7 has the largest area of about 1023.8 km2, covering almost
11.33% of the total area, followed by sub-basin 15 with 928.48 km2 (10.27% of the total
area). The smallest basins outlined were sub-basin 4 and sub-basin 2 with an area covering
131 km2 and 181.24 km2, respectively. These sub-basins have further been divided into
227 hydrological response units (HRUs) (a detailed list of HRUs is provided in Table A2)
based on various soil types and land cover changes.
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Sub-basin 15 has the highest number of HRUs (23), followed by basin 6 with 22 HRUs
and basin 12 with 19 HRUs, representing the extremely heterogeneous condition of the area.
The 155th HRU in sub-basin 15 covers the maximum portion of the watershed region with
3.31%, followed by the 126th HRU in sub-basin 13 with 3.01%. The 155th HRU is located
in a combination of agricultural lands, including sandy loam soil (11% clay, 11% silt, 78%
sand), with a slope range from 2 to 7 degrees. Sandy loam soil is the best for cultivation
in this region and supports agricultural practices in the largest HRU of the basin. It also
covers 32.34% of the entire sub-basin area. The second largest HRU (126) covers 38.79% of
basin 13. It is also a combination of agricultural land, along with loamy soil (21% clay, 38%
silt, 41% sand) with a slope range from 2 to 7 degrees. The 155th HRU is the third largest in
this region and covers an area of 3.31 in sub-basin 15. This HRU is also a combination of
agricultural land, along with sandy loam soil (11% clay, 11% silt, 78% sand) with a slope
range from 2 to 7 degrees. The 210th HRU covers the largest portion of any sub-basin.
It covers an area of 44.72% of the 18th basin. The HRUs 43, 97, 133, 195, and 201 show
the smallest area coverage of (0.02%) in the entire basin. These HRUs are mostly covered
by barren land with a slope range between 0 and 2 degrees. Sub-basin 5 shows the most
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homogenous type of HRU, where only four units have been identified and each unit covers
more than 20% of the entire watershed, with the 22nd HRU covering the highest area of
28.48%. On the other hand, HRUs 4, 21, 22, 23, 48, 49, 55, 56, 72, 79, 104, 105, 114, 118, 142,
156, 159, 187, 210, and 213 cover an area between 1 and 2% of the total region.

4.5. Sensitivity Analysis

Due to the unavailability of sediment measuring data at the study site, our research
employs runoff data for model calibration. The sensitivity analysis of runoff is conducted
using the ‘Sensitivity Analysis’ function in SWAT CUP. A similar approach was also taken
in [19]. By consulting the pertinent literature [52,60–63], a set of model parameters for
sensitivity analysis was chosen. Following the SWAT model setup and inclusion of all input
parameters, simulations and sensitivity analysis for the period 2003–2022 were performed.
The findings demonstrate that the metrics that indicate surface runoff, groundwater, and
soil qualities are the most vulnerable. Table 2 shows the list of parameters used, and their
respective ranks. Following the outcomes of this procedure, parameters were carefully
chosen for the calibration process to ensure that the evaluation coefficients meet specified
criteria, ultimately achieving the highest level of accuracy in the model.

Table 2. Parameters according to their ranks used for sensitivity analysis.

Rank Parameters Description Maximum Value Minimum Value Fitted Value

1 CN2 Curve number II 30 450 0.016
2 GW_DELAY Groundwater delay time 0 1 53.100
3 ALPHA_BF Base flow alpha factor 0 2 0.109

4 GWQMN
Threshold depth of water in the
shallow aquifer required for
return flow

0 2 0.138

5 GW_REVAP Groundwater “revap” coefficient 0 500 0.110

6 REVAPMN
Threshold depth of water in the
shallow aquifer for “revap”
to occur

−0.2 0.4 312.500

7 SOL_AWC Soil available water capacity 0.8 1 0.192

8 ESCO Soil evaporation
compensation factor −0.8 0.8 0.942

9 SOL_K Saturated hydraulic conductivity 0 1 −0.254

10 ALPHA_BNK Base flow alpha factor for
bank storage 5 130 0.525

11 CH_K2 Effective hydraulic conductivity
in the main channel 0 1 30.875

12 EPCO Plant uptake compensation factor 0 1 0.127
13 HRU_SLP Average slope steepness 0 0.3 0.787

14 CH_N2 Manning’s “n” value for the
main channel 0.01 1 0.104

15 OV_N Manning’s “n” value for
overland flow −0.5 0.6 0.793

16 SLSUBBSN Average slope length −0.5 0.6 20.220
17 SOL_BD Moist bulk density 0.05 24 −0.492
18 SURLAG Surface runoff lag time 30 450 0.016

4.6. Model Calibration and Validation

Calibration is the synchronization of the model’s parameters and the uncertainty
in the arbitrage margins, which results in the model’s acquisition of an interest process
representation that meets predetermined requirements [64]. The calibration and validation
datasets are often divided into two sets for the temporal data series. Typically, additional
data from the years (between 60 and 70 percent) are used during the calibration phase. The
model was calibrated for the 15-year time period from 2003 to 2017, and was validated for
the remaining 5 years from 2018 to 2022 using SUFI2 for discharge data. The first 3 years
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(2000 to 2022) were used as a warm-up period. Once the calibration process was completed,
the new ranges of parameters were used which were generated after the calibration of the
data. The model was iterated 500 times for better results, as directed in [55] and yielded
outstanding results, with R2 and NSE values of 0.99 for both calibration and validation
periods. During the calibration process, the 107th simulation gave the best result, and the
P-factor, R-factor, and PBIAS were 0.77, 0.89, and −0.6, respectively, while for validation,
the values were 0.92, 0.87, and −2.7, respectively, as shown in Table 3.

Table 3. Statistical results of the model calibration and validation.

Process R2 NSE P-Factor R-Factor PBIAS

Calibration (2003–2017) 0.95 0.97 0.77 0.89 −0.6
Validation (2018–2022) 0.92 0.93 0.98 0.87 −2.7

The 95PPU (95 percent prediction uncertainty), shown in green in Figures 7 and 8 for
the calibration and validation processes, represents how SUFI2, a program in SWAT-CUP,
expresses prediction uncertainty. This study’s findings indicate that during the calibration
and validation phases, approximately 77% and 98% of the observed data from the donor
catchment fell within the 95PPU, which represents a zone of reduced uncertainty. Similarly,
the 95PPU’s narrower width (R-factors of 0.89 and 0.87 for calibration and validation)
suggests that the modeling process for the donor catchment was more certain. The model
also demonstrated good performance based on metrics like NSE, R2, and PBIAS.
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(2003–2017).

Earth 2024, 5, FOR PEER REVIEW 13 
 

 

 
Figure 7. Comparison of measured and predicted monthly stream flow during the calibration period 
(2003–2017). 

 
Figure 8. Comparison of measured and predicted monthly stream flow during the validation period 
(2018–2022). 

4.7. Loss of Sediment Yield 
Maximum soil loss from 2003 to 2022 occurred in sub-basin 15 (1432.052 metric 

tons/ha), followed by sub-basin 12 (1389.5295 metric tons/ha) and sub-basin 13 
(1179.7055); while it was lowest in sub-basin 2 (248.12 metric tons/ha), followed by sub-
basin 3 (305.387 metric tons/ha) and sub-basin 3 (341.0335 metric tons/ha). 

Various studies state that rainfall is a major cause of soil loss. In one study, it was 
found that even though the discharge rate is different in summers and winters, soil loss is 
present in both conditions in the Skuterud catchment, southeast Norway [65]. In some 
cases, it was found that discharge plays an important role in the loss of soil. It has been 
observed that precipitation—in this case, rainfall—is a significant factor in soil loss from 
the area. Average soil loss from each sub-basin (refer to Table A3) was calculated to find 
the correlation between these two elements from 2003 to 2022. The year 2015 had the 
lowest rainfall, ranging from 5 mm to 8 mm in the post-monsoon months, which resulted 
in the least soil loss from the region. On the other hand, 2013 faced the maximum rainfall, 
thereby leading to maximum soil loss in the area. It can be observed that soil loss can be 
more related to precipitation than discharge. Both the graphs in Figure 9a follow a similar 
pattern, which is absent in Figure 9b. A strong correlation of 0.96 was observed between 
precipitation and soil loss, as compared to 0.91 between discharge and soil loss over the 
years. Due to a lack of data on other geographical factors, the relationship between them 
cannot be shown.  

Figure 8. Comparison of measured and predicted monthly stream flow during the validation period
(2018–2022).



Earth 2024, 5 57

4.7. Loss of Sediment Yield

Maximum soil loss from 2003 to 2022 occurred in sub-basin 15 (1432.052 metric tons/ha),
followed by sub-basin 12 (1389.5295 metric tons/ha) and sub-basin 13 (1179.7055); while it
was lowest in sub-basin 2 (248.12 metric tons/ha), followed by sub-basin 3 (305.387 metric
tons/ha) and sub-basin 3 (341.0335 metric tons/ha).

Various studies state that rainfall is a major cause of soil loss. In one study, it was found
that even though the discharge rate is different in summers and winters, soil loss is present
in both conditions in the Skuterud catchment, southeast Norway [65]. In some cases, it was
found that discharge plays an important role in the loss of soil. It has been observed that
precipitation—in this case, rainfall—is a significant factor in soil loss from the area. Average
soil loss from each sub-basin (refer to Table A3) was calculated to find the correlation between
these two elements from 2003 to 2022. The year 2015 had the lowest rainfall, ranging from
5 mm to 8 mm in the post-monsoon months, which resulted in the least soil loss from the
region. On the other hand, 2013 faced the maximum rainfall, thereby leading to maximum
soil loss in the area. It can be observed that soil loss can be more related to precipitation
than discharge. Both the graphs in Figure 9a follow a similar pattern, which is absent in
Figure 9b. A strong correlation of 0.96 was observed between precipitation and soil loss, as
compared to 0.91 between discharge and soil loss over the years. Due to a lack of data on
other geographical factors, the relationship between them cannot be shown.
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Figure 9. (a) Chart representing the relationship between rainfall and soil loss from 2003 to 2022.
(b) Chart representing the relationship between discharge and soil loss from 2003 to 2022.
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A thorough study of soil erosion patterns has also been carried out in various sub-
basins within the study area, encompassing four distinct time periods: 2003–2007, 2007–2012,
2013–2017, and 2018–2022. Sub-basins have been categorized into four groups based on
soil loss severity: very low (<5%), low (5% to 10%), high (10% to 15%), and high (>15%),
as illustrated in Figure 10. The data in Table 4 show that the years between 2008 and 2012
experienced the lowest rates of soil erosion, a phenomenon potentially attributed to reduced
precipitation levels during that period. Sub-basins 6, 16, 17, and 19 faced substantial soil loss
during the years 2003–2007, 2013–2017, and 2018–2022, while sub-watersheds in regions 14 and
18 exhibited minimal soil loss. During 2003–2007, sub-basins 1, 5, 7, 8, 14, and 18 showcased
the least soil loss, whereas sub-basins 6, 11, 16, 17, and 19 experienced the highest soil loss
levels. It is worth noting that a definitive pattern of soil loss remains elusive in this region,
owing to its high dependency on climatic variables. From 2013 to 2017, basins 2, 4, 6, 16,
17, and 19 witnessed the highest soil loss rates. All these basins throughout the years have
faced a higher level of precipitation, leading to a higher discharge, and thereby higher soil
loss. However, all basins registered lower erosion rates from 2018 to 2022. While multiple
factors contribute to soil loss, a significant factor behind the reduced erosion during this
period is diminished precipitation, indicating lower discharge levels. These combined factors
collectively influenced the reduced soil erosion observed during this timeframe.
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Table 4. Soil loss calculation from each sub-basin.

Sub-Basin Area (ha) 2003–2007 2008–2012 2013–2017 2018–2022

Soil loss
(metric
tons/ha)

% soil loss
Soil loss
(metric
tons/ha)

% soil loss
Soil loss
(metric
tons/ha)

% soil loss
Soil loss
(metric
tons/ha)

% soil loss

1 322.35 12.74 3.95 3.19 0.99 20.45 6.35 13.24 4.11
2 181.24 9.07 5.01 3.43 1.89 29.81 16.45 18.76 10.35
3 237.57 17.82 7.50 3.59 1.51 26.36 11.10 20.44 8.60
4 131.00 15.43 11.78 4.83 3.69 36.27 27.69 25.79 19.69
5 444.20 10.57 2.38 3.55 0.80 29.90 6.73 14.76 3.32
6 307.36 62.17 20.23 16.80 5.47 82.49 26.84 66.87 21.76
7 1023.80 47.42 4.63 12.71 1.24 70.35 6.87 53.22 5.20
8 443.94 21.34 4.81 6.90 1.55 63.52 14.31 25.32 5.70
9 589.00 41.19 6.99 9.15 1.55 35.40 6.01 31.45 5.34

10 688.45 63.86 9.28 16.86 2.45 84.18 12.23 59.65 8.66
11 264.43 51.33 19.41 13.12 4.96 37.47 14.17 36.21 13.69
12 948.48 77.32 8.15 19.92 2.10 108.96 11.49 71.71 7.56
13 721.82 83.24 11.53 22.77 3.15 66.05 9.15 63.88 8.85
14 395.55 12.08 3.05 2.99 0.76 8.35 2.11 9.69 2.45
15 928.48 104.56 11.26 25.98 2.80 85.40 9.20 70.46 7.59
16 404.65 61.80 15.27 12.70 3.14 75.07 18.55 49.73 12.29
17 394.41 64.99 16.48 15.43 3.91 94.37 23.93 55.13 13.98
18 236.67 11.51 4.86 3.14 1.33 8.84 3.73 7.92 3.35
19 376.03 76.06 20.23 16.26 4.32 71.06 18.90 60.38 16.06

5. Conclusions

The analysis of soil loss in various sub-basins from 2003 to 2022 reveals distinct
patterns and factors influencing erosion dynamics. Sub-basin 15 emerged as the area with
the highest soil loss, followed by sub-basins 12 and 13, while sub-basin 2 exhibited the
lowest soil loss. Rainfall has been identified as a major driver of soil loss, with a strong
correlation of 0.96 observed between precipitation and soil loss, compared to 0.91 for
discharge and soil loss. A comprehensive examination of soil erosion patterns over four
time periods highlighted the variability in soil loss severity across sub-basins. The years
2008 to 2012 experienced the lowest rates of soil erosion, potentially linked to reduced
precipitation. Sub-basins 6, 16, 17, and 19 consistently faced substantial soil loss, while
sub-basins 14 and 18 exhibited minimal erosion. Notably, a lack of definitive patterns
in soil loss underscores the region’s susceptibility to climatic variables. The reduced soil
erosion observed from 2018 to 2022 is attributed to diminished precipitation, leading to
lower discharge levels. These findings emphasize the complex interplay of climatic factors
in influencing soil erosion dynamics.

This study encountered significant challenges, notably the prolonged processing time
required by SWAT-CUP for data calibration. The absence of data from an ungauged station
presented a critical limitation, compounded by a lack of field data to quantify sediment
yield loss. The imperative goal for upcoming research is to delve deeper into the root
causes of soil loss variations, facilitating the formulation of targeted conservation strategies
crucial for safeguarding valuable soil resources amid evolving climate conditions.
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Appendix A

Table A1. Confusion matrix for the accuracy assessment.

Water Forest Agriculture Barren Urban

Water 9 0 0 1 0
Forest 0 39 9 0 0

Agriculture 0 3 40 1 0
Barren 0 0 2 41 0
Urban 0 1 0 0 10
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Figure A1. DEM of the study area.

Table A2. List of hydrological response units (HRUs).

Sl. No. HRU No. Sub-Basin 1 Area (sq. km) % Watershed Area % Sub-Basin Area

1 1 FRSD/Lf32-1b-3788/2-7 68.60 0.76 21.28
2 2 FRSD/Lf32-1b-3788/7-20 61.67 0.68 19.13
3 3 BARR/Lf32-1b-3788/7-20 82.65 0.91 25.64
4 4 BARR/Lf32-1b-3788/2-7 109.42 1.21 33.95

Sl. No. HRU No. Sub-Basin 2 Area (sq. km) % Watershed Area % Sub-Basin Area
1 5 FRSD/Lf32-1b-3788/2-7 34.16 0.38 18.85
2 6 FRSD/Lf32-1b-3788/7-20 33.83 0.37 18.67
3 7 BARR/Lf32-1b-3788/2-7 64.11 0.71 35.37
4 8 BARR/Lf32-1b-3788/7-20 49.13 0.54 27.11

Sl. No. HRU No. Sub-Basin 3 Area (sq. km) % Watershed Area % Sub-Basin Area
1 9 FRSD/Lf32-1b-3788/2-7 50.90 0.56 21.43
2 10 FRSD/Lf32-1b-3788/7-20 52.29 0.58 22.01
3 11 BARR/Lf32-1b-3788/2-7 42.21 0.47 17.77
4 12 BARR/Lf32-1b-3788/7-20 34.95 0.39 14.71
5 13 URHD/Lf32-1b-3788/7-20 26.58 0.29 11.19
6 14 URHD/Lf32-1b-3788/2-7 30.63 0.34 12.89

Sl. No. HRU No. Sub-Basin 4 Area (sq. km) % Watershed Area % Sub-Basin Area
1 15 FRSD/Lf32-1b-3788/7-20 22.23 0.25 16.97
2 16 FRSD/Lf32-1b-3788/2-7 20.37 0.23 15.55
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Sl. No. HRU No. Sub-Basin 1 Area (sq. km) % Watershed Area % Sub-Basin Area

3 17 BARR/Lf32-1b-3788/2-7 34.57 0.38 26.39
4 18 BARR/Lf32-1b-3788/7-20 29.84 0.33 22.78
5 19 URHD/Lf32-1b-3788/2-7 12.51 0.14 9.55
6 20 URHD/Lf32-1b-3788/7-20 11.49 0.13 8.77

Sl. No. HRU No. Sub-Basin 5 Area (sq. km) % Watershed Area % Sub-Basin Area
1 21 FRSD/Lf32-1b-3788/2-7 117.64 1.30 26.48
2 22 FRSD/Lf32-1b-3788/7-20 126.52 1.40 28.48
3 23 BARR/Lf32-1b-3788/7-20 93.27 1.03 21.00
4 24 BARR/Lf32-1b-3788/2-7 106.77 1.18 24.04

Sl. No. HRU No. Sub-Basin 6 Area (sq. km) % Watershed Area % Sub-Basin Area
1 25 WATR/Be80-2a-3681/7-20 5.77 0.06 1.88
2 26 WATR/Be80-2a-3681/2-7 15.48 0.17 5.04
3 27 WATR/Be80-2a-3681/0-2 3.59 0.04 1.17
4 28 WATR/Lf96-2ab-6668/7-20 7.62 0.08 2.48
5 29 WATR/Lf96-2ab-6668/0-2 3.75 0.04 1.22
6 30 WATR/Lf96-2ab-6668/2-7 18.51 0.20 6.02
7 31 FRSD/Be80-2a-3681/7-20 18.39 0.20 5.98
8 32 FRSD/Be80-2a-3681/2-7 18.15 0.20 5.91
9 33 FRSD/Lf96-2ab-6668/7-20 38.44 0.43 12.51
10 34 FRSD/Lf96-2ab-6668/2-7 40.31 0.45 13.12
11 35 AGRC/Be80-2a-3681/2-7 14.71 0.16 4.79
12 36 AGRC/Be80-2a-3681/0-2 3.06 0.03 1.00
13 37 AGRC/Be80-2a-3681/7-20 5.48 0.06 1.78
14 38 AGRC/Lf96-2ab-6668/2-7 14.32 0.16 4.66
15 39 AGRC/Lf96-2ab-6668/0-2 3.43 0.04 1.12
16 40 AGRC/Lf96-2ab-6668/7-20 5.65 0.06 1.84
17 41 BARR/Be80-2a-3681/2-7 11.56 0.13 3.76
18 42 BARR/Be80-2a-3681/7-20 6.77 0.07 2.20
19 43 BARR/Be80-2a-3681/0-2 2.17 0.02 0.71
20 44 BARR/Lf96-2ab-6668/2-7 40.36 0.45 13.13
21 45 BARR/Lf96-2ab-6668/0-2 7.39 0.08 2.41
22 46 BARR/Lf96-2ab-6668/7-20 22.42 0.25 7.30

Sl. No. HRU No. Sub-Basin 7 Area (sq. km) % Watershed Area % Sub-Basin Area
1 46 FRSD/Lf10-2a-6665/7-20 34.00 0.38 3.32
2 47 FRSD/Lf10-2a-6665/2-7 40.50 0.45 3.96
3 48 FRSD/Lf32-1b-3788/7-20 152.98 1.69 14.94
4 49 FRSD/Lf32-1b-3788/2-7 153.08 1.69 14.95
5 50 FRSD/Lf96-2ab-6668/7-20 55.51 0.61 5.42
6 51 FRSD/Lf96-2ab-6668/2-7 57.40 0.64 5.61
7 52 BARR/Lf10-2a-6665/7-20 34.27 0.38 3.35
8 53 BARR/Lf10-2a-6665/0-2 13.76 0.15 1.34
9 54 BARR/Lf10-2a-6665/2-7 68.47 0.76 6.69
10 55 BARR/Lf32-1b-3788/2-7 164.14 1.82 16.03
11 56 BARR/Lf32-1b-3788/7-20 121.42 1.34 11.86
12 57 BARR/Lf96-2ab-6668/2-7 79.11 0.88 7.73
13 58 BARR/Lf96-2ab-6668/7-20 49.16 0.54 4.80

Sl. No. HRU No. Sub-Basin 8 Area (sq. km) % Watershed Area % Sub-Basin Area
1 58 FRSD/I-Ne-3729/2-7 58.14 0.64 13.10
2 59 FRSD/I-Ne-3729/7-20 73.17 0.81 16.48
3 60 FRSD/Lf32-1b-3788/7-20 59.82 0.66 13.47
4 61 FRSD/Lf32-1b-3788/2-7 50.10 0.55 11.28
5 62 BARR/I-Ne-3729/2-7 44.07 0.49 9.93
6 63 BARR/I-Ne-3729/7-20 41.94 0.46 9.45
7 64 BARR/Lf32-1b-3788/7-20 52.08 0.58 11.73
8 65 BARR/Lf32-1b-3788/2-7 64.63 0.72 14.56

Sl. No. HRU No. Sub-Basin 9 Area (sq. km) % Watershed Area % Sub-Basin Area
1 66 WATR/Be80-2a-3681/0-2 80.85 0.14 2.08
2 67 WATR/Be80-2a-3681/7-20 132.91 0.18 2.81
3 68 WATR/Be80-2a-3681/2-7 375.24 0.58 8.89
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Sl. No. HRU No. Sub-Basin 1 Area (sq. km) % Watershed Area % Sub-Basin Area

4 69 FRSD/Be80-2a-3681/0-2 12.25 0.09 1.45
5 70 FRSD/Be80-2a-3681/7-20 16.58 0.26 4.01
6 71 FRSD/Be80-2a-3681/2-7 52.35 0.51 7.76
7 72 AGRC/Be80-2a-3681/2-7 8.55 2.16 33.20
8 73 AGRC/Be80-2a-3681/0-2 23.63 0.47 7.29
9 74 AGRC/Be80-2a-3681/7-20 45.73 0.69 10.57
10 75 BARR/Be80-2a-3681/7-20 195.56 0.34 5.17
11 76 BARR/Be80-2a-3681/2-7 42.93 0.90 13.86
12 77 BARR/Be80-2a-3681/0-2 62.26 0.19 2.91

Sl. No. HRU No. Sub-Basin 10 Area (sq. km) % Watershed Area % Sub-Basin Area
1 77 FRSD/Lf32-1b-3788/7-20 73.59 0.81 10.69
2 78 FRSD/Lf32-1b-3788/2-7 64.14 0.71 9.32
3 79 FRSD/Lf96-2ab-6668/7-20 92.82 1.03 13.48
4 80 FRSD/Lf96-2ab-6668/2-7 88.67 0.98 12.88
5 81 AGRC/Lf32-1b-3788/2-7 23.31 0.26 3.39
6 82 AGRC/Lf32-1b-3788/7-20 23.97 0.27 3.48
7 83 AGRC/Lf96-2ab-6668/7-20 30.72 0.34 4.46
8 84 AGRC/Lf96-2ab-6668/2-7 49.55 0.55 7.20
9 85 AGRC/Lf96-2ab-6668/0-2 9.50 0.11 1.38
10 86 BARR/Lf32-1b-3788/2-7 60.56 0.67 8.80
11 87 BARR/Lf32-1b-3788/7-20 46.31 0.51 6.73
12 88 BARR/Lf96-2ab-6668/2-7 68.10 0.75 9.89
13 89 BARR/Lf96-2ab-6668/7-20 44.50 0.49 6.46
14 90 BARR/Lf96-2ab-6668/0-2 12.71 0.14 1.85

Sl. No. HRU No. Sub-Basin 11 Area (sq. km) % Watershed Area % Sub-Basin Area
1 91 FRSD/Be80-2a-3681/0-2 6.24 0.07 2.36
2 92 FRSD/Be80-2a-3681/7-20 9.28 0.10 3.51
3 93 FRSD/Be80-2a-3681/2-7 27.76 0.31 10.50
4 94 AGRC/Be80-2a-3681/0-2 26.22 0.29 9.92
5 95 AGRC/Be80-2a-3681/2-7 85.84 0.95 32.46
6 96 AGRC/Je71-2a-3758/0-2 2.55 0.03 0.97
7 97 AGRC/Je71-2a-3758/7-20 1.67 0.02 0.63
8 98 AGRC/Je71-2a-3758/2-7 8.59 0.10 3.25
9 99 BARR/Be80-2a-3681/2-7 66.06 0.73 24.98
10 100 BARR/Be80-2a-3681/0-2 16.77 0.19 6.34
11 101 BARR/Be80-2a-3681/7-20 13.44 0.15 5.08

Sl. No. HRU No. Sub-Basin 12 Area (sq. km) % Watershed Area % Sub-Basin Area
1 102 FRSD/Be80-2a-3681/7-20 35.33 0.39 3.72
2 103 FRSD/Be80-2a-3681/2-7 49.92 0.55 5.26
3 104 FRSD/Lf96-2ab-6668/7-20 128.82 1.43 13.58
4 105 FRSD/Lf96-2ab-6668/2-7 155.94 1.73 16.44
5 106 AGRC/Be80-2a-3681/0-2 155.94 0.20 1.88
6 107 AGRC/Be80-2a-3681/2-7 17.88 0.75 7.17
7 108 AGRC/Be80-2a-3681/7-20 68.00 0.23 2.17
8 109 AGRC/Lf10-2a-6665/2-7 25.03 0.28 2.64
9 110 AGRC/Lf10-2a-6665/7-20 7.57 0.08 0.80
10 111 AGRC/Lf10-2a-6665/0-2 6.85 0.08 0.72
11 112 AGRC/Lf96-2ab-6668/7-20 39.27 0.43 4.14
12 113 AGRC/Lf96-2ab-6668/0-2 22.25 0.25 2.35
13 114 AGRC/Lf96-2ab-6668/2-7 98.24 1.09 10.36
14 115 BARR/Be80-2a-3681/2-7 54.13 0.60 5.71
15 116 BARR/Be80-2a-3681/0-2 13.31 0.15 1.40
16 117 BARR/Be80-2a-3681/7-20 16.26 0.18 1.71
17 118 BARR/Lf96-2ab-6668/2-7 116.67 1.29 12.30
18 119 BARR/Lf96-2ab-6668/7-20 47.04 0.52 4.96
19 120 BARR/Lf96-2ab-6668/0-2 25.33 0.28 2.67

Sl. No. HRU No. Sub-Basin 13 Area (sq. km) % Watershed Area % Sub-Basin Area
1 121 FRSD/Be80-2a-3681/7-20 28.20 0.31 3.91
2 122 FRSD/Be80-2a-3681/0-2 12.79 0.14 1.77
3 123 FRSD/Be80-2a-3681/2-7 60.74 0.67 8.42
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Sl. No. HRU No. Sub-Basin 1 Area (sq. km) % Watershed Area % Sub-Basin Area

4 124 AGRC/Be80-2a-3681/0-2 81.77 0.90 11.33
5 125 AGRC/Be80-2a-3681/7-20 45.08 0.50 6.25
6 126 AGRC/Be80-2a-3681/2-7 280.02 3.10 38.79
7 127 AGRC/Lf10-2a-6665/2-7 62.03 0.69 8.59
8 128 AGRC/Lf10-2a-6665/7-20 15.03 0.10 2.08
9 129 AGRC/Lf10-2a-6665/0-2 15.28 0.17 2.12
10 130 BARR/Be80-2a-3681/7-20 15.54 0.17 2.15
11 131 BARR/Be80-2a-3681/2-7 70.59 0.78 9.78
12 132 BARR/Be80-2a-3681/0-2 18.64 0.21 2.58
13 133 BARR/Lf10-2a-6665/0-2 2.25 0.02 0.31
14 134 BARR/Lf10-2a-6665/2-7 10.36 0.11 1.44
15 135 BARR/Lf10-2a-6665/7-20 3.50 0.04 0.48

Sl. No. HRU No. Sub-Basin 14 Area (sq. km) % Watershed Area % Sub-Basin Area
1 136 FRSD/Be80-2a-3681/0-2 8.07 0.09 2.04
2 137 FRSD/Be80-2a-3681/2-7 31.69 0.35 8.01
3 138 FRSD/Be80-2a-3681/7-20 7.27 0.08 1.84
4 139 FRSD/Je71-2a-3758/7-20 3.29 0.04 0.83
5 140 FRSD/Je71-2a-3758/2-7 17.26 0.19 4.36
6 141 FRSD/Je71-2a-3758/0-2 4.69 0.05 1.19
7 142 AGRC/Be80-2a-3681/2-7 149.66 1.66 37.84
8 143 AGRC/Be80-2a-3681/0-2 56.87 0.63 14.38
9 144 AGRC/Je71-2a-3758/2-7 83.64 0.93 21.14
10 145 AGRC/Je71-2a-3758/0-2 33.11 0.37 8.37

Sl. No. HRU No. Sub-Basin 15 Area (sq. km) % Watershed Area % Sub-Basin Area
1 146 FRSD/Lf10-2a-6665/2-7 38.63 0.43 4.16
2 147 FRSD/Lf10-2a-6665/0-2 7.62 0.08 0.82
3 148 FRSD/Lf10-2a-6665/7-20 17.72 0.20 1.91
4 149 FRSD/Lf96-2ab-6668/2-7 23.58 0.26 2.54
5 150 FRSD/Lf96-2ab-6668/7-20 9.11 0.10 0.98
6 151 FRSD/Lf96-2ab-6668/0-2 5.29 0.06 0.57
7 152 FRSD/Lo49-2a-3808/7-20 7.27 0.08 0.78
8 153 FRSD/Lo49-2a-3808/2-7 23.79 0.26 2.56
9 154 FRSD/Lo49-2a-3808/0-2 5.43 0.06 0.58
10 155 AGRC/Lf32-1b-3788/2-7 299.32 3.31 32.24
11 156 AGRC/Lf10-2a-6665/0-2 96.13 1.06 10.35
12 157 AGRC/Lo49-2a-3808/7-20 26.44 0.29 2.85
13 158 AGRC/Lo49-2a-3808/0-2 56.22 0.62 6.06
14 159 AGRC/Lo49-2a-3808/2-7 174.05 1.93 18.75
15 160 BARR/Lf10-2a-6665/7-20 8.06 0.09 0.87
16 161 BARR/Lf10-2a-6665/2-7 39.65 0.44 4.27
17 162 BARR/Lf10-2a-6665/0-2 11.16 0.12 1.20
18 163 BARR/Lf96-2ab-6668/2-7 33.52 0.37 3.61
19 164 ARR/Lf96-2ab-6668/7-20 7.16 0.08 0.77
20 165 BARR/Lf96-2ab-6668/0-2 9.26 0.10 1.00
21 166 BARR/Lo49-2a-3808/7-20 3.40 0.04 0.37
22 167 BARR/Lo49-2a-3808/0-2 6.34 0.07 0.68
23 168 BARR/Lo49-2a-3808/2-7 19.34 0.21 2.08

Sl. No. HRU No. Sub-Basin 16 Area (sq. km) % Watershed Area % Sub-Basin Area
1 169 FRSD/Lf10-2a-6665/0-2 3.50 0.04 0.86
2 170 FRSD/Lf10-2a-6665/2-7 17.76 0.20 4.39
3 171 FRSD/Lf10-2a-6665/7-20 7.15 0.08 1.77
4 172 FRSD/Lf96-2ab-6668/7-20 49.01 0.54 12.11
5 173 FRSD/Lf96-2ab-6668/2-7 73.83 0.82 18.25
6 174 AGRC/Lf10-2a-6665/2-7 65.61 0.73 16.21
7 175 AGRC/Lf10-2a-6665/0-2 22.59 0.25 5.58
8 176 AGRC/Lf96-2ab-6668/2-7 45.95 0.51 11.35
9 177 AGRC/Lf96-2ab-6668/0-2 11.50 0.13 2.84
10 178 AGRC/Lf96-2ab-6668/7-20 13.74 0.15 3.40
11 179 BARR/Lf10-2a-6665/0-2 6.16 0.07 1.52
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Sl. No. HRU No. Sub-Basin 1 Area (sq. km) % Watershed Area % Sub-Basin Area

12 180 BARR/Lf10-2a-6665/2-7 19.94 0.22 4.93
13 181 BARR/Lf10-2a-6665/7-20 3.12 0.03 0.77
14 182 BARR/Lf96-2ab-6668/0-2 9.67 0.11 2.39
15 183 BARR/Lf96-2ab-6668/7-20 13.99 0.15 3.46
16 184 BARR/Lf96-2ab-6668/2-7 41.14 0.46 10.17

Sl. No. HRU No. Sub-Basin 17 Area (sq. km) % Watershed Area % Sub-Basin Area
1 185 FRSD/Lf10-2a-6665/2-7 16.32 0.18 4.14
2 186 FRSD/Lf10-2a-6665/7-20 11.41 0.13 2.89
3 187 FRSD/Lf96-2ab-6668/2-7 92.63 1.02 23.49
4 188 FRSD/Lf96-2ab-6668/7-20 66.11 0.73 16.76
5 189 AGRC/Lf10-2a-6665/2-7 15.65 0.17 3.97
6 190 AGRC/Lf10-2a-6665/0-2 4.46 0.05 1.13
7 191 AGRC/Lf10-2a-6665/7-20 4.86 0.05 1.23
8 192 AGRC/Lf96-2ab-6668/2-7 48.87 0.54 12.39
9 193 AGRC/Lf96-2ab-6668/7-20 18.99 0.21 4.82
10 194 AGRC/Lf96-2ab-6668/0-2 11.11 0.12 2.82
11 195 BARR/Lf10-2a-6665/0-2 1.80 0.02 0.46
12 196 BARR/Lf10-2a-6665/2-7 7.66 0.08 1.94
13 197 BARR/Lf10-2a-6665/7-20 3.02 0.03 0.77
14 198 BARR/Lf96-2ab-6668/2-7 55.33 0.61 14.03
15 199 BARR/Lf96-2ab-6668/0-2 11.47 0.13 2.91
16 200 BARR/Lf96-2ab-6668/7-20 24.71 0.27 6.27

Sl. No. HRU No. Sub-Basin 18 Area (sq. km) % Watershed Area % Sub-Basin Area
1 201 FRSD/Be80-2a-3681/7-20 1.47 0.02 0.62
2 202 FRSD/Be80-2a-3681/2-7 8.94 0.10 3.78
3 203 FRSD/Be80-2a-3681/0-2 2.67 0.03 1.13
4 204 FRSD/Je71-2a-3758/7-20 5.78 0.06 2.44
5 205 FRSD/Je71-2a-3758/0-2 6.22 0.07 2.63
6 206 FRSD/Je71-2a-3758/2-7 22.66 0.25 9.58
7 207 AGRC/Be80-2a-3681/0-2 12.58 0.14 5.31
8 208 AGRC/Be80-2a-3681/2-7 27.01 0.30 11.41
9 209 AGRC/Je71-2a-3758/0-2 43.51 0.48 18.38
10 210 AGRC/Je71-2a-3758/2-7 105.83 1.17 44.72

Sl. No. HRU No. Sub-Basin 19 Area (sq. km) % Watershed Area % Sub-Basin Area
1 211 FRSD/Lf10-2a-6665/2-7 15.59 0.17 4.15
2 212 FRSD/Lf10-2a-6665/7-20 13.44 0.15 3.57
3 213 FRSD/Lf96-2ab-6668/2-7 101.21 1.12 26.91
4 214 FRSD/Lf96-2ab-6668/7-20 63.59 0.70 16.91
5 215 AGRC/Lf10-2a-6665/2-7 4.02 0.04 1.07
6 216 AGRC/Lf10-2a-6665/7-20 2.78 0.03 0.74
7 217 AGRC/Lf96-2ab-6668/2-7 38.23 0.42 10.17
8 218 AGRC/Lf96-2ab-6668/7-20 13.52 0.15 3.59
9 219 AGRC/Lf96-2ab-6668/0-2 8.58 0.09 2.28
10 220 BARR/Lf10-2a-6665/7-20 4.77 0.05 1.27
11 221 BARR/Lf10-2a-6665/2-7 7.35 0.08 1.96
12 222 BARR/Lf96-2ab-6668/0-2 13.69 0.15 3.64
13 223 BARR/Lf96-2ab-6668/2-7 63.00 0.70 16.75
14 224 BARR/Lf96-2ab-6668/7-20 26.28 0.29 6.99
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Table A3. Average precipitation, discharge, and soil loss measured for each sub-basin for the post-monsoon season (October–November).

YEAR 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Sub-Basin 1

PRECIPITATION
(in mm) 119.65 55.85 89.50 16.85 28.10 14.15 56.20 38.20 26.30 53.65 171.70 46.90 5.60 18.55 138.95 20.65 86.35 43.65 106.80 90.50

DISCHARGE
(in cumecs) 14.02 11.88 10.99 7.97 9.17 6.87 10.09 5.84 10.45 9.63 22.64 9.63 5.33 9.09 19.61 7.68 13.22 7.98 17.45 14.82

SOIL LOSS
(metric tons/ha) 21.45 13.90 26.68 0.38 1.30 0.49 5.69 1.70 1.50 6.59 57.80 11.66 0.05 0.36 32.39 1.41 20.53 2.26 19.58 22.41

Sub-Basin 2
PRECIPITATION
(in mm) 119.65 55.85 89.50 16.85 28.10 14.15 56.20 38.20 26.30 53.65 171.70 46.90 5.60 18.55 138.95 20.65 86.35 43.65 106.80 90.50

DISCHARGE
(in cumecs) 7.84 6.60 6.14 4.37 5.03 3.77 5.59 3.22 5.74 5.33 12.62 5.34 2.92 4.99 10.93 4.23 7.33 4.40 9.56 8.24

SOIL LOSS
(metric tons/ha) 18.48 10.15 14.61 0.57 1.56 0.46 6.97 2.17 1.36 6.20 92.01 8.55 0.06 0.89 47.54 2.39 23.41 2.71 20.96 44.35

Sub-Basin 3
PRECIPITATION
(in mm) 119.65 55.85 89.50 16.85 28.10 14.15 56.20 38.20 26.30 53.65 171.70 46.90 5.60 18.55 138.95 20.65 86.35 43.65 106.80 90.50

DISCHARGE
(in cumecs) 10.34 8.82 8.10 6.03 6.92 5.19 7.52 4.23 7.92 7.18 16.70 7.16 4.04 6.84 14.55 5.76 9.75 6.00 12.59 10.95

SOIL LOSS
(metric tons/ha) 30.68 14.47 43.02 0.47 0.47 0.52 7.58 2.43 0.65 6.77 56.94 15.62 0.06 0.48 58.70 1.59 24.11 2.16 24.07 50.25

Sub-Basin 4
PRECIPITATION
(in mm) 119.65 55.85 89.50 16.85 28.10 14.15 56.20 38.20 26.30 53.65 171.70 46.90 5.60 18.55 138.95 20.65 86.35 43.65 106.80 90.50

DISCHARGE
(in cumecs) 27.40 23.09 21.46 15.33 17.64 13.22 19.58 11.19 20.16 18.67 44.23 18.68 10.23 17.49 38.29 14.82 25.68 15.43 33.66 28.84

SOIL LOSS
(metric tons/ha) 32.11 14.48 28.18 0.64 1.74 0.50 6.96 2.76 1.22 12.69 105.87 9.40 0.06 0.54 65.50 2.93 38.84 1.82 22.95 62.40

Sub-Basin 5
PRECIPITATION
(in mm) 119.65 55.85 89.50 16.85 28.10 14.15 56.20 38.20 26.30 53.65 171.70 46.90 5.60 18.55 138.95 20.65 86.35 43.65 106.80 90.50
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Table A3. Cont.

YEAR 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Sub-Basin 5

DISCHARGE
(in cumecs) 47.43 40.55 37.20 27.77 31.88 23.90 34.56 20.15 36.27 33.05 76.45 32.98 18.64 31.59 66.52 26.57 45.02 27.53 59.35 50.42

SOIL LOSS
(metric tons/ha) 32.11 7.40 11.43 0.60 1.30 0.57 5.80 1.42 1.39 8.57 59.21 10.00 0.03 0.70 79.57 1.41 26.60 2.95 26.24 16.57

Sub-Basin 6
PRECIPITATION
(in mm) 121.65 69.15 119.65 19.00 43.60 26.20 56.50 42.90 22.60 57.05 170.90 42.75 5.45 20.20 144.05 20.05 86.60 39.95 106.60 93.45

DISCHARGE
(in cumecs) 115.45 105.33 104.49 67.32 80.20 61.83 87.44 54.04 87.07 80.29 184.87 80.09 46.62 76.20 165.27 64.26 108.92 65.23 144.36 124.27

SOIL LOSS
(metric tons/ha) 101.33 82.83 115.82 1.66 9.21 8.06 26.15 11.80 1.79 36.21 163.15 20.26 0.07 2.48 226.46 3.94 62.54 4.51 69.32 194.02

Sub-Basin 7
PRECIPITATION
(in mm) 121.65 69.15 119.65 19.00 43.60 26.20 56.50 42.90 22.60 57.05 170.90 42.75 5.45 20.20 144.05 20.05 86.60 39.95 106.60 93.45

DISCHARGE
(in cumecs) 102.17 92.35 90.86 59.59 70.68 54.28 76.99 47.26 77.11 71.06 163.77 70.86 41.08 67.47 145.86 56.80 96.44 57.86 127.94 109.81

SOIL LOSS
(metric tons/ha) 75.31 56.37 93.85 1.32 10.26 8.74 17.82 7.20 2.10 27.71 132.57 15.58 0.09 2.19 201.30 4.56 93.54 4.64 55.57 107.80

Sub-Basin 8
PRECIPITATION
(in mm) 119.65 55.85 89.50 16.85 28.10 14.15 56.20 38.20 26.30 53.65 171.70 46.90 5.60 18.55 138.95 20.65 86.35 43.65 106.80 90.50

DISCHARGE
(in cumecs) 20.30 17.64 15.98 12.49 14.29 10.78 15.16 9.22 16.14 14.60 32.36 14.53 8.51 14.30 28.43 11.92 19.57 12.31 25.61 21.79

SOIL LOSS
(metric tons/ha) 37.00 22.69 43.52 0.99 2.52 1.10 12.10 2.92 2.95 15.42 176.85 19.91 0.08 0.81 119.94 4.11 38.59 4.41 37.79 41.70

Sub-Basin 9
PRECIPITATION
(in mm) 124.65 79.70 143.20 19.60 62.30 42.00 57.25 49.55 18.80 59.85 159.50 38.40 8.20 25.45 145.50 20.05 94.25 43.25 102.60 99.35

DISCHARGE
(in cumecs) 138.63 128.68 132.89 78.74 98.03 76.77 105.80 66.72 102.52 95.22 221.10 93.88 55.80 89.55 199.64 75.87 131.53 77.60 173.95 149.43

SOIL LOSS
(metric tons/ha) 78.74 58.96 56.99 1.10 10.18 9.18 12.59 8.93 0.50 14.58 60.53 6.03 0.05 2.05 108.37 1.28 62.15 1.67 34.64 57.50

Sub-Basin 10
PRECIPITATION
(in mm) 143.85 82.75 126.55 22.00 47.40 25.30 60.65 53.10 26.40 54.90 195.95 48.60 5.60 35.85 141.35 33.95 110.00 50.45 106.60 80.20
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Table A3. Cont.

YEAR 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Sub-Basin 10

DISCHARGE
(in cumecs) 55.88 51.59 51.59 34.42 39.88 30.33 41.61 29.73 42.87 36.19 88.99 38.57 23.86 37.51 71.65 33.80 55.28 31.76 67.97 53.29

SOIL LOSS
(metric tons/ha) 108.82 68.40 128.54 3.63 9.91 6.90 22.64 22.57 4.05 28.17 227.86 18.11 0.06 8.74 166.12 14.55 118.56 6.49 73.95 84.68

Sub-Basin 11
PRECIPITATION
(in mm) 147.20 94.05 144.35 23.85 67.50 41.40 61.30 57.90 22.50 56.30 185.60 42.05 8.20 41.70 147.30 33.10 123.20 51.05 108.45 76.40

DISCHARGE
(in cumecs) 151.30 140.41 146.43 84.55 106.29 83.54 114.15 73.49 109.79 101.53 240.35 100.22 59.99 96.10 214.80 82.08 144.36 83.31 188.30 158.81

SOIL LOSS
(metric tons/ha) 108.79 67.33 66.81 2.26 11.45 11.34 13.86 23.61 1.86 14.92 101.32 5.86 0.03 5.77 74.37 6.65 110.42 2.70 36.50 24.77

Sub-Basin 12
PRECIPITATION
(in mm) 143.85 82.75 126.55 22.00 47.40 25.30 60.65 53.10 26.40 54.90 195.95 48.60 5.60 35.85 141.35 33.95 110.00 50.45 106.60 80.20

DISCHARGE
(in cumecs) 104.07 97.15 99.69 62.94 73.29 55.89 76.60 56.46 77.92 64.73 166.71 70.28 43.70 67.84 129.95 62.76 103.30 57.51 126.10 95.14

SOIL LOSS
(metric tons/ha) 152.00 100.25 118.57 4.70 11.05 10.95 27.48 28.19 2.88 30.10 293.55 29.61 0.07 10.78 210.79 15.92 110.56 6.08 89.14 136.84

Sub-Basin 13
PRECIPITATION
(in mm) 147.20 94.05 144.35 23.85 67.50 41.40 61.30 57.90 22.50 56.30 185.60 42.05 8.20 41.70 147.30 33.10 123.20 51.05 108.45 76.40

DISCHARGE
(in cumecs) 36.04 34.80 38.85 19.32 26.10 21.67 25.65 21.46 23.69 19.53 55.32 20.35 14.78 21.18 44.05 20.15 38.17 18.58 43.83 28.57

SOIL LOSS
(metric tons/ha) 193.70 112.40 86.04 4.88 19.18 25.52 24.70 32.02 3.22 28.38 143.31 10.28 0.08 10.58 166.01 8.98 169.70 5.01 72.23 63.50

Sub-Basin 14
PRECIPITATION
(in mm) 147.20 94.05 144.35 23.85 67.50 41.40 61.30 57.90 22.50 56.30 185.60 42.05 8.20 41.70 147.30 33.10 123.20 51.05 108.45 76.40

DISCHARGE
(in cumecs) 207.45 195.30 207.05 116.20 148.55 118.45 155.05 107.86 148.35 132.60 327.40 132.83 84.29 130.25 284.00 114.56 204.80 113.21 258.90 204.15

SOIL LOSS
(metric tons/ha) 33.00 17.18 7.76 0.54 1.92 2.23 3.04 5.95 0.12 3.59 23.29 1.82 0.00 1.82 14.83 0.64 18.48 0.16 16.33 12.81

Sub-Basin 15
PRECIPITATION
(in mm) 147.20 94.05 144.35 23.85 67.50 41.40 61.30 57.90 22.50 56.30 185.60 42.05 8.20 41.70 147.30 33.10 123.20 51.05 108.45 76.40
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Table A3. Cont.

YEAR 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Sub-Basin 15

DISCHARGE
(in cumecs) 213.40 203.75 213.40 130.14 155.45 121.36 159.35 123.49 159.65 130.50 338.00 142.13 93.38 140.00 264.50 130.49 217.45 118.80 260.60 190.10

SOIL LOSS
(metric tons/ha) 194.01 134.31 167.00 4.32 23.17 30.37 27.56 38.36 5.20 28.43 206.37 12.51 0.16 10.96 197.02 18.87 170.22 7.59 75.80 79.82

Sub-Basin 16
PRECIPITATION
(in mm) 143.85 82.75 126.55 22.00 47.40 25.30 60.65 53.10 26.40 54.90 195.95 48.60 5.60 35.85 141.35 33.95 110.00 50.45 106.60 80.20

DISCHARGE
(in cumecs) 41.73 40.30 42.03 26.60 30.86 23.66 31.62 24.65 32.39 25.94 66.83 28.94 18.85 28.11 51.10 26.52 42.45 23.59 50.94 37.48

SOIL LOSS
(metric tons/ha) 110.15 81.80 106.12 2.41 8.50 6.44 21.13 14.45 2.47 19.01 199.58 14.16 0.05 6.44 155.15 10.67 105.64 6.46 55.21 70.66

Sub-Basin 17
PRECIPITATION
(in mm) 143.85 82.75 126.55 22.00 47.40 25.30 60.65 53.10 26.40 54.90 195.95 48.60 5.60 35.85 141.35 33.95 110.00 50.45 106.60 80.20

DISCHARGE
(in cumecs) 20.61 19.88 20.73 13.11 15.22 11.65 15.59 12.15 15.95 12.79 32.95 14.24 9.25 13.86 25.20 13.03 20.92 11.60 25.11 18.48

SOIL LOSS
(metric tons/ha) 121.65 84.42 107.23 3.18 8.46 7.52 24.13 20.23 2.55 22.70 229.15 21.89 0.07 8.65 212.07 13.33 122.77 5.17 64.16 70.23

Sub-Basin 18
PRECIPITATION
(in mm) 147.20 94.05 144.35 23.85 67.50 41.40 61.30 57.90 22.50 56.30 185.60 42.05 8.20 41.70 147.30 33.10 123.20 51.05 108.45 76.40

DISCHARGE
(in cumecs) 432.85 411.40 433.60 254.35 314.45 248.15 323.90 239.40 317.45 270.25 684.60 282.60 183.75 278.50 563.85 252.80 435.95 239.05 536.20 404.50

SOIL LOSS
(metric tons/ha) 23.68 22.11 8.73 0.74 2.31 3.05 3.73 4.75 0.18 3.98 22.12 1.23 0.00 1.55 19.29 0.30 17.98 0.18 11.35 9.78

Sub-Basin 19
PRECIPITATION
(in mm) 143.85 82.75 126.55 22.00 47.40 25.30 60.65 53.10 26.40 54.90 195.95 48.60 5.60 35.85 141.35 33.95 110.00 50.45 106.60 80.20

DISCHARGE
(in cumecs) 19.64 18.84 19.68 12.34 14.34 10.97 14.74 11.47 14.98 12.07 31.32 13.43 8.66 13.06 23.92 12.25 19.81 10.91 23.77 17.50

SOIL LOSS
(metric tons/ha) 133.63 97.78 135.16 3.76 9.94 8.22 24.48 19.78 2.96 25.83 186.41 23.21 0.04 7.30 138.36 15.75 142.06 6.63 61.03 76.40
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