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Abstract: Background: Ovarian cancer is often characterized by aggressive growth and chemoresis-
tance, leading to a poor prognosis. The energy and nutrient acquisition through metabolic reprogram-
ming has been reported to facilitate cancer cell proliferation, invasion, and metastasis. Therefore,
a therapeutic strategy to consider is to rewire energy metabolism. Mitochondrial dynamics have a
profound impact on the metabolic profiles. In this review, we summarize the current understanding
of the molecular mechanisms governing mitochondrial dynamics and their impact on cell prolifera-
tion and invasion and discuss future perspectives for therapeutic strategies and research directions.
Methods: A search was conducted for literature published up to 30 June 2023 using the online
databases PubMed and Google Scholar in this narrative literature review. Results: Mitochondria are
essential for regulating metabolic reprogramming to meet the increasing energy demand for rapid
cancer cell proliferation and invasion. A metabolic switch from OXPHOS to glycolysis may promote
invasion, and OXPHOS-driven metabolism may be associated with proliferation, chemoresistance,
and stemness. Many ovarian cancer cells are known to favor glycolysis over OXPHOS, but the oppo-
site takes place in the subpopulation of cancer cells. The preference for glycolysis versus OXPHOS
in ovarian cancer cells may be determined by histopathologic types, the unique genetic profile of
energy metabolism, and intrinsic (e.g., oncogenic signaling) and extrinsic (e.g., nutritional status and
hypoxia) factors. Conclusions: Preclinical studies suggest that mitochondrial dynamics regulators
have therapeutic potential in ovarian cancer, but some factors limit their beneficial effects.

Keywords: metabolic dynamics; metabolic reprogramming; mitochondrial fission; mitochondrial
fusion; ovarian cancer

1. Introduction

Epithelial ovarian cancer is an aggressive gynecologic cancer with a poor prognosis
due to resistance to chemotherapeutic agents [1]. Ovarian cancer has an ability to adapt
to unfavorable environments, such as oxygen/nutrient deprivation and oxidative stress
conditions, which contributes to its poor prognosis [2]. Cancer cells generally require high
nutrients and energy to maintain their survival in such harsh environments. Tumor devel-
opment is initially driven by a proliferative phenotype, and over time, the primary tumor
escapes the tissue of origin and colonizes additional organs [1]. In recent years, mitochon-
dria have been found to have a profound impact on metabolic profiles [3] and participate
in the regulation of tumor initiation and progression [4]. Both glycolysis and mitochon-
drial oxidative phosphorylation (OXPHOS) are the dominant energy-generating pathways.
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Therefore, mitochondria dynamics contribute to the maintenance of optimal glycolysis
and OXPHOS activity through regulating mitochondrial transport, fusion, fission, and
quality control [3,5–8]. Mitochondria regulate cellular energy through their dynamics or
changes in mitochondrial architecture. Specifically, mitochondria play a role in regulating
key tumorigenic processes, including metabolic rewiring, cell cycle, cell proliferation, cell
migration, self-renewal capacity, and mitochondria-specific autophagy (mitophagy) [7,8].
Mitochondrial dynamics can dictate the cellular metabolic states, and vice versa [3]. There-
fore, cancer cells can obtain optimal energy to survive by altering the metabolic profile
between glycolysis and mitochondrial OXPHOS [9]. Indeed, many ovarian cancer cells
primarily favor glycolysis over mitochondrial OXPHOS, but others are dependent on OX-
PHOS for energy production [2]. Adaptation to the dynamic tumor microenvironment
has been reported to be controlled by alterations in the metabolic profiles (e.g., metabolic
heterogeneity, plasticity, and reprogramming) [2]. Therefore, the deregulation of cellular
energy or the reprogramming of energy metabolism has emerged as one of the hallmarks of
ovarian cancer [2,4,9]. To understand the mechanisms involved in mitochondrial dynamics
and therapeutic implications, some important issues need to be discussed. For example,
what role do key regulators of mitochondrial dynamics actually play in ovarian cancer?
How do mitochondria regulate cancer cell proliferation and invasion? What factors influ-
ence mitochondrial dynamics and energy metabolism? How do metabolic reprogramming
and mitochondrial dynamics influence each other? What determines the metabolic pref-
erences (i.e., glycolysis or OXPHOS) of ovarian cancer cells? Finally, how is the potential
of therapeutic approaches based on mitochondrial dynamics modulation and the current
status of treatment options? In this review, we focus on our current understanding of
the molecular pathways involved in regulating mitochondrial dynamics and maintaining
energy homeostasis and their roles in ovarian cancer proliferation and invasion and discuss
treatment options and future research directions.

2. Materials and Methods
Search Strategy and Selection Criteria

We conducted a narrative review of the literature that focuses on mitochondrial dy-
namics in ovarian cancer. Electronic databases including PubMed and Google Scholar were
searched for literature published up to 30 June 2023, combining the following keywords:
“Mitochondrial fusion”, “Mitochondrial fission”, “Mitochondrial dynamics”, “Metabolic
reprogramming”, and “Ovarian cancer”.

3. Results
3.1. Mitochondrial Function

Mitochondria are believed to descend from ancient prokaryotes, i.e., endosymbiosed
bacteria, which were engulfed by pre-eukaryotic cells several billion years ago [10]. These
organelles consist of an outer mitochondrial membrane (OMM), inner mitochondrial mem-
brane (IMM), and matrix [11]. Complex machinery composed of electron transport chain
(ETC) assembly and OXPHOS is located in the folded IMM called cristae [11]. Mitochon-
dria generate energy as adenosine 5′-triphosphate (ATP) through OXPHOS, mediate the
metabolic pathways in bioenergetics, supply precursors for macromolecular synthesis,
regulate the cytoplasmic oxidation-reduction (redox) state, heme synthesis, and calcium
balance, and play a key role in the regulation of apoptosis and autophagy [12,13]. Since
mitochondria also generate reactive oxygen species (ROS) as byproducts along with energy,
cells must tightly adjust energy based on the metabolic demand and appropriately monitor
its redox status [4,14]. Mitochondria exposed to oxygen-rich surroundings confer signifi-
cant growth and survival advantages to the host cell to meet its energy needs and also have
a spectrum of protective properties against toxic metabolites [15]. Mitochondria are not
static bean-shaped organelles, and their morphology alters from the filamentous network
structure to the fragmented form or vice versa [5,12] (Figure 1, Mitochondrial morphology).
These organelles possess adaptive mechanisms to meet bioenergetic demands by changing



J. Mol. Pathol. 2023, 4 277

their shape, number, function, and distribution within the cytoplasm [3,16,17]. Mitochon-
dria can move throughout the cytoplasm [18,19]. Upon nutrient starvation, mitochondria
are often elongated and branched around the nucleus to enhance bioenergetics efficiencies,
enabling cancer cells to survive under unfavorable conditions [3,16,20,21] (Figure 1, Envi-
ronmental stressors). On the other hand, upon encountering hypoxia, cancer cells have
fewer mitochondria, facilitating cell invasion [3,22]. This enables tumor cells to escape
their hypoxic environment, leading to metastasis [22]. Mitochondrial functions can govern
the adaptation to ever-changing extracellular environments (e.g., nutrient starvation and
hypoxia) [23–25].
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AKT, AKT serine/threonine kinase 1; ATP, adenosine 5′-triphosphate; CSC, cancer
stem cells; DRP1, dynamin-related protein 1; ERK, extracellular regulated MAP kinase;
GLUT, glucose transporter; iPSC, induced pluripotent stem cells; MAPK, mitogen activated
kinase-like protein; MFN1, mitofusin 1; MFN2, mitofusin 2; MYC, MYC proto-oncogene;
OPA1, optic atrophy 1; OXPHOS, oxidative phosphorylation; PI3K, phosphatidylinositol
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3-kinase; RAF, Raf oncogene; RAS, Ras oncogene; ROS, reactive oxygen species; and
SNPH, syntaphilin.

3.2. Mitochondrial Dynamics

A recent study demonstrated that, in ovarian cancer, an imbalance between mitochon-
drial fission and fusion causes changes in mitochondrial morphology [26,27]. A detailed
review of mitochondrial alterations, dynamics, and morphology and chemoresistance in
ovarian cancer is reported in [28]. Here, we summarize our current understanding of key
players controlling mitochondrial dynamics and their roles in cancer, particularly ovar-
ian cancer, with a focus on the intricate interplay between mitochondrial dynamics and
energy metabolism.

3.2.1. Mitochondrial Transports

Mitochondria do not stay in one place but can move along the microtubule network
by using motor proteins [29]. Mitochondrial transport along microtubules is mediated by
their motor-cargo, adaptor complex, and regulatory elements [30]. The plus end-directed
motor protein, Kinesin-1 (KIF5), facilitates the anterograde transport and cell membrane
targeting and is responsible for the transport of mitochondria from the perinuclear region
to the plasma membrane [24,30] (Figure 2). On the other hand, the retrograde movement
of mitochondria is quite dependent on the minus end-directed motor protein, Dynein
complex [24,30]. A member of the kinesin family has been found to be a candidate gene
associated with prognostic factors in ovarian cancer [31]. The loss of the dynein light
chain, KM23 or DYNLL1 (dynein light chain LC8-type 1), has been reported to exhibit
an important role in the tumor formation [32] and chemoresistance [33] of ovarian cancer.
Furthermore, the syntaphilin (SNPH) protein anchors mitochondria to microtubules and
turns the mitochondrial transfer switch on or off [24,25]. The upregulation of SNPH
expression loses mitochondrial mobility, anchors mitochondria around the nucleus, and
promotes their fusion. Conversely, the loss of SNPH expression enhances mitochondrial
transport and facilitates their distribution to the cortical cytoskeleton [25]. However, studies
on motor proteins and SNPH in ovarian cancer are still lacking.
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3.2.2. Mitochondrial Fusion

Mechano-chemical dynamin-related GTPases (e.g., Mitofusin 1 (MFN1), Mitofusin
2 (MFN2), Optic atrophy 1 (OPA1), and Dynamin-related protein 1 (DRP1)) play critical
roles in orchestrating mitochondrial dynamics, including constant fusion/fission [5–8]. The
fusion of the OMM is mediated by MFN1 and MFN2, and OPA1 promotes IMM fusion
(Figure 1, Fusion). The fusion events regulate mitochondrial bioenergetics [34], increase
oxidative phosphorylation, enhance efficient ATP generation, decrease ROS production,
protect cell viability, and avoid cell death [3,35] (Figure 1, Metabolism). For example, MFN2
has been reported to be associated with elevated pyruvate, fatty acid, and coenzyme Q
levels, increased mitochondrial membrane potential, and enhanced bioenergy production
via OXPHOS [34,36]. Mechanistically, mitochondrial fusion leads to the transfer, redistri-
bution, dilution, and complementation of damaged mitochondrial content (e.g., mtDNA,
oxidized lipids, or proteins) [3,5,12] and the protection of mitochondria from selective
autophagic clearance, known as mitophagy [5,7,8,37]. MFN1, MFN2, and OPA1 protein
and mRNA levels have been reported to be downregulated in different types of tumors
such as the colon, lung, liver, stomach, bladder, and brain [6]. Indeed, a series of in vitro
and in vivo xenograft experiments demonstrated that the loss of MFN2 promotes cancer
cell migration [38,39]. In ovarian cancer cells, MFN2 suppresses cell proliferation and
invasion by upregulating AMP-activated protein kinase (AMPK) and downregulating
the mTOR (mammalian/mechanistic target of rapamycin)–ERK (extracellular regulated
MAP kinase) axis [27]. In pancreatic cancer cells, the overexpression of MFN2 causes
mitochondrial fusion, reduced mitochondrial mass and ATP production, and increased
mitophagy [40]. The subsequent loss of mitochondrial mass suppressed tumor growth via
reduced OXPHOS [40]. Furthermore, low MFN2 expression was reported to be related to
poor prognosis in hepatocellular carcinoma cells [41]. Therefore, MFN2 may be recognized
as a tumor suppressor gene. However, mitochondrial localization based on their dynamics
can be reprogrammed by extracellular signals (e.g., nutrient and oxygen levels) and intra-
cellular signals (e.g., oncogene activation) [3] (see Section 3.4). Upon nutrient starvation,
mitochondria undergo a series of fusion events via the overexpression of MFN1/2 to evade
mitophagy [20] (Figure 1, Environmental stressors). Additionally, OPA1 is required for
angiogenesis in response to angiogenic stimuli and influences tumor growth and metastasis
via the NF-κB (nuclear factor-kappaB)-dependent pathway [42]. Therefore, mitochondrial
fusion is thought to contribute to tumor growth and progression through the metabolic
shift from glycolysis toward OXPHOS and facilitating angiogenesis [43]. As described
above, mitochondrial fusion is thought to have dichotomy effects on tumor suppression
and promotion. This may depend on the degree of a metabolic shift from glycolysis to
OXPHOS and mitochondrial stress.

3.2.3. Mitochondrial Fission

The master regulator in mitochondrial fission is DRP1 [39] (Figure 1, Fission). Mi-
tochondrial fission causes their fragmentation, which is important in regulating cancer
cell replication and death, possibly through the proper distribution of mitochondria, the
stochastic replication of mitochondrial DNA, the partitioning of organelle genomes during
cell division, cytochrome C release during caspase-dependent apoptosis, and removing
damaged organelles by mitophagy [3,7,8]. mTOR regulates cancer cell proliferation by
controlling MFN2-mediated mitochondrial fusion and PKM2-dependent glycolysis [44],
suggesting that mitochondrial dynamics and metabolic changes may mutually adapt to
maintain cancer cell survival. Furthermore, in addition to a decreased expression of MFN,
an increased expression or enhanced activation of DRP1 have been found in many patient-
derived cell lines and patient tumor samples [3,45], including the lung [46], breast [47],
brain (glioblastoma) [48], colon [49], pancreas [50], skin (melanoma) [51], and thyroid [52],
indicating a potential role of DRP1 as a cancer-promoting factor [5,23]. Tumor cells induce
the subcellular repositioning of active mitochondria to the lamellipodia of the peripheral
cytoskeleton to provide energy for rapid tumor motility and invasion [41]. To that end,
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tumor cells upregulate DRP1 expression to trigger mitochondrial fission [53]. Indeed, a
change in mitochondrial dynamics facilitates the increased production of ATP at the leading
edge of lamellipodia in ovarian cancer cells [54]. A potential role of mitochondrial dynam-
ics in tumor cell migration and invasion has also been identified in glioblastoma, breast,
lung, thyroid, and prostate cancer [5,6]. DRP1-dependent mitochondrial fission or frag-
mented mitochondria may result in increased glycolysis in some cancers, including ovarian
cancer [7,55] (Figure 1, Metabolism) (see Section 3.3). Cancer cells that rely on glycolysis
over OXPHOS for energy production generate low levels of ROS. Therefore, mitochondria
at the leading edge result in increased glucose uptake and glycolysis and decreased oxida-
tive stress, counteracting the reduced efficiency of ATP synthesis, a loss of mitochondrial
membrane potential, a decrease in oxygen consumption, and increased mitophagy [23].
However, long-term dependence on glycolysis eventually leads to decreased ATP genera-
tion and increased ROS production. Cellular stress such as acute and sustained hypoxia
can induce extensive mitochondrial fission, leading to ovarian cancer cell proliferation
and invasion, via the upregulation of HIF-1α (hypoxia inducible factor-1alpha) and DRP1
expression [56]. Salt-inducible kinase 2 (SIK2), an AMPK-like protein, has been identified
as a key gene mediating this mechanism [57]. Additionally, hypoxia and nutrient starvation
are known to induce SIK2 through LKB1, an important sensor of energy requirements [57]
(Figure 1, Environmental stressors). Furthermore, nutrient deprivation such as glutamine
promotes the malignant biological behavior (e.g., stemness and chemoresistance) of ovarian
cancer cells via DRP1-induced mitochondrial fragmentation with enhanced glycolysis [58].
Ovarian cancer cells can reprogram mitochondrial function and localization in response to
intracellular energetic demands, the nutrient supply, and a hypoxic environment [34,59,60].
In addition, mitochondrial dynamics contribute to maintaining the regenerative compe-
tence of not only cancer cells but also normal cells through the activation of genes that
control mitochondrial fusion and fission [39,61] (Figure 1, Stemness). Mitochondrial fusion
and fission are common in normal stem cells and cancer stem cells, including induced
pluripotent stem (iPS) cells, respectively [6,39]. Considering the above, we believe that
tumor cells may predominantly exhibit a proliferative phenotype when mitochondria are
fused and localized perinuclearly, whereas mitochondria at the leading edge of tumor cells
may be associated with an invasive phenotype (Figure 1, Phenotype).

3.3. Factors That Influence Energy Metabolism

The altered metabolic profile is now recognized as a defining hallmark of cancer [9]. Mi-
tochondrial dynamics and metabolic reprogramming are known to influence each other [62].
Cancer cells switch their metabolic profile in response to intracellular and extracellular
stimuli to produce ATP and essential building blocks to maintain energy demand and
support proliferation, respectively [6,7,63]. Normal cells produce ATP through mitochon-
drial OXPHOS in the presence of oxygen, whereas cancer cells rely on glycolysis instead of
OXPHOS to produce ATP and lactate, a phenomenon called the Warburg effect [9]. Cancer
cells rely on the Warburg effect to meet the energy required for rapid DNA replication and
proliferation. First, we briefly overview the mechanisms underlying the metabolic switch
between glycolysis and OXPHOS (Figure 3). Pyruvate dehydrogenase kinase (PDK) [64]
and the M2 isoform of pyruvate kinase (PKM2) [65], as glycolytic enzymes, are known to
be two major effectors influencing metabolic rewiring. Pyruvate dehydrogenase (PDH) con-
verts pyruvate to acetyl-CoA, switches metabolism from glycolysis toward OXPHOS, and
induces mitochondrial oxidation [66]. Hypoxia-activated HIF-1α and TGF-β (transforming
growth factor-beta) upregulate PDK expression, which suppresses PDH activity [67–69].
Therefore, the HIF-1α/TGF-β-PDK-PDH signaling pathway induces a metabolic shift from
OXPHOS toward glycolysis. On the other hand, PKM2 promotes mitochondrial fusion
through MFN2, resulting in a metabolic shift from glycolysis to OXPHOS [44]. PKM2 regu-
lates the final step of glycolysis and converts phosphoenolpyruvate (PEP) to pyruvate [65].
PDK and PKM2 are believed to serve as biological switches that toggle between glycolysis
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and OXPHOS. Therefore, these glycolytic enzymes are key players that link mitochondrial
dynamics and energy metabolism.
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Figure 3. Factors that influence energy metabolism in ovarian cancer.

Next, we summarize the biological properties of specific genes and proteins related to
energy metabolism and mitochondrial dynamics in ovarian cancer. The gene expression
profile downloaded from The Gene Expression Omnibus database identified hexokinase 2
(HK2), lactate dehydrogenase A (LDHA), and enolase 1 (ENO1) as glycolytic biomarkers
in ovarian cancer [70] (Figure 3). Furthermore, quantitative proteomics studies were con-
ducted to compare human ovarian cancer tissues and the controls to identify ovarian cancer-
specific mitochondrial differentially expressed proteins [71]. The proteins significantly
enriched in ovarian cancer are PKM (pyruvate kinase M1/2), PFKM (phosphofructokinase,
muscle), PDHB (pyruvate dehydrogenase E1 subunit beta), CS (citrate synthase), IDH
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(isocitrate dehydrogenase (NADP+)), OGDHL (oxoglutarate dehydrogenase-like), ND5
(mitochondrially encoded NADH dehydrogenase subunit 5), ND2, UQCRH (ubiquinol-
cytochrome c reductase hinge protein), MIEF2 (mitochondrial elongation factor 2), and
Nrf2 (nuclear factor erythroid 2-related factor 2) [71]. These genes encode proteins involved
in glycolysis and mitochondrial respiration [71]. They are mainly associated with energy
metabolism pathways and provide the energy required for the biosynthesis of cellular
building blocks and the respiratory pathways of glycolysis, the tricarboxylic acid (TCA)
cycle, and the mitochondrial ETC [4,72]. Moreover, several genes affecting energy metabolic
pathways have also been reported in ovarian cancer cells. Small nucleolar RNA host gene
3 (SNHG3) fine-tunes energy metabolism by regulating the expression of PKM, PDHB,
IDH2, and UQCRH in ovarian cancer and is also associated with chemoresistance [73].
The SNHG3 gene has been reported to promote the progression of breast cancer [74]. Ad-
ditionally, human pituitary tumor-transforming gene (PTTG) plays an important role in
upregulating the expression of enzymes involved in aerobic glycolysis (e.g., PKM2, LDHA,
and GLUT1) [75]. PTTG, a multifunctional proto-oncogene, is overexpressed in various
tumors including ovarian cancer [75]. This subsection describes the representative molecu-
lar players involved in energy metabolism pathways. PKM generates ATP and pyruvate.
PKM has been found to bind the OPA protein involved in cancer cell proliferation. PFKM
catalyzes the phosphorylation of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate
and is downregulated in ovarian cancer. The PDH complex catalyzes the conversion of
pyruvate to acetyl-CoA, attenuates the production of lactate, contributes to enhanced
OXPHOS activity, and provides a metabolic shift from glycolysis toward OXPHOS. PDH
expression is downregulated in ovarian cancer and is associated with poor prognosis [76].
CS is a TCA cycle enzyme that catalyzes the synthesis of citrate from oxaloacetate and
acetyl-CoA. CS being overexpressed in ovarian cancers reportedly promotes cell prolifera-
tion, invasion, and migration [77]. IDH catalyzes the oxidative decarboxylation of isocitrate
to 2-oxoglutarate and plays a role in intermediary metabolism and energy production [78].
The upregulation of IDH expression has been reported to promote ovarian cancer growth
through metabolic and epigenetic alterations [78]. OGDHL degrades glucose and glutamate
and can suppress cancer cell growth via downregulating the AKT (AKT serine/threonine
kinase 1) signaling cascade. ND5 promotes cancer metastasis through enhancing OXPHOS
activity [79]. UQCRH may suppress carcinogenesis through promoting mitochondria
function [80]. Since ovarian cancer is characterized by a high oxidative stress status and
decreased antioxidant activity, Nrf2 functions as a key regulator of many genes related
to the antioxidant processes [81]. It is well known that mitochondria are the powerhouse
of eukaryotic cells and ROS are metabolic byproducts. Energy production through gly-
colysis allows ovarian cancer cells to minimize ROS generation. Fine-tuning metabolic
reprogramming enables ovarian cancer cells to survive in an oxidative stress-rich tumor mi-
croenvironment. In addition, a metabolomics analysis revealed that MIEF2 is overexpressed
in ovarian cancer cells [82,83]. MIEF2 increases the expression of enzymes (e.g., GA3P
(glyceraldehyde 3-phosphate), G6P (glucose 6-phosphate), 3PG (3-phosphoglycerate), F6P,
and lactate) associated with the glycolytic pathway and decreases the production of TCA
cycle intermediates (e.g., α-ketoglutarate, aconitate, citrate, malate, and fumarate) [82].
MIEF2 may promote the progression of ovarian cancer through inducing a metabolism
switch from OXPHOS to glycolysis [82]. Overall, these data suggest that ovarian cancer
cells control cell proliferation and survival by regulating energy metabolism.

Finally, ovarian cancer is a heterogeneous disease. High-grade serous carcinoma
(HGSC) and clear cell carcinoma (CCC) are representative subtypes of epithelial ovarian
cancer with unique genetic and clinicopathological features. CCC is characterized by an
increased expression of oxidative stress and glycolysis-related genes [55]. Hepatocyte nu-
clear factor 1beta (HNF1B), a CCC-specific transcription factor [84–87], and PDK [88] favor
aerobic glycolysis. Conversely, ARID1A (AT-rich interaction domain 1A), an SWI/SNF
subunit gene that is mutated in approximately 50% of CCC [89], has been reported to
regulate mitochondrial dynamics, resulting in a metabolic shift from glycolysis to OX-
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PHOS [90]. Transcriptional programs of HNF1B, PDK, and ARID1A may orchestrate
energy metabolism to match the needs of the cell, i.e., carcinogenesis, proliferation, in-
vasion, and survival. Furthermore, the expression of glycolysis-related proteins, glucose
transporter-1 (GLUT1), hexokinase 2 (HKII), PKM2, and LDHA, is also upregulated in
HGSC [91]. However, there are also reports that HGSC, ovarian cancer stem cells, and
metastatic ovarian tumors mainly rely on OXPHOS for their energy needs [92,93]. For
a detailed and up-to-date review of ovarian cancer and metabolism, see ref. [94]. Many
ovarian cancer cells favor energy production, primarily by glycolysis over mitochondrial
OXPHOS, but some cancer cells behave distinctly in the opposite way. The preference for
glycolysis versus OXPHOS in ovarian cancer cells may be determined by histopathologic
types or the unique genetic profile of energy metabolism.

The solid black arrows indicate glycolysis and the dotted green arrows indicate OX-
PHOS. CS, citrate synthase; HIF-1α, hypoxia inducible factor-1alpha; IDH2, isocitrate
dehydrogenase2; IDH3A, isocitrate dehydrogenase3A; IDH3B, isocitrate dehydrogenase3B;
MFN2, mitofusin 2; MIEF2, mitochondrial elongation factor 2; ND2, mitochondrially en-
coded NADH dehydrogenase subunit 2; ND5, mitochondrially encoded NADH dehydro-
genase subunit 5; NRF2, nuclear factor erythroid 2-related factor 2; OGDHL, oxoglutarate
dehydrogenase-like; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase;
PFKM, phosphofructokinase, muscle; PKM, M isoform of pyruvate kinase; PKM2, M2
isoform of pyruvate kinase; TCA, tricarboxylic acid cycle; TGF-β, transforming growth
factor-beta; and UQCRH, ubiquinol-cytochrome c reductase hinge protein.

3.4. Relationship between Metabolic Reprogramming and Mitochondrial Dynamics

In this section, we summarize the metabolic reprogramming that affects mitochondrial
dynamics in ovarian cancer. The specific metabolic preferences of tumor cells may be
determined by extrinsic (e.g., nutritional status and hypoxia) and intrinsic (e.g., oncogenic
signaling) factors.

3.4.1. Extrinsic Factors

Cancer cells exhibit intertumoral and intratumoral heterogeneity, and their pheno-
type may be regulated by signals originating from the surrounding tumor microenviron-
ment [6,23]. For example, under hypoxic conditions, tumor cells favor glycolysis over
mitochondrial OXPHOS via upregulating the HIF-1α-PDK axis [95] (Figure 1, Environ-
mental stressors). Tumor cells with a hypermetabolic and glycolytic phenotype can shift
glucose metabolism into the pentose phosphate pathway (PPP), which produces NADPH
to maintain the level of glutathione that helps protect cancer cells against oxidative damage
and ribose-5-phosphate to synthesize nucleic acids [95]. Indeed, hypoxia promotes tumor
cell migration through increased DRP1 expression, mitochondrial fragmentation, and mi-
tosis in breast cancer [96] and glioblastoma cells [48]. Tumor cells must escape the lethal
effects of the hostile environment and find safe places where they can form metastases and
grow again [7,55]. In HGSC, exposure to hypoxia induces mitochondrial fragmentation,
leading to enhanced metastasis [26]. Therefore, glycolytic tumors may be involved in
the acquisition of an invasive phenotype through DRP1-dependent mitochondrial fission
(Figure 1, Phenotype). On the other hand, mitochondrial elongation upon nutrient starva-
tion is required to optimize mitochondrial substrate utilization and enhance ATP generation
with the limited available resources, indicating that mitochondrial fusion is associated
with a proliferative phenotype [34] (Figure 1, Environmental stressors and Phenotype).
Unfavorable environmental conditions, such as hypoxia and nutrient starvation, may drive
invasive and proliferative behavior, respectively [97].

3.4.2. Intrinsic Factors

Next, oncogenic RAS (Ras oncogene)–RAF (Raf oncogene)–ERK [98] signaling, MAPK
(mitogen activated kinase-like protein)–ERK [99] signaling, PI3K (phosphatidylinositol
3-kinase)–AKT [100] signaling, and MYC (MYC proto-oncogene) [101] signaling are known
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to govern the mitochondrial dynamics machinery (Figure 1, Oncogenic signaling). These
oncogenic signaling pathways are also activated in ovarian cancer cells. RAS mutations,
especially KRAS (KRAS proto-oncogene, GTPase) mutations, were detected in approxi-
mately 6 to 65% of ovarian cancer [102]. The somatic copy number alterations of PIK3CA
(phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) were also fre-
quently increased (by approximately 20%) [103]. In particular, ARID1A (62%), PIK3CA
(51%), KRAS (10%), PPP2R1A (protein phosphatase 2 scaffold subunit A alpha) (10%), and
PTEN (phosphatase and tensin homolog) (5%) genes are frequently mutated in ovarian clear
cell carcinoma (CCC) [104]. Oncogenic RAS–RAF–ERK [98] signaling, MAPK–ERK [99]
signaling, and PI3K–AKT [100] signaling can mediate a metabolic switch from OXPHOS
to glycolysis, promote DRP1-dependent mitochondrial fission, and eliminate damaged
mitochondria through mitophagy [6]. Functionally, mitochondrial fragmentation promotes
mitochondrial trafficking to the cortical cytoskeleton, induces lamellipodia formation,
and enhances the bioenergetics of cell motility and invasion [99,100]. Conversely, onco-
genic MYC overexpression may promote mitochondrial fusion [105]. Oncogenic MYC
signaling induces mitochondrial fusion by upregulating PGC-1β (peroxisome proliferative
activated receptor, gamma, coactivator 1 beta) and PLD6 (phospholipase D Family member
6, which is also known as mitoPLD) expression [101,105]. PGC-1β regulates mitochon-
drial biogenesis [106] and PLD6 facilitates mitochondrial fusion through the generation
of phosphatidic acid [101]. Furthermore, the survival signaling pathways regulating mi-
tochondrial biogenesis include AMPK-PGC-1α and SIRT1 (sirtuin1)-PGC-1α, metabolic
sensors that control energy expenditure [107]. Several oncogenes, such as RAS, MAPK,
and PI3K, induce mitochondrial fission, and MYC overexpression may drive mitochon-
drial fusion. The activation of oncogenes has been found to play important roles in the
proliferation and invasion of various types of cancers by regulating mitochondrial dynam-
ics [6]. In addition, mutations in tumor suppressor p53 are prevalent in high-grade serous
ovarian carcinoma. p53 is involved in various cellular processes, such as mitochondrial
elongation [108]. Therefore, the dysregulation of oncogenes or tumor suppressor genes has
been implicated in mitochondrial dynamics and tumor progression by fine-tuning a relative
balance between mitochondrial biogenesis and mitophagy, known as mitochondrial quality
control mechanisms.

Overall, tumor cells may primarily utilize OXPHOS via mitochondrial fusion for pro-
liferation and activate glycolysis via mitochondrial fission for invasion, although the results
remain inconsistent [109]. Although the metabolic switch from OXPHOS to glycolysis
regulates the invasion cascade, OXPHOS is indeed essential for the growth, survival, and
stemness of tumor cells [110]. Indeed, the upregulation of mitochondrial OXPHOS activity
has been reported to be involved not only in proliferating tumor cells but also in metastatic
tumor cells, chemoresistant tumor cells, and cancer stem cells [109]. Therefore, mitochon-
drial dynamics are essential for tumor formation and progression, including tumor invasion
and proliferation, cancer stemness, and chemoresistance. Differences in such intrinsic or
extrinsic factors among cancer cells may be the reason for the inconsistent results.

3.5. Therapeutic Strategies Targeting Mitochondrial Dynamics

Finally, this section summarizes therapeutic strategies targeting mitochondrial dy-
namics that affect energy metabolism in ovarian cancer. The energy metabolism relies
on the activation of distinct mitochondrial dynamics that are often deregulated in can-
cer [5,47,111]. Thus, targeting mitochondrial dynamics represents an attractive approach
for therapeutic intervention.

First, DRP1 is overexpressed in a variety of human cancers [5,6,23,45]. DRP1 overex-
pression has been reported to be closely associated with the invasive phenotype of cancer
cells in in vivo and in vitro studies [52,56]. An increasing number of studies have demon-
strated that high DRP1 expression is associated with invasion, lymph node metastasis, and
poor prognosis, whereas low MFN2 expression is correlated with decreased overall survival
in patients with breast, gastric, and glioma cancer [47,112]. Therefore, DRP1 and MFN2 may
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show a considerably promising strategy for cancer treatment. The development of DRP1
inhibitors, MDIVI-1 and peptide P110, represents an attractive therapeutic opportunity for
inhibiting mitochondrial fission [111]. MDIVI-1 inhibits mitochondrial complex I (NADH
dehydrogenase) activity. P110 is an inhibitor of DRP1-FIS1 (mitochondrial adaptor fission
1) interaction. MDIVI-1 triggers mitochondrial uncoupling in combination with cisplatin,
decreases ATP levels, and disrupts essential metabolic signaling pathways [113]. Moreover,
the silencing of DRP1 or the overexpression of MFN1 inhibits cell scattering and lamellipo-
dia formation, reduces cell migration and invasion, enhances apoptosis, and suppresses cell
proliferation in various types of cancers such as colon, breast, brain, and lung cancer [111].
Indeed, leflunomide, a potent activator of mitochondrial fusion proteins, inhibited the
growth of ovarian, glioma, and prostate cancer cell lines [8,114]. However, whether DRP1
modulates therapeutic efficacy in cisplatin-resistant ovarian cancer cells remains incon-
clusive. Since the upregulation of DRP1 expression is a common phenomenon in human
cancers, researchers believe that DRP1 inhibitors are good candidates for overcoming
cisplatin resistance [111,113,115]. However, it has been reported that DRP1 expression
is downregulated and MFN2 expression is upregulated in the highly proliferative and
cisplatin-resistant ovarian cancer SKOV3 cell line [116]. Therefore, there have been contra-
dictory reports that the downregulation of DRP1 expression or the upregulation of MFN2
expression induces [116–118] or prevents [111,113,115,119] cisplatin resistance in ovarian
cancer cells. The selection of DRP1 inhibitors as a treatment strategy may conceivably de-
pend on the cancer phenotype (e.g., DRP1 overexpressing ovarian cancer that have acquired
a more invasive and aggressive phenotype). To date, no clinical trials have been conducted
with specific inhibitors targeting DRP1 and MFN2. Proteins involved in mitochondrial
dynamics such as DRP1, MFN1, MFN2, OPA1, and SNPH would be of great interest in
future drug development. Additionally, targeting mitophagy to promote apoptosis appears
to be a promising therapeutic strategy for overcoming chemoresistance, improving drug
sensitivity, and enhancing ovarian cancer treatment efficacy [120]. Although there is so
far a lack of clinical studies on the efficacy of mitochondrial inhibitors, one clinical trial
has been reported. A multicenter, open-label, phase Ib study was conducted to assess the
safety, pharmacokinetics, and preliminary efficacy of ME-344, a mitochondrial inhibitor,
administered in combination with conventional chemotherapy, in patients with previously
treated ovarian cancers (NCT02100007) [121]. ME-344, (3R,4S)-3,4-bis(4-hydroxyphenyl)-8-
methyl-3,4-dihydro-2H-chromen-7-ol is a novel cytotoxic isoflavone. Among the 32 patients
with recurrent ovarian cancer enrolled, 1 patient (3%) achieved a partial response, and 21
patients (66%) had stable disease. ME-344 was a safe and tolerable drug, but the initial
expectations were unmet.

Second, cancer cells commonly favor enhanced glycolysis, but OXPHOS can also be up-
regulated in certain cancers [122,123]. OXPHOS upregulation seems to be limited to some
cancer subtypes, including leukemias, lymphomas, pancreatic ductal adenocarcinoma, high
OXPHOS subtype melanoma, endometrial cancer, ovarian cancer [123], the chemotherapy-
resistant cancer stem cell subpopulation [124], and slow-cycling tumor cells [125]. Therefore,
OXPHOS inhibition is considered to be an effective therapeutic approach for cancer cells
that favor energy production by mitochondrial OXPHOS over glycolysis [122,123]. OX-
PHOS inhibitors include metformin (1,1-dimethylbiguanide; antidiabetics), fenofibrate and
simvastatin (antilipidemic), atovaquone (antimalaria), macrolides, clindamycin, tetracy-
cline, and chloramphenicol (antibiotic or anti-parasitic agents) [123,124]. These drugs have
an inhibitory effect on the expression and activity of ETC complexes [124]. For example,
metformin inhibits the mitochondrial respiratory chain complex 1 [123]. Ashton et al.
summarized the current understanding of OXPHOS inhibitors and discussed the feasibility
of these compounds as clinically relevant anticancer therapeutics [123]. Researchers are
beginning to provide evidence that the impairment of OXPHOS can help control ovarian
cancer progression [126]. Indeed, ovarian cancers defective in homologous recombination
(HRD) typically rely on OXPHOS over glycolysis for energy, suggesting that HRD cells may
be more sensitive to OXPHOS inhibitors, such as metformin [127]. Moreover, OXPHOS
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inhibitors block the platinum-induced ovarian cancer stem cell enrichment [128]. Addition-
ally, the observation that certain cancer cells may be more sensitive to OXPHOS inhibitors
has led to clinical trials of the inhibitors aiming at cancer treatment. The first-in-human
study assessed the feasibility of IM156, a novel potent biguanide, in 22 patients with refrac-
tory advanced solid tumors, including 3 patients with ovarian cancer [129]. Seven (32%)
patients had stable diseases [129]. Furthermore, phase 1 trials evaluating several inhibitors
(e.g., metformin, BAY 87-2243, or niclosamide) have been completed or are in progress [124].
Therefore, some OXPHOS inhibitors may have antitumor activity, but the evidence is insuf-
ficient (or not yet published) to evaluate effectiveness. Nayak et al. summarized potential
agents and critical control points in the OXPHOS pathway and discussed potential barriers
that can reduce the efficacy of the OXPHOS inhibitors [92]. Current OXPHOS inhibitors
that directly suppress ETC activity damage not only cancer tissues but also normal tissues
by causing an increase in harmful ROS [92]. Therefore, these inhibitors can cause severe
adverse effects that threaten to limit their efficacy [130]. Additionally, the upregulation
of endogenous Nrf-2 may promote the OXPHOS inhibitor resistance of cancer cells via
the enhanced expression of ROS-scavenging proteins [92]. Furthermore, cancer cells with
dysfunctional mitochondria can promote metabolic reprogramming, inducing shifts toward
glycolysis [131]. As mentioned above, OXPHOS inhibitors have been reported to have
antitumor activity [124], but various important issues remain unresolved.

Finally, cancer cell lines with oncogenic RAS-RAF-ERK signaling [98] or the activation
of MAPK-ERK [99] and PI3K-AKT [105] signaling are characterized by mitochondrial
fragmentation [8]. Therefore, anticancer therapies such as MAPK inhibitors and PI3K
inhibitors may promote mitochondrial fusion, leading to the inhibition of tumor inva-
sion [98,99,105]. We also searched the US National Institutes of Health Ongoing Trials
Register (ClinicalTrials.gov; https://clinicaltrials.gov/, accessed on 20 October 2023) to
identify ongoing trials. This search found eight, five, and eight clinical trials for aberrant
RAS, MAPK, and PI3K signaling, respectively. Combination trials of serine threonine kinase
(STK) inhibitors including MAPK inhibitors and PI3K inhibitors currently in development
with chemotherapy and/or targeted therapies may have acceptable toxicity and efficacy
in ovarian cancer [132]. The efficacy of emerging STK inhibitors for ovarian cancer has
been published, with a response rate of approximately 25% and a clinical benefit rate of
approximately 70% [132]. STK inhibitors may be associated with the inhibitory properties
of mitochondrial fission and thus contribute significantly to the suppression of tumor
invasion. Overall, the signaling pathways that regulate mitochondrial dynamics may lead
to promising new therapeutic options in the treatment of ovarian cancer.

4. Discussion

In this review, we summarize our current understanding of the molecular mechanisms
controlling mitochondrial fusion/fission dynamics in ovarian cancer and the effects of
changes in mitochondrial shape and function on energy metabolism, cell proliferation,
invasion, and cell death and discuss future research directions and perspectives for thera-
peutic strategies. First, mitochondria have the unique ability to regulate their morphology
in response to various intracellular and extracellular stimuli [6]. Based on the type, severity,
and duration of stress insult, mitochondria undergo fusion or fission to determine both cell
homeostasis and death decisions [5]. Cancer cells often encounter nutrient starvation and
hypoxia (Figure 2). During nutrient deprivation, mitochondria fuse with adjacent mito-
chondria through upregulating MFN1, MFN2, and OPA1 expression and create extensive
interconnected filamentous networks in order to facilitate the equilibration of mitochondrial
components such as mtDNA, proteins, metabolites, and ETC components and maintain
the functionality of the OXPHOS system [6,27] (Figure 1). The minimal energy generated
by mitochondrial fusion allows cancer cells to survive but is still insufficient for cancer
cell invasion. Cancer cell invasion requires the assembly of actin fibers and lamellipodia
formation in the peripheral cytoskeleton, an area of high energy demand [27,35]. Increased
energy generation over time allows small, fragmented mitochondria to travel from the

https://clinicaltrials.gov/
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perinuclear area to the distant lamellipodia at the front edge of migrating cells [133]. In-
creased fission has been reported to promote tumorigenesis and invasion [40,47,48,99].
Also, fission allows for an equal distribution of mitochondria during mitosis [133]. Further-
more, a hypoxic environment can shift energy metabolism toward glycolysis over OXPHOS
and promote mitochondrial fragmentation via the upregulation of DRP1 expression [47]
(Figure 1). Fusion is essential for ensuring an optimal mitochondrial network by allowing
for the exchange of contents between fusing mitochondria, while fission maintains the
mitochondrial number, movement, cellular location, and proper distribution in the daugh-
ter cells [8]. Mitochondria are thought to contribute to maintaining energy homeostasis
under nutrient deprivation and hypoxia by regulating their dynamics [5]. Furthermore,
ovarian cancer cells regulate mitochondrial dynamics through the activation of oncogenic
RAS, MAPK, PI3K, or MYC signaling [98,99,105]. RAS, MAPK, and PI3K may promote
mitochondrial fission, and MYC may enhance mitochondrial fusion (Figure 1). From the
above, ovarian cancer cells fine-tune mitochondrial dynamics to determine the cell fate
in response to extrinsic factors such as environmental changes (nutrient starvation and
hypoxia) and intrinsic factors specific to cancer cells (oncogenic signaling). However, the
preference for glycolysis versus OXPHOS in ovarian cancer cells may be determined by
histopathologic types or the unique genetic profile of energy metabolism.

Second, the therapeutic targeting of mitochondrial dynamics regulators is attracting in-
creasing attention for the treatment of ovarian cancer. DRP1 inhibitors and MFN activators
have emerged as therapeutic strategies as mitochondrial fission has been identified in many
human cancers [5,6,23,45,52,56], including ovarian cancer [4,26–28,55,92,116,134]. However,
in some ovarian cancers, DRP1 inhibitors can unexpectedly exert the opposite effect on the
therapeutic activity. DRP1 inhibition promotes [116–118] or suppresses [111,113,115,119]
chemoresistance in ovarian cancer cells. It is becoming apparent that DRP1 inhibition or
increased OXPHOS dependence via mitochondrial fusion is often associated with resistance
to chemotherapy in several cancer cells [5,109]. Therefore, we cannot definitively conclude
that the chemosensitivity of ovarian cancer cells is improved by the inhibition of mitochon-
drial fission [37]. Mitochondrial dynamics determine the decision between cell death and
survival in response to various intrinsic (e.g., histotype, phenotype, and molecular features)
and extrinsic (e.g., microenvironmental stimuli) factors [118]. Therefore, tumor phenotypic
heterogeneity and plasticity, the aberrant expression of mitophagy-related genes, acquired
drug resistance, and alterations in the surrounding tumor microenvironment may limit
the therapeutic efficacy of DRP1 inhibitors. In addition, OXPHOS inhibitors have the
same problems.

In conclusion, our knowledge about pathophysiologic processes, including many
molecular events involved in mitochondrial fusion and fission, is still in its infancy. Al-
though mitochondrial dynamics regulators have exhibited therapeutic potential in preclini-
cal studies, the results remain inconsistent. To optimize the efficacy of these regulators, it is
necessary to accurately understand the current bioenergetic pathways and mitochondrial
function and their quality control for each patient with ovarian cancer.

5. Future Perspectives

Here, we highlight future directions for ovarian cancer research focusing on mito-
chondrial dynamics. High-throughput technologies such as transcriptomic and proteomic
interrogation can provide effective and efficient patient-tailored treatment [135]. Liquid
biopsy is a noninvasive technique that identifies the diagnostic information of cancer and
reduces the need for tissue biopsy [136]. Analysis for rapidly and precisely characterizing
the expression patterns and profile of fission- and fusion-related genes based on mito-
chondrial dynamics is essential to predict tumor aggressiveness. The identification of
alterations in mitochondrial dynamics relies on relevant biomarker genes, including DRP1,
MFN1, MFN2, and OPA1. To understand current bioenergetic pathways, it is essential to
identify the expression of specific genes (PFKM, PKM, PDK, PDH, and MIEF2 for glycolysis-
related genes and CS, IDH2, IDH3A, IDH3B, OGDHL, ND2, ND5, UQCRH, and NRF2 for
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OXPHOS-related genes). Bespoke minimal biomarker panels should include these candi-
date genes. For example, ovarian cancer cells overexpressing mitochondrial fusion genes
often rely on OXPHOS for energy supply, and thus MFN or OPA1 inhibitors may be effec-
tive. These inhibitors may suppress mitochondrial fusion and induce mitophagy, leading
to cell death. On the other hand, the subpopulation of ovarian cancer cells overexpressing
mitochondrial fission genes may exhibit an invasive phenotype. Therefore, inhibitors of
DRP1 may block mitochondrial transfer, downregulate energy-supplying processes, and
reduce invasiveness. The biomarker panel can be used in the discovery of unique and
targetable biomarkers, in appropriate drug selection, in monitoring or predicting cancer
progression, and in response to therapy. Mitochondrial dynamics regulators may provide
a promising therapeutic strategy for ovarian cancer patients. A deeper understanding of
what regulates mitochondrial dynamics in each patient and when and how may lead to
more rational treatment strategies.
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