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Abstract: The strong ferromagnetic nanoparticles are analyzed within the band structure-based shell
model, accounting for discrete quantum levels of conducting electrons. As is demonstrated, such an
approach allows for the description of the observed superparamagnetic features of these nanocrystals.
Assemblies of such superparamagnets incorporated into nonmagnetic insulators, semiconductors, or
metallic substrates are shown to display ferromagnetic coupling, resulting in a superferromagnetic
ordering at sufficiently dense packing. Properties of such metamaterials are investigated by making
use of the randomly jumping interacting moments model, accounting for quantum fluctuations
induced by the discrete electronic levels and disorder. Employing the mean-field treatment for such
superparamagnetic assemblies, we obtain the magnetic state equation, indicating conditions for an
unstable behavior. Respectively, magnetic spinodal regions and critical points occur on the magnetic
phase diagram of such ensembles. The respective magnetodynamics exhibit jerky behavior expressed
as erratic stochastic jumps in magnetic induction curves. At critical points, magnetodynamics displays
the features of self-organized criticality. Analyses of magnetic noise correlations are proposed as
model-independent analytical tools employed in order to specify, quantify, and analyze the magnetic
structure and origin of superferromagnetism. We discuss some results for a sensor-mode application
of superferromagnetic reactivity associated with spatially local external fields, e.g., the detection of
magnetic particles. The transport of electric charge carriers between superparamagnetic particles is
considered tunneling and Landau-level state dynamics. The tunneling magnetoresistance is predicted
to grow noticeably with decreasing nanomagnet size. The giant magnetoresistance is determined by
the ratio of the respective times of flight and relaxation and can be significant at room temperature.
Favorable designs for superferromagnetic systems with sensor implications are revealed.
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1. Introduction

Advances in micro- and nano-fabrication of various materials stimulate the extensive
development and employment of spintronic magnetoresistance sensors and/or magnetore-
sistive sensors (MRS) for both recording and non-recording purposes. Such state-of-the-art
magnetoresistive spintronic sensors have a high sensitivity of the detected ultra-weak
field, which meets the requirements of intelligent sensor applications in the fields of the
Internet, mobile devices, aeronautic and cosmic engineering, environment and healthcare,
domotics, and so on. Moreover, their adaptability and miniaturization, easy integration,
and cost-effectiveness put such MRS forward as exclusively favorable in terms of spreading
applications and commercial production.

In particular, the recent progress in ligand-stabilized frameworks (e.g., mono-carbon [1,2]
or thiolates [3]) and the employment of porous materials [4] (zeolites, covalent- and metal-
organic architectures, etc.) allows the synthesis of metallic nanoparticles of higher stability,
recyclability, and selectivity, strong metal-support interactions, and the ability to facilitate
tandem catalysis. In the case of the transition metals Co, Fe, and Ni, such encapsulated
quantum magnetic metal nanoparticles display superparamagnetic features that we refer to
hereafter simply as SPM. Made up of imbedded in a matrix (quasi) recurrently composed
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SPMs, such crystalline metamaterials and/or SPM assemblies (SPMA, cf., e.g., [5] and
refs. therein) make it possible, e.g., to construct novel meta-materials demonstrating ad-
vanced characteristics beyond those in regular condensed matter. In addition to plausible
improvements in ‘figures of merits’ for engineering, such SPMAs are of general importance
for investigations of the structure, dynamics, and phase behavior of matter at a wide variety
of characteristics, e.g., interparticle interactions, compositions, long-range Coulomb effects,
etc. In particular, SPMAs with sufficiently high SPM densities exhibit superferromagnetic
(SFM) structural properties, cf., e.g., [1–5] and refs. therein. SPMAs are important for ad-
vanced MR sensors for, e.g., medical and biological implications, storage and no-recording
technologies, etc.

In this paper, we provide a brief overview of various aspects of the SPM and SFM sys-
tems as well as their implications for magnetoresistive sensors. The next section considers
SPM electronic properties by employing the band structure-based shell model. In Section 3,
such a description of SPMs is applied to the interpretation of the SFM features of SPMA as a
result of direct and/or indirect exchange coupling. Tunneling and giant magnetoresistance
effects naturally arise in such a treatment. The SFM state equation and its effect on SPMA
magnetodynamics are described in Section 4. In Section 5, magnetic reactivity in sensor
mode is analyzed. Conclusions and discussions are in Sections 6 and 7.

2. SPM Shells Structure

The SPM features arise in ferri- and ferro-magnetic materials with a spatial size
less than the critical size for domain development and are given by a single uniformly
magnetized metal object. The electronic state of this system corresponds to a uniform
magnetic alignment, and the sample behaves like a small permanent magnet. The volume
of a single-domain portion of a material is determined by the substance and inputs of
various anisotropy energy components. The maximum radius rc for a single domain
particle can be evaluated as rc = 9 (AKu)1/2 /Ms µ0 with the exchange coupling strength A,
the uniaxial anisotropy Ku, the saturation magnetization Ms, and the permeability constant
µ0. The usual numbers of a radius rc for traditional elements are: Fe-15 nm, Co-35 nm,
γ-Fe2O3 − rc ≈ 30 nm, and SmCo5 corresponds to considerable rc ≈ 750 nm (see [5] and
refs. therein). Determined by the volume and material, the SPM magnetic moments range
from 102 to 105 µB, where µB is the Bohr magneton. At sufficiently high temperatures,
such a system behaves like a paramagnet [5,6], with the considerable exception that the
independent moments are not those of a single atom but rather of a single domain ferri- or
ferro-magnetic particle, which may contain more than 105 atoms ferri- or ferro-magnetically
coupled by an exchange interaction. Such a system is then referred to as superparamagnetic,
or SPM; see also above.

Shells in the Band Structure of SPM

The iron series transition metals—Co and Ni—correspond to the strong ferromagnetic
metals with large intra-SPM exchange interactions and, therefore, considerable molecular
magnetic self-induction H. In this case, see Figure 1, the Fermi energy EF is located above
the majority spin band top energy E↑ and below the top energy E↓ of the minority spin
levels (cf., e.g., [7,8]). Then the magnetic moment per atom mN of SPM containing N atoms
is given by mN = µB nh, with the Bohr magneton µB and the number of holes in the minority
spin band nh that is related to the mean number δns of delocalized s electrons above E↑ in
the majority spin band [9,10] by nh = n0

h − δns with n0
h = 10 − nv + n0

s, where nv and n0
s

are the numbers of outer shell and s electrons per atom, respectively. The quantity δns can
be expressed in terms of the level density contribution ρs of the sp band to the total value of
active electrons.

δns =
[
ns(EF)− ns

(
E↓ )]/n, ns(Ei) =

∫
dE ρs(E) f (E − Ei) (1)

where f (x) = [1 + exp{x/kBT}]−1 denotes the Fermi distribution function.
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For a finite SPM particle, the number of s electrons n0
s contains the parts of “bulk”

nbulk
s, “surface” nsurf

s, and “curvature” ncurv
s constituents, i.e., n0

s ≈ nbulk
s + nsurf

s N− 1/3

+ ncurv
s N− 2/3. The respective parameters ni

s are determined by the mean coordination
number of SPM atoms.

Confinement of electrons into the finite spatial SPM volume results in the well-known
shell effect in the level density, cf., [11–13] and refs. therein. Consequently, the component
of s electrons in the level density ρs can be written as

δρs(E) = ρs
sm(E) + ρs

sh(E) (2)

with the smooth ρs
sm and an oscillating ρs

sh (i.e., shell correction) parts, and an energy E
measured from the bottom of the sp band Es. For example, when electrons are confined
in a 3D-shaped SPM by a harmonic oscillator potential (HO: V(r) = mω2r2/2 − h̄ ω), see
Figure 1, at a uniform magnetic self-field H, both components can be represented as [11–13].

ρsm(E) =
E(E + èω)

2(è ω)3 , ρsh(E) =
E(E + è ω)

(è ω)3 Σk cos
(

k
2πE
è ω

)
j0

(
ηk

2πE
è ω

)
qk (3)

Here h̄ is the Planck constant, and the condition η = ωL/ω � 1 is ensured due to
the Larmour frequency ωL = eH/2mc; j0 denotes the spherical Bessel function; and the
suppression coefficient qk accounts for the continuousness of an electronic trajectory (cf.,
e.g., [14,15]) and allows for a smooth truncation of contributions from longer periodic orbits.
This term can be revealed from the data of the mean-free path l or the material conductivity
as qk ≈ qk with q ≈ exp{−L/l}, where L denotes the primitive orbit length (cf., e.g., [11–13]).
The shell structure gives rise to oscillations of δns as a function of SPM size. Using the
abbreviations ∆↑ = EF − E↑, ∆↓ = E↓ − EF, and ∆s = EF − Es, we can evaluate the oscillating
part of Equation (2) as

δnsh
s ≈

∆↑(1 + Xs)R
4πη N(èωs)

[
arctan

(
q sin(x)

1 + q cos(x)

)]2πXs(1+η)

2πXs(1−η)

, (4)

where R = y/sinh(y) with y = 2πkBT/èωs, and Xs = (3 n0
sN)1/3 determines the number

of filled electronic shells. Then, the HO frequency is given by èωs = ∆s/Xs, and exceeds
significantly the value ∆↑ in many practical cases, cf., [11]. We refer to this model as the
band-structure-based shell (BSBSh) model.

We incorporate parameters (i.e., density, conductivity, magnetization, and so on,
cf., [7,8]) of Ni and Co metals into Equations (1)–(4) and evaluate the SPM magnetic
moments for various numbers of atoms in nanocrystals. As is seen in Figure 2, experimental
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data are well reproduced by the BSBSh model, c.f., e.g., also [9,16–18]. In particular, SPM
magnetic moment oscillations around the general trend for moment suppression with
increasing SPM size can be attributed to the electronic shell effect. Such momentary
oscillations are smudged out due to the magnetic self-field. This property is significant for
the reasonable agreement of the BSBSh model predictions with the experimental results.
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Figure 2. The magnetic moment of free SPMs presented per atom in units of the Bohr magneton
µB as a function of number of atoms N. The parameters of (a) Ni—nbulk

s = 0.62, [bulk:surf:curv] =
[1:3.1:1.0] and (b) Co—nbulk

s = 0.7, [bulk:surf:curv] = [1:3.1:2.1]. The solid lines represent the results
of the BSBSh model at a self-field H = 0.7 T (a) and H = 1.9 T (b). The dashed lines correspond to
zero self-field. The results are compared to the experimental data according to ref. [9]. In panel a the
size of error bars is indicated in the left upper corner.

An important practical quantity of SPM is represented by spin polarization. The total
value is defined as

P =
n↑ − n↓
n↑ + n↓

(5)

and the differential number PF at the Fermi energy EF is written as

PF =
ρ↑ − ρ↓
ρ↑ + ρ↓

(6)

3. SFM as SPMA with Direct and/or Indirect Exchange Coupling

Since the notation SFM—‘superferromagnetism’—was used in various implications, it
is worth stressing that here we consider sufficiently dense SPMA displaying a ferromagnetic
long-range order. In the considered case, such a feature arises due to direct and/or indirect
exchange interactions between SPM.
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3.1. SPMA in Insulator Substrate

Let us consider SPMA embedded in an insulator; see Figure 3. The electronic level
density is affected by the direct inter-SPM exchange coupling. At considerable SPM
concentrations, such an effect can induce certain magnetic ordering in analogy with atoms
in crystals. Such a property can be quantified by the superexchange interaction constant J,
calculated as a difference of the respective grand canonical potentials for coupled—Ωf—and
uncoupled—Ωd—SPMs.

J = Ωf − Ωd ≈ −(kBT)
∫

dE δρ(E)· ln [1 + exp{(EF− E)/kBT}] (7)

where δρ = ρf(E) − ρ(E) gives the single-particle level density difference between a mag-
netically arranged and an individual SPM at the temperature T, and kB denotes the
Boltzmann constant.
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The noticeable superexchange coupling between SPM electronic supermoments orig-
inates from the delocalized Bloch wave function in SPMAs. Such a property represents
the key effect for quantifying a change in level density. Within the Anderson localization
concept (cf., e.g., [19] and refs. therein), such delocalization arises when the SPM electronic
level broadening Γ is less than two values of the miniband splitting width B due to the cou-
pling, i.e., Γ/B < 2. In realistic cases of nanosize SPMs, the condition of Bloch delocalization
can be expected for many materials since the Fermi energy EF is a fairly reliable quantity.

To quantify further the SPMA electronic properties, we consider periodic SPM com-
position when, for the ith direction (i = 1, . . . , D), the period is ai. Then the delocaliza-
tion effect gives rise to an additional electronic quantum number—quasi-momentum
k in D-dimensions—and the valence electron quasi-energy for the Bloch state reads
Eα = Eαd + E(k). Here Eαd represents the energy levels in a single SPM, with the quan-
tum number αd defining the miniband. Consequently, the level density change of SPMA
delocalization can be written as

δρ(E) ≈
∫

Πi d(kiai/2π) [ρ(E − ∆E(k)) − ρ(E)]. (8)

For SPMAs imbedded in a nonmagnetic insulator or semiconductor substrate, the
considerable heights of tunnel barriers, Ui > EF, result in a slight modification of SPM
supermoment states caused by the small overlap in subbarrier regions. As a result, the
miniband shape can be fitted by a cosine

∆E(k) = Σi Bi sin2(kiai), Bi = 2ωe exp{−p l} (9)

where the SPM effective HO frequency ωe of confining potential, see Equation (3) and
discussion therein, l denotes the tunneling length in a matrix with corresponding effective
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mass m* of a quasiparticle, see Figure 3, while p=[2 m* (U − EF)]1/2/h̄ gives the wave
number in a substrate.

The integration over the wave number k in Equation (8) is limited by the region close
to the Fermi energy EF because of the considerable barrier value U and tunneling distance l.
Thus, for Co and Ni SPMs, one can account only for the minority spin electrons − e = ↓.
Making use of Equations (7)–(9), we obtain the interaction constant for SPMA as

J ≈ (EF − U) ρ′↓ω↓ exp{−p l} τ/sin(τ) (10)

with τ = πT/Tα, Tα =h̄2p/(lm*kB). The energy derivative at the Fermi energy is indicated
by a prime.

Equation (10) measures the SPMA ordering strengths arising from tunneling between
the SPMs. The level density derivative ρ′↓ determines the sign of superexchange inter-SPM
coupling. The respective factor in Equation (10) is illustrated in Figure 4. As is seen, the
coupling constant takes preferably negative numbers, indicating, thereby, ferromagnetic
ordering. Some rare positive values are smeared out due to fluctuations, size uncertainties,
thermal effects, and so on. The inter-SPM coupling depends monotonically (without
oscillations) on the separation distance, similarly to the magnetic interaction between
ferromagnetic layers abutted by a nonmagnetic insulator. The exponential suppression of
the interaction strength with growing splitting length originates from the exponentially
decaying overlap of supermoment wave functions expanding their tails to the substrate.
Such a feature reduces the inter-SPM splitting length when direct superexchange coupling
can give rise to long-range magnetic ordering. Such a property is in agreement with
experiments, cf., e.g., [1,2], where long-range superferromagnetic (SFM) ordering was
observed in a system of SPMAs with sufficiently densely packed SPMs. As is evident from
Equation (10), decreasing the barrier height results in exponentially growing exchange
coupling strength at the same inter-SPM separations. Therefore, using, e.g., a semiconductor
substrate may allow one to observe the direct inter-SPM exchange coupling in SPMA of
less dense packing (because of lower tunnel barriers and a smaller effective mass m∗)
as compared to an insulator matrix. For instance, the barrier value in carbon can be
reduced up to ~1 eV (cf., [20]), and the magnetizing field would increase by the factor
∼ exp{5.7l/nm}. Finally, the interaction strength J grows with rising temperature. Such
a behavior is caused by the exponentially increasing tunnel exchange current at higher
energy levels. The finite temperature pumps the electrons effectively up to an energy
region kBT above the Fermi energy EF at the expense of suppression in the occupation of
the energy levels below EF. Such rearrangement changes the inter-SPM superexchange
coupling strength. Since the barrier penetration factor in Equation (10) grows for higher
energies, i.e., for the levels above, the factor JB strengthens as a function of temperature. We
point out that the SPM structure factor is expected to decrease with increasing temperature
because the shell structure of the SPMs is washed out. This may lead to a nonmonotonic
temperature dependence of the inter-SPM superexchange coupling constant. At reasonable
SPM size (~nm), the level density ρ increases with energy, and the resulting negative
value J is associated with superferromagnetic SPMA ordering. Hereafter, we refer to such
ferromagnetic SPMAs as superferromagnets (SFMs).

TMR Tunneling Magnetoresistance

The above-considered tunneling coupling between SPMs implies the dependence of
the tunneling current on SPM magnetization alignment. Quantitatively, we define this
phenomenon as

TMR =
R↑↑ − R↑↓

R↑↑
=

G↑↑ − G↑↓
G↑↓

(11)

where R and G denote resistivity and conductivity, respectively.
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For ferromagnetic layers separated by an insulator, such an effect was first observed
by M. Julliere [21]. The interpretation is based on an assumption of spin conservation
and proportionality of the conductance between samples 1 and 2 to products of respective
level densities G12 ∝ ρ1 ρ2, see Figure 5. Then we obtain [20–22] conductivities for spin
orientation—parallel,

G↑↑ ∝ ρ↑ρ↑ + ρ↓ρ↓ = ρ2
↑ + ρ2

↓ =
1
2

(
1 + P2

F

)(
ρ↑ + ρ↓

)2 (12)

and—antiparallel.

G↑↓ ∝ 2ρ↑ ρ↓ =
1
2

(
1− P2

F

)(
ρ↑ + ρ↓

)2 (13)
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Figure 5. Tunnel spin polarized transport between FM and/or SPM (compare to Figure 1) with
(a) parallel and (b) anti-parallel orientations. The vertical lines in the middle of panels indicate the
barriers on the non-conducting substrate. Slanted lines with arrows at the edges indicate the spin
projection conservation under the tunnel current.

Using Equations (11)–(13), the TMR value reads

TMR =
2P2

F
1− P2

F
(14)

As is seen in Figure 6, TMR grows for smaller SPM sizes in the case of the iron series
transition metals Co and Ni. Such a feature originates from increasing spin polarization
with a decreasing number of atoms in SPM particles.
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3.2. SPMA in Conducting Substrate

For conducting and/or metallic substrates, SPMs are coupled by the RKKY
(Rudermann–Kittel–Kasuya–Yosida) indirect exchange interaction of a strength.

J(l) = J0
cos(2kFl + ϕ0)

kFl
(15)

with constants J0 and ϕ0, while kF denotes the Fermi wave vector of the host metal. Such
a magnetic interaction arises from the scattering of conduction electrons by SPM fields
and oscillates strongly with the distance d between super-spins. Cases of noble metal
(Au, Ag, Cu, or Pt) substrates weakly diluted with SPMs lead to super-spin glass (SSG)
materials. Such a SPM–SSG phase transition has been identified in various systems of
aggregated SPMs, e.g., [23–25]. The divergent relaxation time and the abruptly increasing
nonlinear magnetic susceptibility at the transition temperatures agree well with the laws of
the ‘classical’ paramagnetic-spin-glass phase transition. The observations of the relevant
memory effect, identical to the canonical spin-glass effect, support the existence of a true
thermodynamic transition in SPM assemblies. In ferromagnetic fine-particle systems, such
an SSG state has also been observed in frozen ferrofluids; see [5].

When SPMA approaches the percolation limit at growing SPM densities, a long-range
magnetic order originates from the nearest-neighbor links swamping through the whole
sample together with each magnetic SPM. In such SPMAs, the cluster-glass phase develops
from a SPM cluster and consequently re-enters the frozen (disordered) phase out of another,
not paramagnetic, state [5].

The transition from single-particle blocking to collective freezing arises in SPMA
at sufficiently dense packing of SPM particles due to the non-negligible magnetic inter-
particle interactions. As is outlined above for a magnetic coupling of intermediate strengths,
the randomness of particle positions and orientations, and a sufficiently narrow size
distribution, one can observe a super-spin glass state. With further increasing SPM density,
but prior to physical percolation, a ferromagnetic (FM) domain state appears because of
the further growing strength of the inter-particle interactions. Such FM-like correlations are
built on “supermoments” of the SPM nanoparticle instead of atomic moments. We refer to
this FM state in SPMA as “superferromagnetism” (SFM) as well. Thus, the ferromagnetic
domain with the atomic moments replaced by supermoments of the individual SPM
nanoparticles determines the superferromagnetic (SFM) domain. Such a concept implies
that the SPM nanoparticles or SPM remain single-domain while the ensemble displays a
collective SFM feature.
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GMR Giant Magnetoresistance

The giant magnetoresistance (GMR) effect was initially found in magnetic multilayer
systems [26,27] and also in metallic matrices filled with magnetic particles [28]. The
implications of non-magnetic conductive gel matrices for magnetic nanoparticles, i.e.,
SPMs, had considerable GMR effects, as reported in [29]. It is worthy of notice here that
such ensembles of SPM particles display SFM properties [1–5,29]. Despite significant efforts
to understand these phenomena, the origin of GMR is still under debate.

We consider here the transport of spinless quasiparticles (qp) between two SPMs
labeled 1 and 2 and located at a distance l along the x-axis in a planar geometry. In
the vicinity of ith SPM particle with local magnetization of a field strength Bi perpen-
dicular to the plane, the qp state |i〉 corresponds to the Landau level (LL) of an energy
wL = µB B/m with the Bohr magneton µB and effective mass m in units of electronic mass
me, i.e., m = mp/me. In a case of vanishing mass m [30], the respective energy becomes
(2 vF B)1/2. Hereafter, we use the natural unit e = è = 1, unless indicated otherwise. It is
worthy to notice that at typical strength B ~ 1 kG and the Fermi velocity in, e.g., graphen
vF = 106 m/s, the value wL ~ 103 K.

At low temperature T < wL and density, only the lowest LL (LLL) is occupied. For
the parallel direction of SPMs, when B1 = B2, the energy of LLL states displays smooth
spatial behavior when the resistivity is determined by the relaxation time τrel. For an anti-
parallel SPM orientation, with B1 = −B2, the field-up E1 and down E2 LLL diabatic terms
|i> cross, see Figure 7. Such a case implies the blocking of a current. However, at a crossing
point, fluctuations prevent the crossing of adiabatic terms. The respective level splitting
is characterized by a quantity δ that is determined by the off-diagonal matrix element of
the two-level system’s Hamiltonian coupling and corresponds to half the distance between
the two unperturbed eigenenergies at the avoided crossing point. The respective value can
be considered a fluctuating quantity [31]. To test also a sensitivity to the properties of a
system, we use a very general form for splitting δ distribution according to

W(δ) =Cn (δn/Rn+1) exp{− δ2/R2} (16)

where Cn is the normalization coefficient, and parameter n is determined by symme-
try conditions: a unitary ensemble corresponds to the Wigner distribution and yields
n = 1, whereas orthogonal and simplectic ensembles correspond to n = 0 and n = 3. Ne-
glecting zero-point vibrations at a considerable temperature T, the fluctuation-dissipation
theorem [31] yields the relation R2 = T/τrel.
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Let us consider the qp dynamics between such anti-parallel SPMs 1 and 2. The
remaining qp on an adiabatic LLL term corresponds to a free electric current with regular
relaxation. Evidently, a transition to the upper adiabatic term corresponds to the blocking
of a current. Using the Landau–Zener–Stueckelberg formula [32], the probability Pj of
transition between adiabatic terms is given by,

Pj = exp{ −2π Γ}, Γ= δ2/|d(E1 − E2)/dt|. (17)

For free path qp dynamics, |dEi/dt| = |dEi/dB| |dB/dx| |dx/dt| = EF/τp, where
τp = l/vF gives a time of flight for qp between SPMs 1 and 2 at the Fermi energy EF. Then,
we have |d(E1 − E2)/dt| = 2 EF/τp. Therefore, for the average probability of current
conservation, which determines the conductivity, we can write,

Pb =
∫

dδ Wδ Pj (18)

Using Equations (16)–(18), we get

Pb = (1 + ξ)−(n+1)/2 (19)

where ξ = π (T τp/wL τrel). The Pb value represents a quantitative characteristic of the
conductivity ratio for the antiparallel G↑↓ and parallel G↑↑ orientations of the SPM Pb =

G↑↓ /G↑↑. Then we obtain GMR =
R↑↑−R↑↓

R↑↑
=

G↑↑−G↑↓
G↑↓

= 1
Pb
− 1

As can be seen in Figure 8, the blocking effect of the electric current on the antiparallel
orientation of the SPM increases with an increase in the parameter ξ. For orthogonal and
unitary ensembles, such amplification occurs more smoothly than in the case of a simplectic
ensemble. It is worth noticing that mixed ensembles of energy levels are usually considered.
In addition, parameter n can be changed due to additional constraints on energy levels.
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4. SFM as SPMA with Ferromagnetic Coupling

To analyze SPMA properties, we consider the discrete SPM magnetic moments
m = µ∑n νnθ(b − bn) in conjunction with the discrete electronic structure of SPMs (see
Section 2). Here, µ determines an amplitude of the discrete SPM unit and the step function
θ(x) is related to the local magnetic induction b. The vector of values {ν, b}n ≡ {νn, bn}
defines the magnetic moment of the SPMA element. The conditions νn 6= 0 model discrete
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jumps in magnetic moment discontinuities. When {ν, b}0 = {−1,−∞}; {ν, b}1 = {2, 0};
and νn = 0 for n 6= 0, 1 SPM attends two states, −µ and +µ. Systems with three discrete
states correspond to the non-zero numbers {ν, b}−1 = {−1,−∞}; {ν, b}0 = {1,−Bst}; and
{ν, b}1 = {1, Bst}. SPMA containing Π SPM elements with magnetic moments mi in a
total area V is characterized by the overall magnetization P = ∑i mi/V = m/V with an
average volume occupied by the ith SPM particle VD = V/Π. The ferromagnetic SPMA
ordering is accounted for by the Ising term −J ∑ij mimj. Such a component in the evolution
operator L introduces the interaction between nearest neighbor (nn) SPMs of a strength
J. Here, the sum runs over nn particles. In addition, SPMAs contain grain boundaries,
defects, impurities, and so on, which originate from inhomogeneity, disorder, and ad-
ditional correlations (see below). Such features lead to random anisotropy and varying
interaction strengths. These effects can be accounted for as random fields hi, corresponding
to the Gaussian distribution W(h) = exp

{
−h2/R2}/R

√
π in conjunction with the central

limit theorem. We refer to the parameter R as a disorder. The dynamics of the SPMA
configuration function f is governed by the evolutionary operator L[f ], defined by the local
magnetic field bi = H(t) + J ∑j⊂nn Pj + hi associated with the SPM particle i.

d f
dt

= L[ f ] f . (20)

Here H(t) denotes an external magnetic field. We refer to this model as the randomly
jumping interacting moments (RJIM) model. It is worthy of notice that such an Ising-type
RJIM model suits well for the description of SPMA with significant SPM exchange coupling.
It is favorable compared to micromagnetic and/or MFM simulations based on the Landau–
Lifshitz–Gilbert (LLG) equation, cf., e.g., [33] and refs. therein, and oriented mainly on
SPM dipole interaction. In addition, the RJIM model allows to obtain analytical results and
gives a clear and transparent picture of the SFM state equation and phase diagram, with
fundamental consequences for magnetodynamics.

4.1. Mean-Field Treatment of SFM State Equation

The mean-field approximation provides a simple and realistic description of structure
and dynamics for a non-equilibrium system corresponding to an equation of motion given
by Equation (20). To this end, we consider an averaging over samples and evolution runs of
the configuration function 〈f 〉 and Equation (20). The exact configuration function and the
evolutionary operator L can be represented as contributions of smoothed and fluctuating
parts, i.e., f = 〈f 〉 + δf, L[f ] = 〈L[f ]〉 + [δL/δf ] δf, and averaging of fluctuating parts yields
〈δf 〉 = 0. The averaged evolutionary operator 〈L[f ]〉 is determined by the mean local
fields bm f

i = H(t) + JP + hi with an averaged SFM magnetization P (see above). Using
Equation (20) for the averaged configuration function 〈f 〉 we obtain

d〈 f 〉
dt

= 〈L[ f ]〉〈 f 〉+ [δL/δ f ]〈δ f δ f 〉. (21)

At small fluctuations δf, we can omit the second-order terms and obtain the mean-field
equation. In the thermodynamic limit, Π→ ∞ , such a consideration leads to the SFM state
equation (SFMSE) in the following form:

P =
∫

dhW(h)m(H + JP + h) (22)

and the SFM susceptibility χ =
[
χ−1

NI − J
]−1

, where χNI = ∑i W(b− bi) represents the
susceptibility of SPMA with a vanishing inter-SPM coupling constant (i.e., J = 0). The
SFMSEs for such an uncoupled SPMA are shown in Figure 9 at values of parameter R.
Evidently, jumps in SPM magnetic moments give rise to stepwise anomalies in SFMSE
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for small numbers of a disorder R. Such sharp stepwise behavior is smeared out at
growing disorder.
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4.2. SFM Phase Diagram

The inter-SPM coupling causes hysteresis behavior in SFM magnetic curves at field
strengths matching SPM moment jump peculiarities. Such phenomena can be understood
in terms of avalanche propagation through SPMA. When the local field bi associated with
some i-th SPM in a lattice crosses over the critical value bn (see above), the respective
SPM magnetic moment changes step-wise. Because of inter-SPM ferromagnetic interaction,
a jumping SPM magnetic moment can trigger a jump of some element from the near-
est neighbors, which may in turn activate some of their neighbors, and so on, creating,
thereby, an SPM jump avalanche, cf., [34,35]. As a result, the SFM magnetization curve
demonstrates abrupt stepwise behavior. Employing the mean-field approximation (see
Equations (20) and (22)), SFMSE is reduced to the equality P = P(H + JP). The single jump
of SPM particle magnetic moment triggers average JχNI stimulated break-jumping SPMs.
Therefore, the negative susceptibility, cf., Equation (22), determines the spinodal region for
SFM. In this region, the average number of triggered SPM magnetic moment jumps exceeds
1, and SFM favors evolving in a global jump cascade. In this case, sharp magnetization
dynamics cover practically all the sample, extending into a macro-SFM magnetization dis-
continuity. Consequently, conditions for the spinodal region correspond to the inequality
χNI ≥ J−1. The lines of a constant susceptibility display, thereby, such instability domains
in the {B, R}-plane, as is illustrated in Figure 10. The larger (right) and lower (left) field lines
cross over at the point of self-organized criticality. As is indicated in Figure 10b, for a case
of two brake-jumps of SPM magnetic moments, SFM with a small interparticle interaction
strength exhibits well-separated spinodal domains. Then, the respective SFM magnetic
evolution resembles the case of a single SPM jump. On the contrary, the strong coupling
strength results in a wide instability region, while limited isolated stability areas, obviously,
arise at small disorder parameters R.

4.3. SFM Dynamics and Analytical Tools to Reveal SFM Structure

As is illustrated by the description within the mean field approach (see
Sections 4.1 and 4.2) the magnetodynamics of SFM systems display spinodal regions of
unstable behavior at small disorder parameters R and show a stable character of evolution
at considerable numbers R. The spinodal regions give rise to significant hysteresis effects at
instability domains. The intermediate dynamical regime is met at a critical point associated
with the SOC neighborhood. The SOC vicinity can be quantified by value d, defined as
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a difference from one of the mean numbers of triggered jumps, i.e., d = JχNI − 1 (see
Sections 4.1 and 4.2). At such SOC conditions, the average number of induced SPM
jumps approaches 1, and the length lb of the average largest avalanche Sb is given as
lm f
b ≈ (1 + d)/2 of the SFM linear size. Correspondingly, the avalanche (noise) size

distribution can be written as [34]

Dm f (S) ∼ S−3/2 exp
{
−Sd2/2

}
(23)

In the modeling of the SFM magnetodynamics, we use SPMA containing (30)3 SPM
particles arranged in a simple cubic lattice. Employing the cumulative size distributions
C(S) = ∑N≥S D(N) with their respective differential values D(S) allows for reduced
statistical uncertainties in the processing and examination of the avalanche size distribution.
Inclusive values C(S) collected from over 100 events of the SFM magnetization reversals are
illustrated in Figure 4a. In the case of small disorders—below the critical point—one clearly
sees the ‘U’-shaped form of the size composition C(S). At increasing R, the shape of the size
composition becomes a sharp exponential decrease with noticeable size cascades. At values
R approaching the critical number, the distribution shows the power law shape C ∼ S−τ

with an exponent τ ≈ 0.85, i.e., an exponent of 1.85 for the differential distribution D(S),
and is very close to an estimate within the mean-field approach.
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Analytical tools developed in investigations of critical phenomena in atomic nuclei
and clusters (see [36,37] and references therein) constitute a useful framework for the
specification, qualification, quantification, and analysis of SOC in SFM magnetodynam-
ics. Especially, we analyze avalanche size correlations as follows: For certain ith SFM
magnetodynamic events, we define conditional moments,

< pk >i= ∑S SkDi(S), (24)

where the sum accounts for all the avalanche sizes S, excluding the biggest size. Considering
Equation (8), the conditional moments in Equation (24) can be estimated as <pk>mf ~
|d|1−2k + const(d). As is seen in the SOC region, i.e., when d→ 0 , the moments of the
ranges k = 1, 2, 3 . . . diverge at the thermodynamic limit Π→ ∞ . Such features can be
employed as a method for quantitative determination and analysis of SOC evidence and
properties, as well as of SFM structure and dynamics.

When SFMs undergo critical behavior relevant for the SOC predecessor in certain
SFM evolution events, SFM magnetic discontinuities should exhibit considerable noise
correlations. For instance, at SFM magnetodynamics, one can analyze correlations between
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the strongest SFM magnetic signal (i.e., the largest avalanche Si
b) and the mean noise

amplitude < p >i=< p1 >i / < p0 >i for the remaining jumps in this particular event.
Such events can be obtained from simulations, observations, and/or experiments. Such
correlation analyses resemble the scatter plots for liquid-gas phase transitions [34,36]. As is
illustrated in Figure 11b, over- and under-critical events are clearly split as left- and right-
hand side branches corresponding to small and large sizes of the largest avalanche-jump
amplitude. These branches overlap at SOC conditions corresponding to the maximum
of mean jump (noise) amplitude. The events located in the right-hand side branch of
Figure 11b arise at small values R, while the dynamics relevant for large disorders R bring
events to the left-hand side part of the plot. The mean field treatment in the thermodynamic
limit reproduces only qualitatively the RJIM model results.
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Figure 11. (a) The cumulative avalanche size distribution normalized by power law with an exponent
τ = 0.85. The data are generated by RJIM model simulations of SPMA in 3-D cubic lattice of
the edge length 30 at disorders R = 1-solid circles, 1.6-solid triangles, and 3-open circles. (b) The
mean avalanche size versus the linear size of the largest avalanche in units of SPMA length. Dots
represent the data from RJIM simulations at various values of parameter R. Dashed-dotted line joins
the mean values for each disorder. Solid lines display predictions of a mean-field approach in the
thermodynamic limit (lines 1) and accounting for finiteness of SPMA (lines 2).

For a finite system from Equation (24), the mean value < p > can be written as

< p >= (Π− Sb)/ < p0 > . (25)

As is evident from Equations (23) and (24) the total number of avalanches—moment
<p0>—depends only slightly on the maximum size Sb. This feature can be clearly ob-
served in Figure 11b. Especially at small disorders—less than the critical value—and
small jump numbers <p0>, the right-hand side events in Figure 3b are mainly defined
by the largest avalanche jump covering almost the whole SFM system. At considerable
disorders—above the critical value—the large number <p0> gives rise to the smooth distri-
bution D(S). Then from Equations (23) and (24) for the average avalanche size, one obtains
<p> ~ [erf(d (Sb/2)1/2)—erf(d/21/2) ] 21/2/d, where erf(x) denotes the error integral. In the
vicinity of the critical point, i.e., d→ ∞ , this relation is reduced to <p> ~ Sb

1/2. As is
displayed in Figure 11b, this result is in reasonable agreement with RJIM simulations in the
left-hand side part.
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5. SPMA as Sensors for SPM

Sensors and magnetic particle imaging represent possible SPMA applications,
cf., [38,39] and refs. therein. To consider the potential implications of practical SFM
systems as MR sensors for tracking down, e.g., a single magnetic particle (see Figure 12a),
we examine how the spatially local magnetic field triggers jumps of a couple SPMA
components [35]. These local perturbations induce an avalanche of SPM magnetic moment
jumps because of ferromagnetic interaction, and the GMR amplitude is commensurate with
the number S of SFM elements in an avalanche.
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Figure 12. (a) Schematic view of SFM sensor mode. (b) Size distribution of avalanches triggered
in sensor mode by local magnetic fields arranged randomly in the (1000)2 matrix plane at 2 × 105

positions (see text). Various disorders are indicated as R = 2 (line), 8 (open circles), and 16 (solid
circles). Solid line corresponds to the results given by Equation (23).

We model the magnetodynamics for SFM of a simple quadric planar lattice with a
square size of (1000)2 elements. The local magnetic shock fields are randomly distributed in
a plane, creating local avalanches of SPM jumps. As is shown in Figure 12b, the avalanche
size distribution D(S) exhibits a nearly exponential shape with a gentler slope for larger
disorder parameters R. Such a feature can be understood within the mean-field approach.
Since the mean-field approximation implies that the mean number of jumping SPM mo-
ments triggered by a single jumping seed is spatially independent, the avalanche size
distribution at 1 << S << Π is given by Equation (23). For increasing disorder parameter R
in the considered range, the value d decreases. Consequently, the exponential slant of D(S)
reduces in conjunction with Equation (23). As a result, more intensive MR signals from a
sensor are expected for larger disorders. However, the detection is less sensitive spatially
in this case.

6. Discussion

We discussed magnetism in nanocrystals of strong ferromagnets and their arrays. At
subdomain spatial size, such nanoparticles can be treated as superparamagnets (SPMs).
It has been shown that the band-structure-based shell (BSBSh) model provides a realistic
description of the size-dependent magnetic properties of transition metal nanocrystals. In
particular, this picture reproduces quite well the size dependence of the SPM magnetic
moment. It is worth noticing that similar properties of magnetized atomic nuclei are
important for understanding magnetar ultramagnetized neutron star activity [40] and
explosive nucleosynthesis [41].

As shown, the SPM arrays (and/or ensembles) (SPMAs) demonstrate superferromag-
netic ordering at sufficiently large SPM densities. This behavior originates from direct
and/or indirect exchange coupling between SPMs in insulators, semiconductors, and/or
conducting substrates. The magnetodynamics of SPM assemblies (SPMAs) were inves-
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tigated within a randomly jumping interacting moments (RJIM) model accounting for
superferromagnetic (SFM) and discrete SPM structure effects. The SPMA magnetic evo-
lution is demonstrated to exhibit sharp, jerky ruptures in magnetization curves. As is
shown within the men-field approach, the SFM state equation implies an unstable magnetic
behavior. Respectively, spinodal areas and points of self-organized criticality (SOC) are
displayed on {magnetic field, disorder} plane for the SFM phase diagram. We introduced
analytical tools to define, quantify, specify, and describe the structure and origin of SFMs
and SOCs. The tools explore correlations of noise amplitudes in magnetodynamics. Addi-
tional magnetic response anomalies and new phases are argued to arise due to quantum
fluctuations originated in the SPM discrete-level structure.

The giant and tunnel magnetoresistance effects are clearly justified to grow for SPMs
of smaller sizes abutted by conducting or non-conducting materials. Such a property, in
conjunction with SPMA magnetodynamical features, is quite appropriate for magnetoresis-
tive sensors. Increased area of SPM moment jumps induced by a local field in SPMAs due
to quenched disorder leads to an enhanced magnetoresistive signal and the detection sensi-
tivity at considered parameters. In addition, new SPMA phases could provide additional
prospects for sensor implementations. Such developments are of considerable significance
for advanced nanoscale electronic and memory devices, biology, and advanced therapy.

7. Conclusions

We analyzed the possibilities of applications of superparamagnet assemblies (SPMA)
for magnetoresistive (MR) sensors (MRS). At sufficiently closed SPM packing, such SPMAs
display superferromagnetic (SFM) ordering. As is demonstrated, such a property is favor-
able for MRS implications due to the proper positional sensitivity of the spatially local SFM
magnetic response and the considerable MR effect for SPMs. The MR effect is argued to
grow for tunnel current between SPMs with decreasing SPM sizes because of enhanced
level density. We also find suitable conditions for giant MR between SPMs on conducting
substrates. Although at disorders in SPMAs the MR spatial resolution is reduced, the MR
signal grows.

In addition, disorder effects in SPMAs lead to an occurrence of self-organized criticality
(SOC) that represents a particularly interesting phenomenon met in many branches of
nature, cf., [42,43] and refs. therein. We employ model-independent analytical tools for
quantitative specification and investigation of SPMA magnetodynamics in relation to SOC
conditions. Such an instrument explores magnetic noise correlations in SPMA dynamics
and, in particular, mean versus strongest noise amplitude. Such an approach allows one to
identify and investigate the SOC point.
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