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Abstract: The citrus processing industry is responsible for the generation of large volumes of waste
side streams, represented principally by fruit peels. These tissues are exceptionally rich in polypheno-
lic bioactive phytochemicals, and there has been a great industrial interest for their valorization. The
examination presented herein targeted at developing a fast and straight-forward aqueous extraction
process, based on ultrasonication, for the efficacious recovery of polyphenolic compounds from waste
orange peels. After an initial single-factor examination, the response surface optimization showed
that a maximum total polyphenol yield of 12.81 mg chlorogenic acid equivalents (GAE) per g−1 dry
mass could be achieved by setting sonicator amplitude at 80%, for 15 min, using a duty cycle of 2/2
(2 s on/2 s off). Comparison of this methodology with a stirred-tank extraction demonstrated that
the ultrasonication technique was equally effective, requiring ambient temperature and considerably
shorter resident time. The combination of both techniques using the ultrasonication process as a
pretreatment step did not boost extraction yield, and the extracts produced had similar polyphenolic
composition and antioxidant activity. However, a slight enhancement of the recovery of individual
constituents was noted. It is proposed that efficient extraction of polyphenolic substances from waste
orange peels may be accomplished using the present methodology, which is a low-cost (ambient
temperature, short time) and sustainable (water as solvent) process.

Keywords: antioxidants; citrus peels; polyphenols; ultrasonication

1. Introduction

Intensification of crop cultivation and food production has led to an unprecedented
generation of associated side streams, which are materials of high organic matter content.
As such, this waste biomass is characterized by a high polluting load, and it should be
treated and disposed of with particular care. Failing to do so, uncontrolled disposal would
inevitably result in eco-system aggravation and severe environmental degradation. Such
consequences would, in turn, entail significant public health risks and endanger animal
and human wellbeing.

On the understanding that linear economy models can no longer be sustained, the
world economy’s orientation towards circular economy strategies is imminent, to preserve
bioresources, prevent further environmental debasement, and develop sustainable produc-
tion technologies. In this context, biorefinery concepts hold key roles in waste exploitation
and the production of biomass-based energy, platform chemical compounds, and high
value-added commodities. The latter category may include a number of bio-molecules with
functional properties, which make them suitable additives in food and cosmetic products,
and active constituents in pharmaceuticals and food supplements [1].
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Plant processing for food production results in rejecting an array of non-edible tissues,
such as roots, leaves, peels, stems, seeds, etc. These tissues constitute a pool of a spectrum
of recoverable phytochemicals, including essential oils, carotenoids, water-soluble pig-
ments, polysaccharides, and antioxidants. Polyphenols are a prominent class of bioactive
metabolites occurring in many plant food wastes, as their content may reach up to tens of
mg per g of dry mass [2]. Polyphenols embrace several subclasses, and a range of structures
commonly encountered in rejected plant material have been shown to possess biological
properties, such as anti-inflammatory, antimicrobial, chemo-preventive, and antioxidant
activity. Thus, by virtue of their bioactivities, polyphenols are a primary target for effective
recovery from plant processing residues [3].

The global production of citrus fruits, including oranges, grapefruit, lemon, tangerines,
lime, etc., was estimated to be around 158 million tons in 2019 [4]. The greatest share of
the citrus fruits is held by orange crops, and in all citrus-producing countries it accounts
for approximately 50% of the total citrus production. Oranges are principally destined
for juice manufacturing, with the juice representing almost 50% of the fruit weight. Pulp,
peels, and seeds, which are the major orange processing wastes, account for the remaining
50%. It has been reported that orange juicing may account for about 8–20 million tons
of orange waste annually produced, of which 60–65% (w/w) is represented by orange
peels [5]. Orange peels have a high polyphenol content with peculiar profile, and, therefore,
it is not surprising that orange peel polyphenol extraction has been a subject of particular
interest [6].

The state-of-the-art assortment of extractions technologies includes a plethora of in-
novative methodologies, and amongst them the ultrasound-assisted extraction holds a
prominent position. The radiation of a liquid/solid mixture with ultrasounds generates
cavitation phenomena, including cavitation bubbles. As the cavitation bubbles implode on
a solid surface (plant cells walls of the material to be extracted), micro-jetting is observed,
which, in turn, generates various effects, including erosion, surface peeling, and particle
(cell) disintegration (breakdown). Furthermore, cavitation bubble implosion in liquid me-
dia provokes macro-turbulences and micro mixing [7]. These mechanisms result in cell wall
destruction, allowing intracellular molecules (polyphenols) to be entrained in the liquid
medium. Ultrasound-assisted extraction has nowadays gained a significant acceptance as a
fast, low-energy, low-cost, and green technology, and numerous investigations have dealt
with ultrasound-assisted biomolecule extraction [8,9]. However, most of these studies have
been focused on the use of organic solvents, which may possess several undesirable charac-
teristics, such as high vapor pressure, high cost, and flammability. By contrast, extraction
based on aqueous systems has been largely disregarded, although it would offer significant
advantages over solvent-based extractions, such as a full green character, minimal cost,
complete absence of toxicity, no flammability, and relatively low vapor pressure.

On this ground, the aqueous ultrasound-assisted extraction of polyphenols from waste
orange peels (WOP) was investigated, to establish a fast and efficient method of polyphenol
recovery, by considering two major process variables, the % amplitude of the sonicator,
and the ultrasonication time. Critical assessment of the methodology developed was based
on the comparison with a batch, stirred-tank extraction, while the combination of these
two methodologies was also considered. As far as the authors are aware, such an approach
has not been heretofore reported.

2. Materials and Methods
2.1. Chemicals–Reagents

All chromatography solvents were HPLC grade. Hydrochloric acid (37%) was pur-
chased from Panreac (Barcelona, Spain). Absolute ethanol and Folin–Ciocalteu reagent
were from Panreac (Barcelona, Spain). Neochlorogenic acid (≥98%), ferulic acid (99%),
chlorogenic acid (≥95%), luteolin 7-O-rutinoside (≥95%), caffeic acid (≥98%), hesperidin
(≥80%), narirutin (≥98%), L-ascorbic acid, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH),
and methanol were obtained from Sigma-Aldrich (St. Louis, Burlington, MA, USA). Sodium
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carbonate anhydrous was from Penta (Prague, Czech Republic). Trolox™ (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid) was purchased from Glentham Life Sciences (Cor-
sham, UK). 2,4,6-Tripyridyl-s-triazine (TPTZ) and iron chloride hexahydrate (FeCl3•6H2O)
were from Honeywell/Fluka (Steinheim, Germany).

2.2. Waste Orange Peel (WOP) Collection

Cafeterias and catering units located within the city of Larissa (central Greece) were
the source of WOP collected. Collection was accomplished within 3 consecutive days, and
the WOP gathered was screened for foreign material and apparently infected tissues. Then,
the screened waste was pooled, and only peels (flavedo and albedo) were chosen for further
processing, whereas pieces of juicy flesh were excluded. Peels were oven-dried (Binder
BD56, Bohemia, NY, USA) for 24 h, at 80 ◦C, and comminuted by a table mill. The ground
material was sieved, and fractions with average particle diameter <300 µm were collected
and stored in sealed, plastic containers at −18 ◦C.

2.3. Ultrasonication-Assisted Aqueous Extraction

Ultrasonication treatments were performed using a BIOBASE UCD-150 ultrasonic
cell disrupter (Jinan, China), with maximum nominal power of 150 W, operated at a fixed
frequency of 50 Hz, with a probe tip (emitting surface) diameter of 6 mm. The probe was
immersed in the treatment vessel, a 25 mL Duran™ vial (DWK Life Sciences, Wertheim,
Germany), at a level of approximately 3 mm above the vial bottom. Ultrasonic radiation was
delivered at pulse mode, with a duty cycle of 2/2 (2 s on/2 s off), with both the amplitude
and irradiation time adjusted as dictated by the experimental design. Temperature was
monitored by a thermal sensor embodied within the ultrasonication chamber. The sensor
was in direct contact with the surface of the extraction solvent (water), to provide immediate
temperature measurement throughout the ultrasonication treatment. Ultrasound-assisted
extractions were carried out by placing 20 mL of distilled water and 1 g of WOP powder
in the treatment vessel. During the treatments, the vessel was immersed in an ice bath to
avoid large temperature increases, as a consequence of energy dissipation within the liquid.
Thus, the initial treatment temperature was usually 14 ◦C, and by the end of the treatment
it rose to around 21 ◦C.

To obtain an account of the actual power (P) dissipated to the system and the ultrasonic
intensity, the following determinations were performed [10]:

P = mCp
dT
dt

(1)

UI =
P
S

(2)

AED =
P
V

(3)

where m is the mass of the solvent (water) (in g), Cp the specific heat capacity of water
(4.2 J g−1 K−1), and dT/dt the temperature rise per s, which was determined by fitting
temperature change (dT), measured by a thermocouple, versus time [11]. UI is the ultrason-
ication intensity (W cm−2), S the area of the emitting surface of the transducer (cm2), and V
the volume of the liquid (water) used for the extraction (in L).

2.4. Batch Stirred-Tank Aqueous Extraction

The methodology deployed was a recently established one [12]. In short, an exact
mass of 1 g of WOP was extracted with 20 mL of deionized water, under constant stirring at
500 rpm, for 60 min, at 55 ◦C. After the extraction was complete, centrifugation at 10,000× g
was performed to remove cell debris and obtain a clear extract.
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2.5. Experimental Design and Response Surface Methodology

A Box–Behnken design with three central points was chosen to construct a predictive
model, based on response surface methodology. By considering the results drawn from the
single-factor experiments, the actual levels of the process variables, amplitude (% Ampl),
and time (t), were codified as described in detail elsewhere [13]. Both actual and codified
values may be seen in Table 1.

Table 1. The process variables considered in this study, and their coded and actual values.

Variable Code Levels

−1 0 1

Ampl (%) X1 60 70 80
t (min) X2 10 15 20

The model derived was appraised by performing lack-of-fit and analysis of variance
(ANOVA) tests, which enabled the estimation of the significance of the overall model, as
well as the significance of each individual term of the model. The mathematical equation
describing the predictive model consisted of only significant terms, whereas the non-
significant ones (p > 0.05) were omitted.

2.6. Total Polyphenol Yield (YTP), Ferric-Reducing Power (PR), and Antiradical Activity
(AAR) Determination

The concentration of total polyphenols in the extracts produced was measured using a
well-established protocol, based on the Folin–Ciocalteu reagent [14], and a chlorogenic acid
calibration curve. Results were then expressed as mg chlorogenic acid equivalents (CGAE)
per g of dry mass (DM). For the assessment of the antioxidant activity, the ferric-reducing
power and the antiradical activity were determined, as described elsewhere [15]. Reducing
power was given as µmol ascorbic acid equivalents (AAE) per g DM, and the antiradical
activity as µmol DPPH per g DM.

2.7. Chromatographic Determinations

Details regarding the tentative identification of some polyphenolic metabolites per-
taining to equipment, chromatographic and mass spectrometry settings have been previ-
ously provided [16]. Furthermore, quantitative chromatographic determinations including
the standards used and the calibration curves constructed have been given in an earlier
study [12]. Briefly, the equipment used to carry out liquid chromatography–mass spectrom-
etry was a Spectra System UV 6000LP diode array detector (Finnigan, San Jose, CA, USA), a
P4000 LC Pump (Finnigan), and a Finnigan AQA Thermoquest mass analyzer. Mass spectra
were acquired in positive ion electrospray, with 20 and 80 eV cone voltage. Quantification
of didymin, sinensetin, nobiletin, and dimethylnobiletin was accomplished using luteolin
7-O-glucoside as standard, whereas the rest of the polyphenols were quantified using
commercially available standards.

2.8. Statistics–Data Processing

At least two runs were performed for every extraction process tested. All quantitative
determinations (spectrophotometric, chromatographic) were carried out in triplicate. The
values reported are average ± standard deviation (sd). The software SigmaPlot™ 12.5
(Systat Software Inc., San Jose, CA, USA) was employed to perform all linear regressions.
JMP™ Pro 13 software (SAS, Cary, NC, USA) was used to setup the experimental design,
carry out statistics pertaining to the response surface methodology (analysis of variance,
lack-of-fit), and to perform distribution analysis, at least at a 95% significance level.
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3. Results and Discussion
3.1. Single-Factor Examination

Previous investigations on ultrasound-assisted aqueous extraction of polyphenols
from WOP demonstrated that both the amplitude (% Ampl) and time (t) of ultrasonication
were significant variables related to total polyphenol yield [17]. The outcome of a study on
wine lees polyphenol extraction was in absolute accordance [18], highlighting the critical
role of these two process parameters. Therefore, the first stage in the development of the
extraction methodology was to perform single-factor experiments, to identify the ranges
within which total polyphenol yield (YTP) could be maximized. The assay on the effect of %
Ampl on YTP, by maintaining a constant t of 10 min, showed that switching % Ampl from
45 to 75% gave a significant increase (Figure 1). However, the YTP values obtained at 45
and 60% Ampl had no statistically significant difference (p > 0.05). Hence, it was evident
that a significant increase in YTP could be attained using an amplitude higher than 60%.

Likewise, the time assay performed by keeping % Ampl constant at 75% showed
that significantly higher YTP could be achieved at 15 min (Figure 2). By contrast, lim-
iting ultrasonication to 10 min or extending it to 20 min gave significantly lower YTP.
These observations were used to set up the experimental design for the response surface
optimization.
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Figure 1. Effect of % amplitude of ultrasonication on the yield in total polyphenols, during the
aqueous extraction of waste orange peels for 10 min, at a constant frequency of 50 Hz. The temperature
variation during the extraction process was between 14–19 ◦C. Designation with different small letters
(a, b) shows statistically significant differences (p < 0.05).
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Figure 2. Effect of ultrasonication time on the yield in total polyphenols, during the aqueous extraction
of waste orange peels at a constant amplitude of 75% and frequency of 50 Hz. The temperature
variation during the extraction process varied was 14–19 ◦C. Designation with different small letters
(a, b) shows statistically significant differences (p < 0.05).

3.2. Design of Experiment and Response Surface Optimization

The methodology applied was designed to assess the effect of % Ampl and t on the
response (YTP), and to trace possible synergistic functions between them. The ranges of
these two process variables were selected on the basis of the single-factor experiments;
however, amplitude higher than 85% was not deemed appropriate, in order (i) to avoid
any adverse effect of ultrasonic radiation on polyphenolic compounds [10], and (ii) to
prevent erosion effects on the ultrasonication probe [7]. Assessment of the response surface
suitability and the model derived was based on the ANOVA and lack-of-fit test (Figure 3),
considering the proximity of the predicted and measured values (Table 2). The polynomial
equation including only the significant terms, which described the model, was as follows:

YTP = 12.63 + 0.21X1 + 0.27X2 − 0.28X1X2 (R2 = 0.92, p = 0.0084) (4)

Table 2. Analytical presentation of the actual YTP values determined for each design point considered
for the response surface optimization, along with the values predicted by the model.

Design Point Process Variables Response

YTP (mg CGAE g−1 DM)

X1 (%Ampl) X2 (t, min) Measured Predicted

1 −1 (60) −1 (10) 11.70 11.65
2 −1 (60) 1 (20) 12.74 12.76
3 1 (80) −1 (10) 12.76 12.62
4 1 (80) 1 (20) 12.67 12.62
5 −1 (60) 0 (15) 12.35 12.37
6 1 (80) 0 (15) 12.64 12.78
7 0 (70) −1 (10) 12.02 12.17
8 0 (70) 1 (20) 12.69 12.72
9 0 (70) 0 (15) 12.70 12.61
10 0 (70) 0 (15) 12.65 12.61
11 0 (70) 0 (15) 12.75 12.61
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The square correlation coefficient (R2) of the model may be regarded as an indicator of
the total variability around the mean provided by the model [19]. Thus, taking into account
that both the R2 and the p value for lack-of-fit (assuming a 95% confidence interval) were
highly significant, then it could be argued that the Equation (4) had very good adjustment
to the experimental data. The three-dimensional diagram constructed based on the model
(Figure 4), could give an at-a-glance depiction of the effect of the experimental variables (%
Ampl, t) on the response (YTP). Both terms X1 (% Ampl) and X2 (t), but also their cross term
X1X2 were significant (Figure 3, inset Table “Parameter Estimates”). However, the effect of
X1X2 was negative, a fact manifested by the curvature of the response surface (Figure 4).
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variables on the response (YTP).

The amplitude used for the ultrasonication treatment is directly related to the actual
ultrasonication power dissipated to the system, which, in turn, defines the level of ultra-
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sonication intensity and specific ultrasonication energy input. Higher amplitude results
in higher pressure amplitude of sound wave, which then will enable more violent bubble
collapse. A minimum level of UI is required to achieve cavitation threshold [7], and this
may be a key event in the extraction performance, since ultrasonic intensity strongly im-
pacts extraction efficiency. In general, increases in ultrasonication power entail enhanced
polyphenol extraction yield, as previously observed for WOP [17,20]. However, switch-
ing ultrasonication power to higher levels does not always provoke a positive effect on
polyphenol extraction. It has been demonstrated that some WOP polyphenols may be
insignificantly impacted by increases in ultrasonication power [21], whereas for others
negative effects were recorded [22].

Since polyphenol extraction is a time-dependent process, ultrasonication time becomes
particularly critical and can significantly affect extraction yield. Yet, in model polyphenol
solutions negative effects were also observed, brought about by intense sonication settings,
which led to degradation and polymerization [23]. Such an effect was clearly demonstrated
for polyphenol extraction from mandarin peels, where increases in ultrasonication power
and extraction time beyond certain limits resulted in a significant decline in naringenin
extraction yield [24]. Similar results were reported for certain phenolic acids, during
ultrasound-assisted extraction of orange peels [25]. Therefore, defining optimum ultra-
sonication time may reduce adverse impact on polyphenolic compounds and contribute
towards achieving higher extraction yields [10].

As can be seen in the desirability diagram (Figure 3B), the optimum ultrasonication
time was 15 min and the optimum estimated amplitude was 80%, which corresponded to
an actual ultrasonication power of 7.09 W, an acoustic energy density (AED) of 355 W L−1,
and an ultrasonication intensity (UI) of 6.28 W cm−2. The amplitude level of 80% matched
exactly the one proposed by earlier investigations on ultrasound-assisted WOP polyphenol
extraction [26,27], but also polyphenol extraction from lemon peels, for which a combination
of 78% amplitude and 15 min was proposed [28]. With reference to optimal time, previous
examinations indicated 3 min as the most appropriate ultrasonication period for aqueous
extraction of WOP polyphenol, but at a much higher AED of 790 W L−1 [17]. On the
other hand, other authors proposed 90% amplitude and 35 min [29], 71% amplitude and
35 min [27], and 66% amplitude and 26 min as the optimal settings, while even longer times
of 40 min [24] and 44 min [30] have also been proposed.

The above data refer only to studies performed with ultrasonication probes and not
ultrasonication baths, and they should be considered merely as indicative, because the
optimal ultrasonication settings for a given process may vary largely. This is because the
final outcome depends to a great extent on the nominal power of the ultrasonication probe
employed, the extraction temperature, and the solvent used. Ultrasonic power provokes
voids in a liquid, known as cavitation bubbles. During ultrasonication, these bubbles
grow up to a critical point, beyond which they collapse releasing large amounts of energy.
The combination of high temperature/high pressure involved in such a phenomenon
disintegrates solid particles, thus, accelerating release of the solute (polyphenols) in the
liquid phase [31]. Liquids with relatively high vapor pressure, such as water/ethanol
mixtures used in several studies, cavitate at lower intensity. Furthermore, cavitation
bubbles are more easily produced as temperature raises, but the effects generated by
cavitational collapse are also reduced as temperature increases. In fact, ultrasound effects
are known to decline at temperatures higher than 40–50 ◦C [32]. In other words, lower
temperatures, and solvents with relatively lower vapor pressure (water) may be more
suitable to obtain maximum sonochemical benefit [33].

3.3. Comparative Evaluation

In a recent previous study, a conventional stirred-tank process was developed for
the effective aqueous extraction of WOP polyphenols [12]. Thus, extraction was also
performed by applying this methodology, to have a comparative evaluation of the ultrason-
ication process described herein. In addition, a hybrid extraction procedure by integrating
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the ultrasonication as pretreatment step and the stirred-tank extraction as the main pro-
cess was attempted. As illustrated in Figure 5, the processes tested yielded statistically
non-significant differences in YTP (p > 0.05), which clearly suggested that both processes
were of equal performance. This finding was particularly important, considering that the
conventional stirred-tank extraction was accomplished at 55 ◦C for 60 min, whereas the
ultrasonication-assisted extraction was achieved at an average T of 16 ◦C, for 15 min.
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Figure 5. Effect of the various extraction modes tested on total polyphenol yield. Assignments:
US, ultrasound-assisted extraction, performed under optimized settings (80% amplitude, 15 min);
stirred-tank extraction performed under optimized setting (55 ◦C, 60 min); US and stirring, hybrid
mode employing the ultrasound-assisted extraction as pretreatment, followed by the stirred-tank
extraction. Assignment all columns with “a” denotes no statistical difference.

To obtain a more integrated image of the extracts’ potency, the antioxidant activity
was also tested. Once again, it was shown that the processes tested afforded extracts that
exhibited virtually the same antioxidant potential, since neither AAR nor PR had statistically
significant difference (Figure 6). This finding was a further confirmation that (i) the stirred-
tank process and the ultrasonication-assisted process were of equivalent performance, and
(ii) the combination of ultrasonication and stirred-tank processes offered no advantage with
respect to obtaining significantly higher YTP.
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Figure 6. Effect of the various extraction modes tested on the antiradical activity (AAR) and ferric-
reducing power (PR) of the extracts generated by deploying different extraction modes. Assign-
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15 min); stirred-tank extraction performed under optimized setting (55 ◦C, 60 min); US and stir-
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An earlier examination on a comparison between ultrasound-assisted and conven-
tional polyphenol extraction from lemon peels ended with a similar result, demonstrating
no difference in total polyphenol yield [21,28] and PR [21] between the two techniques.
The outcome of investigations on WOP polyphenol extraction [22,29], but also the AAR
and PR of WOP extracts [34], ended likewise. By contrast, other studies evidenced a clear
superiority of ultrasound-assisted extraction over the conventional one, for the recovery of
WOP polyphenols [17,20], but also the AAR [26], and PR [27] of the extracts produced.

Another issue that arose out of the comparison presented in Figure 6 was that the
hybrid extraction technique combining ultrasonication as the pretreatment stage and stirred-
tank as the main process also afforded statistically non-significant difference in YTP. This
finding contrasted earlier examinations, which demonstrated that ultrasonication was not
effective enough as a standalone technique, but polyphenol recovery could be boosted
when ultrasonication was used prior to the stirred-tank process [15,35–37]. However,
negative effects of ultrasonication pretreatment have also been shown [38]. On such
a ground, it would appear that the maximum amount of extractable polyphenols was
recovered during the ultrasonication step, whereas further stirred-tank extraction had no
effect on total polyphenol yield. Such an outcome is particularly important, highlighting
the high efficiency of the ultrasound-assisted process, compared to the conventional stirred-
tank process.

Under optimized conditions, the ultrasound-assisted extraction provided a YTP of
12.80 ± 0.85 mg CGAE g−1 DM, while the YTP determined by combining ultrasonication
and stirred-tank extraction was 12.50 ± 1.01 mg CGAE g−1 DM. The values reported in
the literature may vary largely, ranging from 7 to over than 26 mg GAE g−1 DM, accom-
plished with various extraction techniques, including microwave-assisted extraction [6,22],
ultrasound-assisted extraction [17], and cyclodextrin-aided extraction [36], etc. Levels of
44.09 mg GAE g−1 DM [39] have also been reported, using a glycerol-based organosolv
treatment of WOP, but also and as high as 75.77 mg GAE g−1 DM, obtained with deep
eutectic solvent extraction [40].

3.4. Profile of Polyphenolic Metabolites

To obtain a more analytical image of the polyphenolic content of the extracts pro-
duced, and to identify possible effects of the different modes of extraction on individual
polyphenolic metabolites, each of the extracts was subjected to HPLC analysis (Figure 7).
The tentative identification of metabolites 1–6 was based on comparing their retention
times with those of original standards, whereas metabolites 7–10 were identified based
on data from liquid chromatography–mass spectrometry analysis, as described in detail
elsewhere [12,39]. The quantitative analysis of those constituents revealed that in all cases
examined, the extracts were dominated by the flavanones hesperidin and narirutin, fol-
lowed by chlorogenic acid, and the flavones nobiletin and didymin (Table 3). This pattern
was observed in all three extracts examined, suggesting that the extraction mode did not
affect the relative amounts of the principal polyphenols.

The richest extract was obtained by the hybrid methodology that combined ultra-
sonication as pretreatment and stirred-tank as the main extraction process, yet in no case
was the recovery yield of any of the compounds considered statistically different from the
yields achieved with stirred-tank (p > 0.05). However, compared to the US treatment, the
hybrid treatment of US and stirring did enhance the recovery of certain compounds, such
as chlorogenic acid, ferulic acid, narirutin, didymin, and nobiletin. Overall, the hybrid
technique afforded a yield that was only 11% higher than that achieved with ultrasonica-
tion. This finding confirmed the results drawn from the total polyphenol determination,
demonstrating that the largest part of the major polyphenols occurring in WOP may be
extracted using the ultrasonication method developed.
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Table 3. Quantitative analysis of major polyphenolic compounds tentatively identified in the WOP
extracts tested. Values represent means of triplicate analyses of two individual extractions (± stan-
dard deviation).

# Compound Yield (µg g−1 DM)

US Stirring US + Stirring

Phenolic acids
1 Neochlorogenic acid 458.88 ± 38.02 a 476.72 ± 33.43 a 534.33 ± 42.11 a

2 Chlorogenic acid 699.64 ± 54.62 a 734.80 ± 60.44 a,b 818.02 ± 58.88 b

3 Caffeic acid 120.14 ± 8.44 a 122.06 ± 9.03 a 131.51 ± 9.21 a

4 Ferulic acid 145.18 ± 10.21 a 154.97 ± 11.05 a,b 170.53 ± 11.74 b

Total 1423.84 1488.55 1654.40
Flavanones

5 Narirutin 1016.51 ± 73.11 a 1094.86 ± 80.91 a,b 1195.84 ± 75.44 b

6 Hesperidin 1960.95 ± 112.04 a 1984.14 ± 135.43 a 2111.52 ± 123.02 a

Total 2977.47 3079.00 3307.36
Flavones

7 Didymin 498.80 ± 30.30 a 512.49 ± 36.54 a,b 566.89 ± 29.98 b

8 Sinensetin 145.13 ± 8.91 a 148.22 ± 6.66 a 162.01 ± 11.22 a

9 Nobiletin 515.76 ± 28.54 a 522.65 ± 40.12 a 574.22 ± 13.56 b

10 Demethylnobiletin 230.23 ± 12.69 a 231.49 ± 12.24 a 253.40 ± 9.71 a

Total 1389.91 1414.84 1556.52
Sum 5791.22 5982.39 6518.28

Values assigned with different letters (a, b) within rows are statistically different (p < 0.05).

The principal polyphenolic constituent in all extracts examined was by far hesperidin,
which is the major metabolite occurring in orange peels [41,42]. The highest level of
hesperidin recovery was 2.11 mg g−1 DM, achieved using the hybrid extraction mode
(Table 3). This value was significantly higher than 0.20–1.47 mg g−1 DM found in other
investigations [20,43], but much higher yields of just over 8 mg g−1 DM have also been
attained [21,22]. The extraction yield of hesperidin, but also other WOP polyphenols, may
vary largely, depending on the origin of plant tissue, but also on the extraction solvent and
methodology [44]. The technique presented herein may afford in total almost 6.5 mg g−1

DM of polyphenolic compounds, requiring water as solvent, atmospheric conditions of
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temperature and pressure, and only 15 min of treatment. Therefore, it may be regarded as
a high-performance extraction process.

4. Conclusions

The development of an ultrasonication-based aqueous extraction of waste orange peel
polyphenols showed that efficient recovery may be feasible by appropriately adjusting
the sonicator amplitude and the irradiation time. The high efficiency of the method was
proven by comparison with a batch, stirred-tank process, where yields in total polyphenols
were virtually equal. This was particularly important, considering that ultrasonication
was carried out at nearly ambient temperature, whereas the stirred-tank process included
moderate heating. Further verification of the ultrasonication-based method was derived
from the chromatographic data, which show no significant quantitative differences for
major polyphenolic metabolites. Results from the antioxidants tests were along the same
line. The combination of both methodologies by employing ultrasonication as pretreatment
and stirred-tank extraction as the main process once again revealed no significant differ-
ences in total polyphenol yield. However, a small increase in all polyphenolic compounds
considered was recorded. The outcome of this study is that ultrasound-assisted extraction
of waste orange peel polyphenols may be very effectively performed with a green solvent
(water), requiring significantly shorter resident time and lower temperature compared
to the stirred-tank one. Such a methodology could be easily scaled up and incorporated
into larger biorefinery strategies, thus, contributing to sustainable and highly effective
valorization of food waste biomass.
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