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Abstract: An understudied problem in plant heavy metal biology is the effects of acute versus gradual
or chronic metal exposure. The aim of the present study was to compare the growth and physiological
responses of Rumex hydrolapathum Huds. plants subjected to gradual or acute Mn stress treatment
in controlled conditions. Heavy metal was applied to substrate either as one 1.00 g L−1 Mn dose
(acute treatment) or the same dose in four steps of increasing amounts within 12 days (gradual
treatment). Peroxidase activity in actively photosynthesizing leaves was used for monitoring induced
biochemical changes resulting from Mn treatment. The number of leaves per plant significantly
increased in the case of gradual treatment with Mn, but this effect was not statistically significant
for acute treatment. Leaf fresh mass significantly decreased in both cases due to the decrease in leaf
water content, but dry biomass of leaves was not affected, with no significant differences between the
two types of treatments. A significantly lower chlorophyll fluorescence parameter Performance Index
in large leaves of plants under the acute Mn treatment than in plants under the gradual treatment was
evident. An increase in leaf peroxidase activity by Mn treatment was proportional to the metal dose
received, but plants in the acute treatment with 1.00 g L−1 Mn had a significantly lower peroxidase
response in comparison to the gradual treatment with 1.00 g L−1 Mn. In conclusion, under gradual
treatment, biochemical changes related to the induction of tolerance to the heavy metal are expressed,
as indicated by the continuous increase in leaf peroxidase activity after each treatment step.

Keywords: chlorophyll fluorescence; electrolyte leakage; heavy metals; manganese; peroxidase;
Rumex hydrolapathum

1. Introduction

Studies on the toxicity of heavy metals in plants and the mechanisms ensuring their
metal tolerance have become especially relevant in the conditions of unabated global envi-
ronmental pollution and in connection with the possibility of using plants in environmental
remediation technologies [1–3]. In contrast to most crops, which are relatively susceptible
to high metal concentrations in the environment, studies of wild plants from soils with
naturally high metal content or saline wetland species with special metal tolerance and
accumulation potential are of particular interest [4–9].

An understudied problem in plant heavy metal biology is the effects of acute versus
gradual or chronic metal exposure. It is well known that subtle changes in soil chemical
composition rarely occur in nature, and plants are usually in a situation of low doses of
heavy metals during relatively long time. However, in experiments in controlled conditions,
plants are often exposed to subtle increase in high heavy metal concentration in a root
medium, and significant variation in treatment techniques and regimes between different
experiments significantly affect outcome of plant responses and can make generalization of
the obtained information difficult. One important aspect related to acute treatment could
be osmotic stress in the root environment due to a rapid increase in salt concentration,
leading to immediate unfavorable physiological consequences similar to those during NaCl
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treatment [10]. Differences in NaCl application either as gradual or single-step treatment
really show a significant effect both at the level of gene expression, as well as metabolism
and morphology [11]. Therefore, it is reasonable to predict that the type of application
of heavy metals (gradual vs. single application) will significantly affect plant responses,
especially when using relatively high metal concentrations.

Accelerated production of reactive oxygen species (ROS) is an inevitable consequence
of heavy metal stress in plants, leading to both peroxidative damage to membranes and
inactivation of antioxidative enzymes [12–14]. Therefore, both the constitutive and induced
capacity of enzymatic antioxidative system are crucial components in heavy metal tolerance
in plants [12–14]. Peroxidase activity, measured in plant tissue extracts by means of
different phenolic type electron donors and hydrogen peroxide, is very often used as a
general indicator of the capacity of the enzymatic antioxidative system [15]. However,
physiological functions of peroxidases in plants are related not only to antioxidative system
but also to variety of development-related processes [16–18]. Multiple molecular forms of
peroxidase, being both under developmental and environmental control, can exist in single
plant species, but specific functions of individual peroxidases are difficult to assign due to
low specificity towards phenolic substrates as well as possible modifications at the protein
level [19].

Mn is an essential micronutrient in plants, but can have toxic effects if accumulating in soil
in plant-available forms, especially at low soil pH and decreased redox potential [20–22]. Poor
aeration in wetland soils often lead to increased bioavailability and toxicity of Mn [23,24].
Moreover, the concentration of Mn in contaminated natural wetland sediments can reach
as high as 1100 mg kg−1 [8]. Mn sensitivity is clearly a genotype-dependent feature, and
many wetland species are shown to be highly tolerant to this metal, especially in conditions
of salt marshes [25,26]. As Mn is a mobile element in plants, toxicity symptoms first appear
on photosynthetically active mature leaves with a higher Mn accumulation capacity [27].
Therefore, the shoot growth of Mn sensitive plants is usually more negatively affected in
comparison to that of roots [28]. The deleterious effects of Mn are clearly associated with
an increase in ROS production [29,30]; therefore, the induced expression of antioxidative
enzymatic system components is an important constituent of Mn tolerance [31–33]. In
addition, genotypes more tolerant to Mn have a higher activity of peroxidase [34].

Several indicators of ROS-dependent heavy-metal-induced membrane lipid peroxida-
tion have been used, including malondialdehyde (MDA) concentration (often measured as
a total amount of thiobarbituric acid-reactive substances) and electrolyte leakage intensity
from tissue samples. Usually, these two parameters show a parallel and proportional in-
crease with the increase in the harmful effect of heavy metals [35]. In addition, a decrease in
photosynthesis-related parameters is often used as an indicator of heavy-metal-associated
physiological disorders, including those of Mn [36,37].

Several species of genus Rumex (Polygonaceae) have been characterized as heavy metal-
tolerant species with a promising potential for metal accumulation [38–42]. Rumex hydrolapathum
Huds. is a perennial high biomass-forming species naturally growing in wet and flooded
habitats with a high disturbance frequency [43]. Tolerance to heavy metals, including Mn,
in R. hydrolapathum has been mostly associated with physiological mechanisms, as the
metals predominantly accumulated in older leaves, with appearance of characteristic visual
signs of toxicity, followed by leaf senescence and dieback [44,45]. Along with it, formation
of new leaves was stimulated. Thus, R. hydrolapathum can serve as a promising model
species in studies of heavy metal tolerance mechanisms.

The aim of the present study was to compare the growth and physiological responses of
R. hydrolapathum plants subjected to gradual or acute Mn stress treatment. As physiological
indicators, photosynthesis-related parameters, electrolyte leakage and peroxidase activity
were used. It was hypothesized that an acute treatment with Mn will have more pronounced
or/and negative responses in comparison to that of gradual treatment.
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2. Results

Treatment with MnSO4 resulted in a significant increase in substrate electrical con-
ductivity and a decrease in pH, but there were no significant differences in dependence
of the treatment type (Figure 1). The number of leaves per plant significantly increased in
the case of gradual treatment with Mn, but this effect was not statistically significant for
the acute treatment (Figure 2). Leaf fresh mass significantly decreased in both cases due
to the decrease in leaf water content, but dry biomass of leaves was not affected. Again,
no significant differences were found between the two types of treatments. However, the
number of old leaves and their dry biomass tended to increase more in plants gradually
treated with Mn, in comparison to the control plants and these treated with only one dose
of Mn (Figure 3). The proportion of large leaves in the total biomass decreased by Mn
treatment, and this effect was more pronounced for plants under the gradual Mn treatment.
Further, treatment with Mn tended to increase both the number and biomass of new leaves.
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with Rumex hydrolapathum at the end of the experiment. Values are the means ± SE from five
replicates with four independent measurements each. Different letters indicate statistically significant
differences according to the Tukey HSD test (p < 0.05) for a particular parameter.
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Figure 2. Relative effect of treatment type with Mn (1.00 g L−1) on morphological parameters of Rumex
hydrolapathum. Values are the means ± SE from five replicates. Different letters indicate statistically
significant differences according to the Tukey HSD test (p < 0.05) for a particular parameter. FM, fresh
mass; DM, dry mass. The dotted line indicates the control level.
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Figure 3. Relative distribution of the number of leaves (A) and dry leaf biomass (B) among different
leaf classes of Rumex hydrolapathum plants differentially treated with Mn (1.00 g L−1).

Chlorophyll concentration in large leaves did not significantly change by Mn treat-
ments, but it was significantly lower in old leaves of plants under the acute Mn treatment
in comparison to that of control and gradually Mn-treated plants (Figure 4A). Values of
chlorophyll a fluorescence parameter Performance Index were lower in older leaves in
comparison to these in large leaves (Figure 4B). A significantly lower Performance Index in
large leaves of plants under acute Mn treatment than in plants under gradual treatment was
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evident, but there was no statistically significant difference from control plants. Chlorophyll
a fluorescence parameter Fv/F0 tended to be lower in old leaves but showed no significant
changes in dependence of either type of Mn treatment (Figure 4C). Intensity of electrolyte
leakage was higher in old leaves, but no significant differences were evident for plants
between the different treatments (Figure 4D).
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Figure 4. Effect of treatment type with Mn (1.00 g L−1) on leaf chlorophyll concentration (A),
Performance Index (B), Fv/F0 (C), and electrolyte leakage (D) of Rumex hydrolapathum. Values are
the means ± SE from 10 replicates for A, B, C and three replicates for D. Different letters indicate
statistically significant differences according to the Tukey HSD test (p < 0.05) for a particular parameter.

Peroxidase activity in large leaves of R. hydrolapathum was measured periodically
during the experiment in plants of six treatment groups (Figure 5). Peroxidase induction
competence by Mn treatment was low for plants before day 13, as the activity in Mn-treated
plants steady increased irrespective of treatment dose (Figure 5). After day 13, peroxidase
activity increased in all plants previously or currently treated with Mn, but proportionally
to the treatment dose. However, plants gradually treated with 0.50 and 1.00 g L−1 Mn
showed identical response. While the absolute level of peroxidase activity in plants received
acute treatment with 1.0 g L−1 Mn was lower than that in plants gradually treated with
the same total dose of Mn, the relative increase in peroxidase activity after day 13 was
relatively similar, showing a 4.5- and 3.5-fold increase over the previous peroxidase activity
level, respectively.
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Figure 5. Time course of peroxidase activity in large leaves of Rumex hydrolapathum plants as
affected by the type of treatment with Mn. Arrows of the respective color indicate time of treatment
with particular doses of Mn in g per 1 L of substrate in addition to the already received doses.
G, gradual; A, acute; FM, fresh mass. Values are the means ± SE from two biological replicates with
four independent measurements each. Different letters indicate statistically significant differences
according to the Tukey HSD test (p < 0.05) at the end of the experiment.

3. Discussion

In the present study, possible differences between gradual and acute treatment with
heavy metals (Mn) at the level of growth responses as well as different physiological
indicators (photosynthesis-related parameters, electrolyte leakage, peroxidase activity) of
relatively metal-tolerant species Rumex hydrolapathum were evaluated. The obtained results
have certain practical importance, as it is evident that gradual treatment with heavy metal
can lead to acclimation of plants associated with multiple induction of peroxidase activity
after each treatment step. The outcome of this study also has methodological importance,
as one can argue that the type of treatment with heavy metals, including differences in the
timing of treatment, affects results of the particular experiment.

One of the characteristic specificity of the model plant species is that related to mor-
phological characteristics of rosette-forming plants with continuously active leaf-forming
apical meristem, like in R. hydrolapathum, which allow for clearly distinctive adaptive
strategy in the case of soil chemical contamination. The surplus concentration of essential
mineral elements (as K, Mn and Zn) or bulk amount of any unnecessary ions (as Na and
Cl) primarily accumulate in the older leaves, followed by their accelerated senescence and
stimulation of new leaf formation [44–46]. This type of development can be considered as
part of an avoidance strategy, since the accumulation of potentially toxic elements does
not occur in actively photosynthesizing leaves. Further, biochemical protection against the
presence of metals is also induced in actively photosynthesizing leaves, as shown by the
observed increase in peroxidase activity in plants.

Among the limitations of this study, it needs to be stressed that the performed experi-
ment was relatively short term, as R. hydrolapathum plants were harvested only one week
after the acute treatment with Mn, but gradually treated plants received Mn within two
weeks, followed by one more week before harvest. Although there was no effect of the
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type of treatment on the morphological indicators, even in this situation, the physiological
characteristics showed that acute treatment has a potentially more adverse effect compared
to gradual treatment. Thus, faster senescence of older leaves of plants under acute Mn
treatment was indicated by their lower water content and decreased chlorophyll concen-
tration in comparison to (Figure 4A). In addition, chlorophyll a fluorescence parameter
Performance Index was lower in plants under acute treatment in comparison to that in
plants under gradual treatment (Figure 4B). However, the degree of membrane damage
only tended to be higher in plants treated with one dose of Mn, as indicated by the values
of electrolyte leakage (Figure 4D).

Among metabolic indicators of endogenous oxidative stress, changes in MDA concen-
tration or electrolyte leakage capacity are most often considered. As heavy metal treatment
results in increased production of ROS, usually changes in both parameters proportionally
correlate in plants treated with increasing doses of heavy metals [47]. From a functional
point of view, the question might arise if changes in peroxidase activity are related to heavy
metal toxicity or plant tolerance to heavy metals? It is logical to assume that at low and
physiologically tolerable concentrations of heavy metal, an increase in peroxidase activity
represents a part of tissue tolerance mechanism to the metal in a form of upregulation of en-
zymatic antioxidative system. Further, when the heavy metal concentration exceeds some
threshold value for toxicity for the particular plant species, a decrease in peroxidase activity
with a further increase in the metal concentration could show the negative consequences of
the general metabolic stress situation associated with the breakdown of control systems
and the inability to regulate the expression of defense genes [48]. However, it is often seen
from the provided experimental results that peroxidase activity and MDA concentration
increase nearly linearly in parallel with increased heavy metal concentration, often leading
to more negative consequences for plant growth [49]. According to that logic, if an efficient
enzymatic antioxidative system activity is induced, an increase in MDA concentration or
any other indicator of membrane damage should not be observed. Thus, in the present
study, while electrolyte leakage capacity was higher in older leaves, it did not significantly
change in leaves of Mn-treated plants (Figure 4D).

Recently, there has been no extensive comparative analysis of the possible functions of
peroxidase in defense against heavy metals. However, peroxidase activity measurements
are still being actively used in studies on the effects of heavy metals in plants [49–54]. The
observed changes in peroxidase activity in leaves of R. hydrolapathum plants more likely
reflect defense-related responses similar to these occurring during priming of induced
tolerance [55,56]. In this context, the case of gradual heavy metal treatment can be con-
sidered as the manifestation of induced tolerance, where it is possible to increase plant
survival and growth by treatment with another factor at small intensity or the potentially
harmful factor itself at a small dose [57]. The phenomenon of priming in respect to the
metal stress in plants has been analyzed in detail recently [58]. In a stepwise treatment,
each individual treatment acts as an inducing factor, leading to changes in gene expression
and metabolic adaptation to the next treatment with a higher dose, as evidenced by each
increase in peroxidase activity in the present study.

It is also evident that different components of enzymatic antioxidative system have
different sensitivity to endogenous oxidative stress. Thus, it can often be observed that per-
oxidase activity continues to increase while the activity of other enzymes of antioxidative
protection decreases as the metal dose increases [59]. More specifically, for Mn, peroxidase
activity on protein basis in both leaves and roots increased with increasing doses of Mn in
soybean plants in spite of significant growth inhibition and visual toxicity symptoms [28].
In addition, peroxidase activity did not change as a result of growth-inhibiting dose of Mn
in Spirodela polyrhiza plants, while catalase activity decreased significantly [36]. However,
in Polygonum hydropiper plants, both peroxidase and catalase activity showed maximum
levels at moderate Mn doses and decreased further [37]. Interestingly, apoplastic NADH-
dependent peroxidase has been associated with appearance of visual toxicity symptoms in
Vigna unguiculata plants at high Mn doses [60]. It is highly likely that compartmentalization
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of peroxidase isoforms at both tissue and cellular level is an important factor in understand-
ing the role of the enzyme in plant responses and tolerance to heavy metals. The relatively
small but significant increase in peroxidase activity in control plants during cultivation
could be related to increased lignification of plant leaf vasculature, leading to increased
mechanical resistance of leaves in adult plants [19]. Further, increased lignification as a
response to heavy metal treatment has been pointed out, which also could be associated
with peroxidase functions [61–63].

In the present study, acute treatment with 1 g L−1 Mn was performed at the same time
point when the summed dose of Mn in the gradual treatment also reached 1 g L−1. This
allowed for direct comparison of physiological responses in plants. However, due to these
methodological features, the time period after the acute treatment until the termination
of the experiment was relatively short, so the visual symptoms of acute toxicity could
not appear. Also, morphological differences between the two types of treatment were not
evident (Figure 2), while physiological indicators showed more severe stress situation in the
case of acute treatment in comparison to the gradual one (Figure 4). Also, acute treatment
with 1.00 g L−1 Mn had a significantly lower peroxidase response in comparison to the
gradual treatment with 1.00 g L−1 Mn (Figure 5). Thus, it is possible to predict that growth
inhibition will be more severe and visual toxicity symptoms will appear sooner in the case
of acute treatment as compared to the gradual treatment with Mn.

It can be concluded that the treatment type has a significant effect on the physiolog-
ical responses of R. hydrolapathum plants to biogenous heavy metal Mn. Under gradual
treatment, biochemical changes related to the induction of tolerance to the heavy metal
are expressed, as indicated by a continuous increase in leaf peroxidase activity after each
treatment step. Future studies should include other treatment schemes to better assess
possible differences in the growth and degree of visual damage as related to changes in
biochemical indicators of heavy metal stress.

4. Materials and Methods
4.1. Plant Material and Establishment of Seedlings

Seeds of Rumex hydrolapathum Huds. Were collected from plants growing in a sea-
affected wetland near Mersrags, Latvia at the beginning of September 2018. Seeds were
kept for one month in laboratory conditions and further were stored at 4 ◦C. After im-
bibition in sterile deionized water for 2 h, seeds were placed 1 L plastic tissue culture
containers containing autoclaved garden soil (Biolan, Eura, Finland) moisturized with
sterile deionized water. Containers were incubated at photon flux density 40 µmol m−2 s−1

of photosynthetically active radiation with a 16 h photoperiod, day/night temperature
20/15 ◦C in a plant growth cabinet MLR-352H (Sanyo Electric, Osaka, Japan).

4.2. Plant Cultivation and Treatment Conditions

After the appearance of the first two true leaves, seedlings were individually trans-
planted to 200 mL plastic containers with a mixture of garden soil (Biolan, Eura, Finland)
and quartz sand (Saulkalne S, Saulkalne, Latvia), 4:1 (v/v). Containers with plants were
placed in 48 L closed plastic boxes and further gradually adapted to greenhouse conditions.
An automated experimental greenhouse system (HortiMaX, Maasdijk, The Netherlands)
was used for plant cultivation. A natural daylight was supplemented with photon flux
density 380 µmol m−2 s−1 of photosynthetically active radiation with a 16 h photoperiod,
provided by Powerstar HQI-BT 400 W/D PRO (Osram, Munich, Germany) and Master
SON-TPIA Green Power CG T 400 W (Philips, Amsterdam, The Netherlands) lamps. The
day/night temperatures were 23/16 ◦C, the relative air humidity 60–70%.

When the height of the seedlings reached 5–10 cm, they were individually transplanted
to 1.2 L plastic containers filled with 1.0 L of the same soil and sand mixture as indicated
previously. Substrate water content was monitored daily with an HH2 moisture meter
equipped with a WET-2 sensor (Delta-T Devices, Burwell, UK) and a necessary amount
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of deionized water was added to maintain 65–75% moisture. Individual containers with
plants were randomly placed on greenhouse bench and repositioned twice a week.

One week after the final transplanting, 94 uniform plants were randomly distributed in
six treatment groups (Figure 6). The large number of plants in this and other treatments was
due to the need for destructive sampling for peroxidase analyzes during the experiment. In
total, 26 plants were left untreated and served as control. A batch of 52 plants were treated
with 0.10 g Mn in a form of MnSO4 on day 1, followed by treatment of 38 plants from
this batch with 0.15 g Mn on day 3. From these, 26 were treated with 0.25 g Mn on day 7.
Further, 16 of these plants were treated with 0.50 g Mn on day 13. The remaining 16 plants
were treated with 1.00 g Mn on day 13. For treatments, the required amount of salt was
dissolved in 200 mL of deionized water and poured evenly on the soil in the container with
the plant.
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4.3. Measurements and Experiment Termination

On the days marked with an asterisk (Figure 6), from two plants per treatment, the leaf
of the longest plant at that time was collected for peroxidase activity analyses. Plant tissues
were frozen in liquid nitrogen and stored at −20 ◦C until analysis. For measurement of
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peroxidase activity, each collected leaf was longitudinally cut in half. Enzyme extraction
was performed using 0.5 g tissue samples from halves of two leaves per treatment. The
samples were ground to a fine powder with mortar and pestle, and extracted with 25 mM
HEPES/KOH buffer (pH 7.2), containing 1 mM EDTA, 3% polyvinylpolypirrolidone, 0.8%
Triton X-100. For each sample, 2.5 g buffer was used and extraction was performed for
15 min. After centrifugation at 15,000× g for 20 min at 4 ◦C, the supernatant was used
for spectrophotometric measurement of enzyme activity. The reaction mixture contained
2 mL 50 mM NaPO4 buffer (pH 7.0) with 10 mM guaiacol, 0.5 mL 0.03 mM H2O2 and
0.01 mL enzymatic extract. The mixture without H2O2 was used as a reference. The
increase in optical density (OD) at 470 nm was followed for 3 min. Peroxidase activity was
calculated as a rate of increase in OD from the linear portion of the OD curve over 30 s and
expressed per g of fresh biomass.

Chlorophyll concentration and chlorophyll a fluorescence measurements were per-
formed before the termination of the experiment using two older leaves and two larger
leaves of each plant. Only plants from control, 1.00 Mn G and 1.00 Mn A treatments were
used, with five plants per each treatment. Chlorophyll concentration in plant leaves was
measured by a chlorophyll meter CCM-300 (Opti-Sciences, Hudson, NH, USA). Chloro-
phyll a fluorescence was measured in leaves that had been dark adapted for at least 20 min
by a Handy PEA fluorometer (Hansatech Instruments, King’s Lynn, UK). For characteri-
zation of photochemical activity, fluorescence parameters Fv/F0 and Performance Index
Total were used [64]. Fv/F0, calculated as (Fm − F0)/F0, reflects an instant photochemical
activity at the donor side of photosystem II. Performance Index Total is used as a relative
indication of plant vitality, and includes information on the status of both photosystem II
and photosystem I, in addition to characterizing the electron flow between the two systems,
which is on an absorption basis.

Three plants per treatment (from control, 1.00 Mn G and 1.00 Mn A) were used for
measurement of relative electrolyte leakage [65] using two older leaves and two larger
leaves of each plant. A batch of 15 discs (0.5 cm2) was prepared from fresh leaves, rinsed
with deionized water three times in immersed in tubes with 10 mL deionized water for
22 h at room temperature. Initial electrical conductivity of the solution was measured using
LAQUAtwin compact conductivity meter B-771 (Horiba Scientific, Kyoto, Japan). After
incubation in a water bath at 80 ◦C for 2 h and cooling to room temperature, final electrical
conductivity was measured. Relative electrolyte leakage was calculated as the difference
between the final and the initial conductivity and expressed as the percent.

At the end of the experiment, substrate pH and electrical conductivity was measured in
the containers with R. hydrolapathum plants. Substrate pH was measured using a pH meter
pH 3000 (STEP Systems, Nürnberg, Germany). For measurement of electrical conductivity,
a HH2 moisture meter equipped with a WET-2 sensor (Delta-T Devices, Burwell, UK) was
used. Five plants per treatment were used. For every container, four separate readings on
all sides of the container were performed for both parameters.

The experiment was terminated on day 22. Dry leaves was harvested separately, but
living leaves were divided in old, small, large, and new leaves, according to their age an
position, as well as size. Five plants per treatment (from control, 1.00 Mn G and 1.00 Mn A)
were used for measurement of both fresh and dry (after drying in an oven at 60 ◦C for 72 h)
biomass. Leaf water content was calculated as g H2O per g of dry mass.

4.4. Data Analysis

Results were analyzed by KaleidaGraph (v. 5.0, Synergy Software, Reading, PA, USA).
Statistical significance of differences was evaluated by one-way ANOVA using post hoc
analysis with a honestly significant difference. Significant differences were indicated by
p < 0.05.
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