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Abstract: Textiles are used for many different applications and require a variety of properties.
Wet functionalization improve textiles’ properties, such as hydrophilicity or antimicrobial activ-
ity. Chitosan is a bio-based polymer widely investigated in the textile industry for this purpose.
A weaving comprising a cotton/polyester mix and a pure-polyester weaving was functionalized
with different concentrations of chitosan to determine the most robust method for chitosan de-
tection in both cotton- and polyester-containing materials. Additionally, mixtures of chitosan with
3-glycidyloxypropyltriethoxy silane (GLYEO) or 3-aminopropyltriethoxy silane (AMEO) were applied
in a one-step or two-step procedure on the same fabrics. Scanning electron microscopy (SEM) com-
bined with energy-dispersive X-ray spectroscopy (EDS) and dyeing with Remazol Brilliant Red F3B
demonstrated the presence of chitosan and silanes on the textiles’ surfaces. While non-functionalized
textiles were not stained, the dependency of the dyeing depths on the chitosan concentrations enabled
us to infer the efficacy of the very short processing time and a mild dyeing temperature. The one-step
application of AMEO and chitosan resulted in the highest presence of silicon on the textile and
the greatest color intensity. The functionalization with GLYEO reduced the water sink-in time of
polyester, while chitosan-containing solutions increased the hydrophobicity of the material. Washing
experiments demonstrated the increasing hydrophilicity of the cotton/polyester samples, indepen-
dent of the type of functionalization. These experiments show that chitosan-containing recipes can
be used as part of a useful method, and the type of functionalization can be used to adjust the
hydrophilic properties of polyester and cotton/polyester textiles. Via this first step, in the future, new
combinations of bio-based polymers with inorganic binder systems can be developed, ultimately
leading to sustainable antimicrobial materials with modified hydrophilic properties.

Keywords: chitosan; polyester; cotton; 3-glycidyloxypropyltriethoxy silane (GLYEO); 3-aminopropyltriethoxy
silane (AMEO); technical textiles; functionalization

1. Introduction

The functionalization of textiles generally refers to all processes used to add new
functional properties to a textile substrate [1]. These functional properties can be related
to totally different fields, e.g., flame retardant, antimicrobial activity, UV protection, or
hydrophilic or hydrophobic properties [2–5]. One main method used to realize func-
tionalization is wet chemical processing, by which a chemical component or an additive
with a certain functional property is applied to a textile fabric that does not have this
specific property.

A current trend is the use of bio-based and sustainable chemicals [6–8]. To make
textile processes more environmentally friendly, it is possible to use bio-based polymers for
functionalization. One bio-based polymer that has been evaluated for textile treatments is
chitosan [9–12], which is derived from the biopolymer chitin via a deacetylation process.
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Chitin sourced from insects or crustaceans is a widely available raw material [13,14]. The
deacetylation of chitin results in the formation of primary amino groups in the polymer
structure of chitosan. The proportion of acetyl groups to amino groups (that is, the “degree
of deacetylation” (DD)) and the molecular weight significantly influence the chemical and
physical properties of chitosan, such as its solubility, viscosity and biological function [15].
Chitosan has been investigated as an agent for use in textile treatments for decades [16,17].
Special interest has been placed on chitosan because of its antimicrobial properties [10,18].
Using this method, bio-based antimicrobial properties can be realized. However, antistatic,
hydrophilic or hydrophobic modifications of textile fabrics can be realized by applying
chitosan, too [19,20]. In pure water, chitosan is not soluble. However, it is soluble in
acidic solutions due to the protonation of the amino groups -NH2 leading to charged
-NH3

+ units [21,22]. Because of this, many applications using chitosan in textiles simply
dissolve chitosan in acidic solutions. However, chitosan not only influences the properties
mentioned above, but also affects the dyeing behavior of cotton [12,23] or polyester [24,25]
textiles. The dyeing of cotton with direct dyes or reactive dyes in neutral or slightly
alkaline solutions works very well, while polyester is commonly dyed with disperse
dyes at high temperatures [26,27]. The effects of chitosan on the dyeing behavior of
textiles have here been utilized to establish a robust method for detecting chitosan in
both a cotton/polyester mix and pure polyester fabrics, and additionally, a comparison
with spectroscopic methods (scanning electron microscopy (SEM) and energy dispersive
spectroscopy (EDS)) was conducted.

Besides this simple approach of using chitosan for textile functionalization, it is of
interest to modify chitosan applications via the addition of hydrolyzed alkoxysilane com-
ponents [19]. Alkoxysilane components can be used as precursors in sol–gel processes,
and also in combination with chitosan, as reported previously [18]. In contrast, in the
present study, only amino- and epoxy-functionalized trialkoxy silanes have been used
in combination with chitosan for textile treatments. PES and CO/PES woven fabrics for
use in technical textiles have been functionalized with chitosan and two alkoxy silane
components—3-aminoproplytriethoxy silane (AMEO) and 3-glycidyloxypropyltriethoxy
silane (GLYEO). Analyses of the textiles’ surfaces and the determination of changes in
their properties caused by the functionalization were performed. In this way, the washing
fastness of textiles with chitosan applied on their surfaces could be improved due to the
adhesive effects of a silica-based binder system.

Finally, a proof of concept was achieved by endowing the alkoxy silane components
with the properties and washing stability of chitosan, allowing textile substrates to be
modified. A new combination of a bio-based polymer and an inorganic binder system can be
developed to create sustainable antimicrobial materials with modified hydrophilic properties.

2. Materials and Methods
2.1. Textiles

Polyester (PES) and cotton/polyester mix (CO/PES) woven materials, delivered
by an industrial partner (Wenzel & Hoos GmbH, Lauterbach, Germany), were used as
received. The cotton/polyester blended material contained a ratio of around 80% cotton and
20% polyester mixed in the yarns. Table 1 gives information about the textiles’ parameters.

2.2. Textile Finishing

Textiles were finished with chitosan solutions in different concentrations and with
silane/chitosan mixtures in a one-step or two-step procedure.
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Table 1. Textile parameter of woven fabrics. Images were taken using a light microscope with a
magnification of 30×.

Property PES CO/PES

image (scale bar = 1 mm)
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2.2.1. Chitosan Dispersion

For the functionalization of textiles with chitosan solutions, chitosan (ChD; 90%
DD; BioLog Heppe GmbH, Landsberg, Germany) was diluted in a warm solution (60 ◦C)
of acetic acid (1 or 2%, prepared from 100% acetic acid, VWR International GmbH,
Darmstadt, Germany) by intensive stirring with a magnetic stirrer (Carl Roth GmbH &
Co. KG, Karlsruhe, Germany) for approx. 30 min. The homogeneous chitosan solution
was applied by padding twice with a padding machine (Ernst Benz, Rümlang-Zurich,
Switzerland or Wichelhaus GmbH & Co. KG, Solingen, Germany). Afterwards, textiles
were dried in an oven at 130 ◦C for five minutes and condensed at 170 ◦C for one
minute. For each sample, the liquor pickup during functionalization was determined by
weighing the dry, non-functionalized sample and the wet, functionalized samples, as
described elsewhere [28].

2.2.2. Silane Hydrolyzation

Silanes (3-glycidyloxypropyltriethoxy silane (GLYEO) or 3-aminopropyltriethoxy
silane (AMEO)) were purchased from ABCR GmbH (Karlsruhe, Germany) and hydrolyzed
before usage. For this, one part of ethanol (99.7% + MEK, AnalytiChem GmbH, Duis-
burg, Germany) was placed in a glass beaker, and then one part of AMEO or GLYEO was
added. Additionally, one part of acetic acid (50%) was added under intensive stirring
(ethanol:silane:acetic acid = 1:1:1 v/v/v). The mixtures were stirred for 30 min at room
temperature until a one-phase, homogeneous solution (hydrolyzate) was obtained. A
2% diluted silane solution was prepared in water from this mixture for further use.

2.2.3. One-Step Procedure for Application of Chitosan and Silane

For the one-step finishing procedure, 46.5 mL diluted acetic acid (2%), 3 mL silane
hydrolyzate, and 0.5 g chitosan powder were mixed in a beaker and stirred for 30 min at
60 ◦C. Afterwards, this solution was applied by padding and the treated textiles were dried
as described above.
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2.2.4. Two-Step Procedure for Application of Chitosan and Silane

Initially, the silane hydrolyzate was applied using a horizontal padding machine in
the two-step finishing procedure. Later, the textile was placed in a bowl with 1% chitosan
dispersion in acetic acid (2%) (see Section 2.2.1), manually squeezed, and then squeezed by
a padding machine. After that, the textile was dried as described above.

2.3. Dyeing

For the detection of chitosan, the textiles were dyed with a reactive dye. The samples
were dyed in an aqueous solution of 2% Remazol Brilliant Red F3B (DyStar Colours
Distribution GmbH, Raunheim, Germany) and 0.1% (w/v) Triton X-100 (Carl Roth GmbH
& Co KG, Karlsruhe, Germany) (see [29]). To prepare the dye solution, a stock solution was
first prepared at a ratio of 1:100. The samples were stained for 5 min at 50 ◦C in a dyeing
apparatus (Ahiba IR pro, Datacolor GmbH, Marl, Germany). The heating rate was 3 ◦C
per minute. The temperature was measured via a temperature sensor in one of the staining
bombs. Immediately after dyeing, the samples were cold-rinsed twice for 3 min in one liter
of soft water each. The samples were left to dry at room temperature while lying down.

2.4. Washing

Washing tests were performed with selected samples, using an industrial washing
machine (Electrolux Professional, WH6-11CV, Stockholm, Sweden). In total, 30 mL of a
liquid laundry detergent (Persil Power Gel, Henkel AG & Co. KGaA, Düsseldorf, Germany)
was added and the textiles were washed at 40 ◦C with a standard colored washing program.
A cotton lab coat was added to the load to ensure even washing. The samples were washed
up to five times and then line-dried. These samples were named “B”. The unwashed
samples were named “A”, where necessary.

2.5. Analytics
2.5.1. Viscosity

The viscosity of the chitosan dispersions was measured with a rotary rheometer
(Haake viscotester iQ, thermos scientific, Karlsruhe, Germany) at a temperature of 30 ◦C.
Exemplary measurement was performed for 0.5% and 3% ChD.

2.5.2. Thickness Measurement

The thickness of the fabrics was determined according to the standard DIN EN ISO
5084_1996 with a Micrometer universal S16502, Frank-PTI GmbH, Birkenau, Germany.
Five measurements were performed per sample. The average and the standard deviation
were calculated.

2.5.3. Air Permeability

The air permeability of the fabrics was determined according to DIN EN ISO 9237_1995
(DIN German Institute for Standardization, Berlin, Germany) with an FX3300 Lab Air,
Textest AG, Zurich, Switzerland. Five measurements per fabric were performed with a
differential pressure of 100 Pa and a test area of 20 cm2. The average and the standard
deviation were calculated.

2.5.4. Microscopy

An overview of the fabric structure was obtained using light microscopy (Digital
Microscope VXH and VH-Z2OR, Keyence Deutschland, Neu-Isenberg, Germany). Images
were taken at 30× magnification. The textiles’ surfaces were investigated using a scanning
electron microscope (SEM) (Tabletop TM4000 Plus, Hitachi High-Technologies GmbH
Europe, Krefeld, Germany) and images were taken at 100×, 300×, and 1000× magnification.
For the detection of chemical elements on the samples’ surfaces, mapping was performed
using energy-dispersive X-ray spectroscopy (EDS) (Bruker SCU, Brucker Nano GmbH,
Berlin, Germany). EDS mapping was performed at a magnification of 300×. For each
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sample, the atom distribution in atom % was evaluated three times and the mean value
and standard deviation were calculated.

2.5.5. UV-Vis Spectroscopy

The absorption of the textile samples after dyeing with Remazol Brilliant Red F3B
was measured by clamping the textiles without tension in a special sample holder in the
UV-Vis spectrometer UV2600 from Shimadzu (Kyōto, Japan). Each sample was measured
at three different points in the wavelength range of 400–700 nm. The mean value over all
three measurement curves was determined and standard deviations were calculated for
the mean absorptions at 550 nm.

2.5.6. TEGEWA Drop-Test

The water absorption properties of the finished textiles were tested using the TEGEWA
drop-test with an aqueous solution of Patent Blue V (2%), as described elsewhere [30]. The
test involved recording the sink-in time of the droplets, and measuring the spreading of
the droplets in the weft and warp directions. The test was conducted three times for each
sample, and the mean values were calculated. Samples with a sink-in time greater than
five minutes were tested only once.

3. Results and Discussion
3.1. Different Concentrations of Chitosan

The first experiments were performed to establish a robust detection method of chi-
tosan. Thus, chitosan in different concentrations was applied to the textiles and different
analytic methods were evaluated. For this, ChD was dissolved in 1% acetic acid with
concentrations ranging from 0.5 to 4%. The solution was then applied to cotton/polyester
and polyester fabrics via a padding process. In addition to the results described in [28],
higher chitosan concentrations were analyzed with REM/EDS. Also the dyeing of chitosan
functionalized samples with reactive dye Remazol Red was performed.

For each sample, the liquor pickup during functionalization was determined by a
method described elsewhere [28]. The liquid pickups were determined twice for concen-
trations of 1% and 3% ChD each. The standard deviations of these measurements were
calculated. These were 2% for PES and 6.5% for CO/PES textiles, measured independently
of the chitosan concentration. Thus, these values were applied to all liquor pickups for the
different materials. Figure 1 shows the values of both materials.
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Figure 1. Liquor pickup of polyester and cotton/polyester fabrics during functionalization with
different chitosan concentrations. Standard deviations were calculated as 2% for PES and 6.5% for
CO/PES. This image was modified according to results from [31].
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Figure 1 shows the liquor pickup of the functionalized PES and CO/PES samples.
The liquor pickup of the CO/PES samples was up to 20% higher due to its higher water
absorption capacity, based on the higher hydrophilicity of the cellulose monomer, compared
to the terephthalate monomer in polyester. With both materials, samples containing a
chitosan content up to 3% tended to show an increase in liquor pickup with an increase
in concentration. This tendency is very similar in CO/PES and PES. The viscosity of
the chitosan solution increased significantly with an increasing concentration (e.g., from
91 mPa·s for 0.5%ChD to 862 mPa·s for 3% ChD), making it very difficult to apply a
high-concentration solution via padding onto the textile, especially for the CO/PES textile.
This resulted in unfavorable and uneven liquor application, and lower liquor pickups
characterized the samples with 3.5% and 4% chitosan. However, it is striking that the
degree of liquor pickup of the 1.5% chitosan varied for both textiles.

3.1.1. SEM/EDS Analysis

Figures 2 and 3 show SEM images of polyester and cotton/polyester samples func-
tionalized with increasing chitosan concentrations.
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Figure 2. SEM images of PES fabrics functionalized with chitosan, (a) reference, 0% ChD, (b) 1% ChD,
(c) 2% ChD, (d) 3% ChD, (e) 4% ChD; scale bar = 200 µm. Red circles highlight undissolved chitosan.
Images are used with permission from [31].

SEM images have been used to provide visual evidence of the presence of chitosan on
the functionalized fabrics. The first step was to observe chitosan as a film on and between
the fibers, including undissolved particles on the fibers and in the spaces between them
(as seen in Figures 2 and 3). When dissolved, chitosan can be detected in the form of a
streak-like coating of varying thickness and density on the fibers. The SEM images also
reveal the presence of undissolved chitosan particles, particularly at 3% and 4% chitosan
concentrations (seen in Figure 2d,e and Figure 3d,e in red circles).



Textiles 2024, 4 76Textiles 2024, 4 76 
 

 

 

Figure 3. SEM images of CO/PES fabrics functionalized with chitosan, (a) reference, 0% ChD, (b) 1% 

ChD, (c) 2% ChD, (d) 3% ChD, (e) 4% ChD; scale bar = 200 µm. Red circles highlight undissolved 

chitosan. Images are used with permission from [31]. 

SEM images have been used to provide visual evidence of the presence of chitosan 

on the functionalized fabrics. The first step was to observe chitosan as a film on and be-

tween the fibers, including undissolved particles on the fibers and in the spaces between 

them (as seen in Figures 2 and 3). When dissolved, chitosan can be detected in the form of 

a streak-like coating of varying thickness and density on the fibers. The SEM images also 

reveal the presence of undissolved chitosan particles, particularly at 3% and 4% chitosan 

concentrations (seen in Figures 2d,e and 3d,e in red circles). 

The images confirm the presence of chitosan on both the PES and CO/PES fabrics. A 

change in the chitosan concentration is also evident, but not further quantifiable. Addi-

tionally, it has been confirmed that the applied chitosan was not completely dissolved in 

higher concentrations, starting at approximately 3%. 

EDS coupled to REM was used to determine the elemental distribution on the textiles’ 

surfaces. Table 2 shows the mean values with standard deviation (SD). 

Table 2. Elemental distribution of textiles’ surfaces analyzed by REM/EDS with mean values and 

standard deviation (SD) for three measurements per sample. 

  Reference 1% Chitosan 2% Chitosan 3% Chitosan 4% Chitosan 

PES 
mean (At. 

%) 
SD 

mean (At. 

%) 
SD 

mean (At. 

%) 
SD 

mean (At. 

%) 
SD 

mean 

(At. %) 
SD 

carbon 68.9 0.5 68.5 0.34 68.6 0.64 67.9 0.23 68.4 0,22 

oxygen 31.1 0.5 31.5 0.34 31.4 0.64 32.1 0.23 31.6 0,22 

  Reference 1% Chitosan 2% Chitosan 3% Chitosan 4% Chitosan 

CO/PES 
mean (At. 

%) 
SD 

mean (At. 

%) 
SD 

mean (At. 

%) 
SD 

mean (At. 

%) 
SD 

mean 

(At. %) 
SD 

carbon 58.8 0.9 60.5 1.65 60.9 1.09 59.9 0.55 60.7 1.34 

oxygen 41.2 0.9 39.5 1.65 39.1 1.09 40.1 0.55 39.3 1.34 

The chemical structures of polyester and cotton do not contain nitrogen, but nitrogen 

exits in chitosan [15]. When the concentration of chitosan increased, the amount of nitro-

gen on the textiles’ surfaces was expected to increase as well. However, although carbon 

and oxygen were detected in different proportions in all samples, no nitrogen was found 

(Table 2). The sensitivity of the EDS method to the chemical element nitrogen is low, and 

Figure 3. SEM images of CO/PES fabrics functionalized with chitosan, (a) reference, 0% ChD, (b) 1% ChD,
(c) 2% ChD, (d) 3% ChD, (e) 4% ChD; scale bar = 200 µm. Red circles highlight undissolved chitosan.
Images are used with permission from [31].

The images confirm the presence of chitosan on both the PES and CO/PES fabrics. A
change in the chitosan concentration is also evident, but not further quantifiable. Addition-
ally, it has been confirmed that the applied chitosan was not completely dissolved in higher
concentrations, starting at approximately 3%.

EDS coupled to REM was used to determine the elemental distribution on the textiles’
surfaces. Table 2 shows the mean values with standard deviation (SD).

Table 2. Elemental distribution of textiles’ surfaces analyzed by REM/EDS with mean values and
standard deviation (SD) for three measurements per sample.

Reference 1% Chitosan 2% Chitosan 3% Chitosan 4% Chitosan

PES mean (At. %) SD mean (At. %) SD mean (At. %) SD mean (At. %) SD mean (At. %) SD

carbon 68.9 0.5 68.5 0.34 68.6 0.64 67.9 0.23 68.4 0.22
oxygen 31.1 0.5 31.5 0.34 31.4 0.64 32.1 0.23 31.6 0.22

Reference 1% Chitosan 2% Chitosan 3% Chitosan 4% Chitosan

CO/PES mean (At. %) SD mean (At. %) SD mean (At. %) SD mean (At. %) SD mean (At. %) SD

carbon 58.8 0.9 60.5 1.65 60.9 1.09 59.9 0.55 60.7 1.34
oxygen 41.2 0.9 39.5 1.65 39.1 1.09 40.1 0.55 39.3 1.34

The chemical structures of polyester and cotton do not contain nitrogen, but nitro-
gen exits in chitosan [15]. When the concentration of chitosan increased, the amount of
nitrogen on the textiles’ surfaces was expected to increase as well. However, although
carbon and oxygen were detected in different proportions in all samples, no nitrogen was
found (Table 2). The sensitivity of the EDS method to the chemical element nitrogen is
low, and so the amount of nitrogen applied to the chitosan was obviously not high enough
to detect it on the prepared samples. Although high chitosan concentrations were identi-
fied qualitatively via SEM analysis, these experiments show that SEM/EDS analysis was
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unsuitable for the quantitative detection of chitosan, confirming the former results of the
authors [28]. Therefore, another analytic method used for the detection of chitosan on the
textiles was evaluated.

3.1.2. Dyeing with Remazol Brilliant Red F3B

Dyeing was carried out with the reactive dye Remazol Brilliant Red F3B. The dye’s
anionic sulphonyl groups should interact with the chitosan’s amino groups due to ionic
interactions [32], but not with the textile fibers themselves. Figure 4 shows images of the
dyed PES (Figure 4a) and CO/PES (Figure 4b) textiles.

Cotton fibers are conventionally stained with reactive dyes under alkaline conditions
via the reaction of the cellulose hydroxyl group with suitable functional dye groups [26,27].
Polyester fibers lack these functional groups and are commonly dyed with dispersed dyes
at high temperatures, where the dye molecules migrate into the amorphous parts of the
polymer chain. Figure 4 shows that CO/PES fibers without any functionalization were not
visibly stained. The same is true for samples treated with 1% acetic acid (aa). Although
cotton fibers have a high affinity with reactive dyes in general, the low dyeing temperature
of only 50 ◦C and the short dyeing time of only 5 min for the dyeing process applied
here prevent the significant adherence of the dyestuff to cotton. However, a slight reddish
coloring can be seen on the CO/PES references, which allows for a better visual assessment
and targeted measurement of the samples (please compare “ref” in Figure 5b). As expected,
pure polyester textiles have no affinity with the reactive dye, and no visible staining was
observed here (see also “ref” in Figure 5a).

Overall, the staining appears to be relatively uniform for all chitosan-functionalized
textiles, except for the CO/PES-4% sample, which shows a large area that is not stained.
This can be attributed to the low application of the very viscous solution during the padding
process. Table 3 compares the chitosan concentration applied in the padding bath with the
chitosan concentration present on the textiles, calculated using liquor pickup.

Table 3. Calculated chitosan concentration for PES and CO/PES textiles.

Chitosan
Concentration in
Padding Bath (%)

PES CO/PES

liquor Pickup (%) Calculated Chitosan
Concentration (%) Liquor Pickup (%) Calculated Chitosan

Concentration (%)

0.5 67 0.3 87 0.4
1.0 74 0.7 90 0.9
1.5 64 1.0 86 1.3
2.0 72 1.4 94 1.9
2.5 77 1.9 96 2.4
3.0 83 2.5 94 2.8
3.5 79 2.8 86 3.0
4.0 79 3.2 51 2.0

The calculated values demonstrate that with PES, the chitosan content on the textiles
increased with an increasing chitosan concentration in the bath. In contrast, this was
different for CO/PES. Due to the low liquor pickup of 4% ChD here, much less chitosan
was applied to the textiles than was planned.

UV-Vis spectroscopy was used in the quantified analyses of the stained samples.
Figure 5 shows the UV-Vis spectra of the stained textiles (Figure 5a: PES samples; Figure 5b:
CO/PES samples), and compares the values at the absorption maximum of Remazol
Brilliant Red F3B at 550 nm for varying chitosan concentrations. In Figure 5c, we used
the concentration of chitosan on the textiles that was calculated using liquor pickup (see
Figure 1 and Table 3).
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Figure 4. Polyester (a) and cotton/polyester (b) textiles, functionalized with different chitosan
concentrations and dyed with Remazol Brilliant Red F3B. aa: Reference textiles, wetted with 1%
acetic acid, but without chitosan. Images are used with permission from [31].

The absorbance values of staining with Remazol Brillant Red F3B seen in Figure 5
show a trend of generally increasing with chitosan concentration. The standard deviations
from the three measurements were small for small concentrations of chitosan. With higher
chitosan concentrations, the standard deviations became greater, and the staining became
more inhomogeneous (see also Figure 4). However, for polyester, the highest chitosan
concentration of 4% (calculated 3.2%) did not result in the deepest staining. The absorption
values were comparable for those derived with 2.5% (calculated 1.9%) chitosan. The uneven
application of chitosan may be the reason for this, as can be seen from the SEM images in
Figure 2 and the uneven staining in Figure 4. This results in deviations in the absorbance
values, despite triplicate determination. The differences in liquor uptake (see Figure 1)
may also indicate that the chitosan content on textiles does not increase continuously with
the chitosan concentration in the finishing solution. With cotton/polyester, from about
2% chitosan and up, a form of saturation occurs—higher chitosan concentrations do not
lead to an increase in color depth. Again, uneven finishing occurs, as can be seen from the
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staining in Figure 4b. Highly concentrated chitosan solutions are very viscous, making
even application difficult. Unsolved chitosan can be seen in the SEM images in Figure 3.
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measurements are shown. Image modified according to data from [31].

The results show that staining with Remazol Brillant Red F3B is suitable for use in the
detection of chitosan on both CO/PES mixed and pure PES textiles: chitosan-functionalized
samples were stained, whereas the references were not. The stainability of the chitosan-
functionalized fabrics is attributed to the presence of primary amino groups in chitosan,
which can form covalent bonds with reactive dyes, or build electrostatic interactions with
the dye anions in their protonated form (NH3)+ [33]. Several experiments have been
previously reported using reactive red dyes to stain chitosan-functionalized textiles, but
using more intense reaction conditions with temperatures between 40 and 60 ◦C and
reaction times of 30–160 min [25,34,35], showing similar effects. The conditions used here
with a mild dyeing temperature of 50 ◦C and a very short reaction time of 5 min have
already been studied by Al-Bahra for cotton [29], but were applied to polyester textiles.
This method allows for the fast and reliable detection of chitosan on both cotton and
polyester textiles.

The results of applying chitosan to PES and CO/PES textiles with SEM/EDX are
unsatisfactory. However, in the tested dyeing process, a robust and fast detection method
was developed for both materials that did not require any pre-treatment of the textiles.

3.2. Different Application Methods of Chitosan and Addition of Silanes

In a second experimental series, chitosan-functionalized textiles with silanes as the
binder were analyzed, and different application methods were tested. These experiments
aimed to determine whether an amino- and a glycidoxy silane were suitable for chang-
ing the surface properties of chitosan textiles, as described before for tetraethoxy silane
(TEOS) [19], and furthermore, whether the washing fastness could be improved. Table 4
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gives an overview of the functionalization of PES and CO/PES textiles. All samples were
analyzed directly after functionalization and after five washing cycles to determine the
washing fastness of the properties. The washed samples were called “B”, and the unwashed
samples were called “A”.

Table 4. Sample number and functionalization with concentration of acetic acid (2%); ChD = chitosan
(1%); AMEO (2%); GLYEO (2%).

Sample Number Functionalization Textile Procedure Application 1st Step Application 2nd Step

284 AMEO/ChD CO/PES 2-steps padding dipping, padding
285 GLYEO/ChD CO/PES 2-steps padding dipping, padding
286 AMEO/ChD PES 2-steps padding dipping, padding
287 GLYEO/ChD PES 2-steps padding dipping, padding
288 AMEO/ChD CO/PES 1-step padding -
289 GLYEO/ChD CO/PES 1-step padding -
290 AMEO/ChD PES 1-step padding -
291 GLYEO/ChD PES 1-step padding -
292 AMEO CO/PES 1-step padding -
293 AMEO PES 1-step padding -
294 GLYEO CO/PES 1-step padding -
295 GLYEO PES 1-step padding -
296 ChD CO/PES 1-step padding -
297 ChD PES 1-step padding -
298 reference CO/PES - - -
299 reference PES - - -

3.2.1. SEM/EDS Analysis

Freshly functionalized samples (indicated with “A”) and samples washed five times
(indicated with “B”) were analyzed with SEM/EDS. Figure 6 shows SEM images of the
different samples.

The SEM images show a smooth surface for all polyester samples (Figure 6a).Unlike
unfunctionalized polyester textiles (see Figure 2a), no differences due to the finishing were
detected. The chitosan concentration was too low (cf. Figure 2), and silanes could not be
detected visually. No changes occurred after washing. The surfaces of the cotton/polyester
fibers were not as uniform (Figure 6b), since this was a natural fiber. Like polyester samples,
the chitosan concentration was too low for detection via SEM imaging (cf. Figure 3). The
images of samples of 284B and 288B show unidentified streaks. Examples of washed
samples (284B and 288B) are shown in Figure 7.

The distribution of silicon was not limited to individual areas, but was uniform over
entire samples. Accordingly, no clear evidence could be provided via EDS mapping of
the silane finish. Overall, detecting chitosan on the textiles’ surfaces by EDS was difficult,
since the functionalization only slightly changed the distributions of the chemical elements
oxygen and carbon, while nitrogen could not be detected (see Table 2). However, the
functionalization with silanes involved applying silicon to the surface, which is neither
found in chitosan nor in the polymeric structure of the textile materials. Although mapping
is not suitable for silicon detection, the spectroscopic detection of silicon on the textiles’
surfaces was possible with SEM/EDS. This can be used to detect functionalization with
silanes. Figure 8 shows the respective EDS spectra.
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Figure 6. SEM images of polyester (a) and cotton/polyester (b) samples, directly after finishing
(A) and after five washing cycles (B). The magnification is the same in all images and the scale bars
(=50 µm) presented in the first pictures can be used for all images.
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The carbon peak (0.27 keV) is the most prominent signal, followed by the oxygen peak
(0.53 keV). Because of their chemical structures, cotton and polyester have different C to
O peak ratios (see also Table 2). In both spectra (Figure 8a,b), the silicon peak at 1.75 keV
proves the presence of AMEO and GLYEO on the textiles, respectively. A peak at 1.48 eV
was found, which can be assigned to aluminum and is considered an artifact from the
aluminum sample holder used for EDS measurement.
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Figure 9. Silicon (Si) contents of differently functionalized polyester (a) and cotton/polyester textiles 
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Figure 8. EDS spectra of textiles functionalized with AMEO (a) and with GLYEO (b).

Figure 9 compares the silicon contents on the textiles’ surfaces for the different finishes
described in Table 4.
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Figure 9. Silicon (Si) contents of differently functionalized polyester (a) and cotton/polyester textiles (b).
Mean values and standard deviations (as error bars) of three measurements are presented. If no error
bar is seen, the standard deviation is 0.00%.

The values for the PES (Figure 9a) and CO/PES (Figure 9b) materials showed clear
differences. Although the silane concentrations were the same for both materials in the
finishing solutions, only a very small amount of silane was detected on the polyester
samples (Figure 9a). The normalized Si content ranged between 0.02% and 0.09%. In this
regard, almost no differences were found between AMEO and GLYEO. Compared to cotton,
the Si contents on the polyesters were reduced by one-quarter to one-third. This was due
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to the general hydrophobicity of the polyester, caused by its chemical structure. Therefore,
a reduced affinity of polyester materials to aqueous finishing solutions could be found,
which was approximately 20% lower than with cotton (see Figure 1).

For cotton/polyester samples (Figure 9b), the silicone content on the textile surface
following the two-step application process of AMEO was also very low, at 0.06% (AMEO).
A lower affinity of AMEO for the cotton fibers seems to have been responsible for this, as
was evident when AMEO was applied alone (0.12%). When using the one-step application
procedure, much more silicon was detected (0.28%). Chemically, there is a high affinity
between chitosan and cotton, as the structures are very similar. Hydrogen bonds can be
formed between the hydroxyl groups of the hydrolyzed AMEO and amino and hydroxyl
groups on the chitosan, such that AMEO adsorbs on chitosan. Thus, in the one-step
procedure, AMEO can be more effectively applied to the textile via the affinity of the
chitosan for the cotton. In the two-step procedure, this type of adsorption was blocked.

When finishing cotton/polyester with chitosan and GLYEO using the one-step proce-
dure, only low levels of silicon (0.05%) were detected on the textile surface. On the other
hand, applying GLYEO or GLYEO along with chitosan, using the one-step procedure, led
to silicon levels of 0.23% and 0.21%, respectively. The epoxy ring of GLYEO can open
and react with the hydroxyl groups of cotton fibers [36,37] or chitosan. In the two-step
application process, chitosan can block the silane, making it undetectable.

Very low silicon levels of 0.01% were detected in both the chitosan samples (296 and
297) and the textile references (298 and 299), and have not been integrated in the graph.
These levels are within the range of the measurement error.

After the samples had been washed, the silicon values decreased and were within
the range of the measurement error for almost all samples. However, sample 289B
(GLYEO/ChD 1-step) had still a very low silicon content, of 0.04%. On the other hand,
sample 294B (GLYEO) had a consistent silicon content of 0.23% before washing, which
was 0.24% after washing. This suggests that silanes are not suitable for use as binders for
chitosan when applied in this way. However, there is a strong affinity between GLYEO and
the cotton/polyester fiber. Due to the low concentration overall, this cannot be confirmed
visually using SEM images (see Figure 6).

3.2.2. Dyeing with Remazol Brilliant Red F3B

The observation of textiles with different chitosan concentrations showed that chitosan
could be detected by staining with Remazol Red (see Figures 4 and 5). This method was
also used in the second series of experiments. The staining of the samples and UV-Vis mea-
surements of the dyed samples were performed. Figure 10 (PES) and Figure 11 (CO/PES)
show images of textiles subjected to different functionalization procedures and dyeing with
Remazol Brillant Red F3B directly after functionalization. The images of textiles washed
five times before staining are also shown (Figures 10a and 11a). Figures 10b and 11b show
the absorption maxima at 550 nm of the measured UV-Vis spectra.

The AMEO-functionalized textiles showed significantly stronger dyeing than the
GLYEO samples with polyester textiles (Figure 10a). The one-step application procedure
with AMEO and chitosan (samples 290) and functionalization with AMEO only (sample
293) led to the strongest dye uptake. The samples finished with chitosan only (sample 297)
and the ones finished with the two-step application of AMEO and chitosan (sample 286)
showed slightly weaker uptake. This is because the free amino groups present in chitosan
can react with the anionic dye molecules, as mentioned in a study by Huang [32]. A similar
effect appears to occur with AMEO, which includes free amino groups as well.
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Figure 11. Cotton/polyester fabrics functionalized in different ways and dyed with Remazol Brilliant Red
F3B; (a) photographs of unwashed and washed samples; (b) UV-Vis absorption of dyed samples at 550 nm.
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When finished with GLYEO, only the sample subjected to the two-step application
procedure (sample 287) was stained. Other samples showed no or only very weak staining.
After washing, the staining with Remazol Red was weaker. No differences could be
observed in samples that showed almost no staining before washing (samples 291, 295, and
299; see Figure 10).

Most of the cotton/polyester samples were clearly colored by Remazol Brilliant Red
F3B, except for the cotton reference (sample 298) and the GLYEO-treated samples (294) (see
Figure 11a). As with polyester, the one-step application of AMEO and chitosan (sample 288) led
to the strongest staining, and this was also the sample with the highest silicon content detected
on the textile surface (see Figure 9b). The staining depths were comparable with the other
samples. The washed samples showed just slightly lighter coloring after washing. Notably,
samples subjected to the two-step application of chitosan with AMEO (sample 284) and GLYEO
(sample 285), as well as chitosan alone (sample 286), showed washing stability (see Figure 11b).

The results show that the washing fastness of chitosan on CO/PES textiles was very high,
and was not further improved by GLYEO or AMEO. On polyester textiles, the absorption of
the dye was reduced after washing, indicating a reduction in the amount of chitosan on the
fabric. However, neither the addition of GLYEO nor of AMEO could improve this.

3.2.3. Water Uptake

The hydrophilic/hydrophobic properties of the functionalized samples were analyzed
using the TEGEWA drop test. Here, the spreading of the dyed water droplet and its sink-in
time were measured. Short sink-in times imply the hydrophilicity of the textiles [19]. The
results are displayed in Table 5.

Table 5. Droplet spreading in weft and warp directions and sink-in time for the droplets for func-
tionalized polyester and cotton/polyester samples. Mean values and standard deviations (SD) were
calculated following three measurements per sample. If the sink-in time was greater than 5 min, just one
measurement (meas.) was performed. A: Unwashed samples. B: Samples after five washing cycles.

Cotton/Polyester

Functionalization

Polyester

Sample Weft
(cm)

Warp
(cm) Sink-in Time (s) Sample Weft

(cm)
Warp
(cm) Sink-in Time (s)

284A 0.6 2.5 19.5
min

1 meas. AMEO/
ChD

2-steps

286A
3.03 3.10 1.97 mean

SD0.05 0.08 0.30

284B
2.83 2.97 0.32 mean

SD 286B
3.87 3.57 0.75 mean

SD0.21 0.05 0.10 0.24 0.12 0.02

285A 0.6 2.1 >24 min 1 meas. GLYEO/
ChD

2-steps

287A
4.37 2.97 2.39 mean
0.39 0.12 0.11

285B
3.08 2.67 0.32 mean

SD 287B
4.33 3.67 1.28

SD0.09 0.05 0.10 0.12 0.05 0.16

288A 0.6 1.1 14.02
min

1 meas. AMEO/
ChD

1-step1

290A
3.67 2.83 1.88 mean
0.24 0.05 0.06

288B
3.93 1.57 1.23 mean

SD 290B
3.23 3.33 2.71

SD0.19 0.05 0.14 0.17 0.17 0.32

289A 0.6 1.2 >15 min 1 meas. GLYEO/
ChD

1-step1

291A
4.20 3.50 1.65 mean
0.42 0.22 0.24

289B
2.33 3.07 1.05 mean

SD 291B
5.13 3.97 1.37

SD0.17 0.05 0.06 0.26 0.05 0.06
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Table 5. Cont.

Cotton/Polyester

Functionalization

Polyester

Sample Weft
(cm)

Warp
(cm) Sink-in Time (s) Sample Weft

(cm)
Warp
(cm) Sink-in Time (s)

292A 0.04 3.3 8.01
min

1 meas.
AMEO

293A
3.70 3.80 2.01 mean
0.08 0.22 0.30

292B
3.07 2.10 0.99 mean

SD 293B
3.50 3.23 2.69

SD0.05 0.08 0.22 0.08 0.21 0.66

294A 0.6 5.4 4.38
min

1 meas.
GLYEO

295A
4.03 4.37 1.57 mean
0.05 0.21 0.30

294B
2.43 2.97 0.31 mean

SD 295B
3.53 5.33 0.86

SD0.09 0.09 0.00 0.12 0.25 0.21

296A 0.7 0.6 >15 min 1 meas.
ChD

297A
3.23 3.00 2.29 mean
0.29 0.00 0.14

296B
3.00 2.53 1.06 mean

SD 297B
3.50 3.63 0.71

SD0.14 0.05 0.12 0.08 0.05 0.08

298A 0.6 3.6 8.22
min

1 meas.
reference

299A
4.07 4.77 1.87 mean
0.19 0.40 0.32

298B
3.47 2.23 0.68 mean

299B
3.07 5.57 0.72

SD0.05 0.12 0.18 SD 0.12 0.05 0.09

Figure 12 shows examples of PES samples and Figure 13 of CO/PES samples.
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Figure 13. Water uptake on cotton/polyester samples before and after washing.

The blue dye solution spread nearly equally, and in a circular shape, on the unwashed
PES samples. The yarn density, differing by 2 yarns/cm in the warp and weft direction (see
Table 1), did not influence the droplet’s absorption. The sink-in times were in the range of
one to two seconds. GLYEO alone or with chitosan (one-step) increased the hydrophilicity
of the fabric slightly, while with all other modes of functionalization, the textiles became
more hydrophobic. Although the sink-in times differed in very small ranges, the effects of
the functionalization became more obvious when comparing the spreading of the droplets
(see Figure 12). After washing, only small changes were noticed in the spreading and
sink-in times. The unwashed CO/PES samples showed much more significant spreading
of the droplet in the warp direction than in the weft direction. The sink-in times were very
long and ranged from 4 (sample 294A) to over 24 min (sample 285A). Finer-yarn counts in
the warp direction and possibly an unknown pretreatment contributed to this result. After
washing, this effect was negligible, and spreading in the weft and warp direction was more
homogeneous. The sink-in times were dramatically decreased to around 0.5 to 1 s.

Applyingf GLYEO was supposed to increase the hydrophilicity of functionalized
textiles [19]. The samples functionalized with GLYEO here showed the shortest sink-in
time for polyester (sample 295A) as well as for cotton (sample 294A), demonstrating
their high hydrophilicity and confirming our expectations. AMEO had only a small
effect on the sink-in time. Chitosan products with a high DD, like the ChD used in this
study (DD of 90%), are expected to increase the hydrophilicity of functionalized textiles
when using polyester (see [19]), as seen in Table 5. In contrast, the chemical structure
of chitosan is less polar than that of cotton due to the presence of an acetylation group,
which results in a more hydrophobic surface of the CO/PES mix fabric. Additionally,
the air permeability, which is influenced by the porosity, is decreased by the application
of chitosan, thus having an influence on the water absorption properties. As regards the
CO/PES textile, the air permeability was reduced from 862 L/m2/s for the unfunctionalized
material (see Table 1) to 507 ± 12 L/m2/s, and for the PES textile from 185 ± 9 L/s2/m to
123 ± 3 L/m2/s. Combinations of chitosan with silanes made textiles more hydrophobic,
depending on the application method. The reason for this effect is probably the different
affinities of the functionalization compounds for the polymeric textile material, as described
above. These results demonstrate the different possibilities of adjusting the hydrophilic and
hydrophobic properties of both cotton and polyester textiles using different combinations
of chitosan with silanes. Enhancing the water-uptake properties of polyester samples
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should reduce the electrical resistance of the samples, and thus increase the antistatic
properties of the samples [19]. Beside the microstructure of a surface, soiling with dry soil
depends on electrostatic interactions [38,39], and reducing the electrostatic resistance can
result in reduced soiling. In contrast, increasing the hydrophobic properties of cotton (or
cotton/polyester) textiles reduces the fast soiling of these materials with aqueous soils.

4. Conclusions

This study presents the evaluation of a robust method for analyzing chitosan on
cotton/polyester and pure polyester textiles, and the functionalization of these textiles
with chitosan, AMEO, or GLYEO silanes. The properties of the textiles were altered and
analyzed using various methods. The SEM images show that high concentrations of
chitosan (3.5% or higher) were present on the textiles’ surfaces, while EDS spectroscopy
did not confirm this. The presence of chitosan on the surface was confirmed by the
adsorption of Remazol Brilliant Red F3B reactive dye. This method was suitable for use
in distinguishing between non-functionalized and functionalized textiles with different
chitosan concentrations. The experiments also showed that the chitosan on the textiles
had good washing resistance. Silanes did not improve functionalization stability, but
increased textile hydrophilicity without chitosan. Chitosan made textiles hydrophobic and
increased the sink-in time in the TEGEWA drop test. In conclusion, these investigations
show that recipes incorporating chitosan can be part of a method of functionalization used
to adjust the hydrophilic properties of polyester and cotton textiles. Via this first step,
in the future, a new combination of bio-based polymers with inorganic binder systems
can be developed, ultimately leading to sustainable antimicrobial materials with modified
hydrophilic properties.
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