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mazhar.celikoyar@demiroglu.bilim.edu.tr
* Correspondence: tahircetin.akinci@ucr.edu

Abstract: Background: Facial surgeries require meticulous planning and outcome assessments,
where facial analysis plays a critical role. This study introduces a new approach by utilizing three-
dimensional (3D) imaging techniques, which are known for their ability to measure facial areas
and volumes accurately. The purpose of this study is to introduce and evaluate a free web-based
software application designed to take area and volume measurements on 3D models of patient faces.
Methods: This study employed the online facial analysis software to conduct ten measurements
on 3D models of subjects, including five measurements of area and five measurements of volume.
These measurements were then compared with those obtained from the established 3D modeling
software called Blender (version 3.2) using the Bland–Altman plot. To ensure accuracy, the intra-
rater and inter-rater reliabilities of the web-based software were evaluated using the Intraclass
Correlation Coefficient (ICC) method. Additionally, statistical assumptions such as normality and
homoscedasticity were rigorously verified before analysis. Results: This study found that the web-
based facial analysis software showed high agreement with the 3D software Blender within 95%
confidence limits. Moreover, the online application demonstrated excellent intra-rater and inter-rater
reliability in most analyses, as indicated by the ICC test. Conclusion: The findings suggest that the
free online 3D software is reliable for facial analysis, particularly in measuring areas and volumes.
This indicates its potential utility in enhancing surgical planning and evaluation in facial surgeries.
This study underscores the software’s capability to improve surgical outcomes by integrating precise
area and volume measurements into facial surgery planning and assessment processes.

Keywords: aesthetic; reconstructive; facial surgery; craniofacial; facial analysis; agreement; area; vol-
ume; measurements; Bland–Altman; intra-class correlation coefficient; ICC; normality; homoscedas-
ticity; reliability; surgery; 3D imaging

1. Introduction

Reconstructive and aesthetic facial surgery involves preoperative planning and post-
operative evaluation. This process requires a detailed examination of the face. Traditionally,
a facial analysis is performed directly on a patient’s face using a ruler or miter. How-
ever, this method can cause discomfort to patients and limit the reproducibility of the
results [1]. Computer-assisted 2D images (photographic capture) have been widely used
for the analysis of the face, although this involves the inherent drawback of representing
the 3D structure of the face in 2D [2]. Thanks to the latest advances in technology, surgeons
are now able to perform facial analyses on 3D computer models of patients [3]. Increasing
the adoption of 3D imaging and 3D facial analysis is predicted [2,4–6].
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Besides various commercial applications [7–9], free web-based software tools that use
3D imaging to perform facial analysis have been introduced [10]. However, these facial
analysis tools still only perform traditional 2D measurements, such as measurements of
the distances and angles between facial landmarks. The benefit of utilizing more advanced
measurements, such as area and volume, has been pointed out in the literature [5,11]. We
have recently introduced area and volume measurement techniques for facial surgeries,
aimed at augmenting surgeons’ abilities to precisely analyze facial structures and plan
surgeries. This novel addition to facial analysis is intended to significantly improve surgical
outcomes and enhance the overall success of facial surgical procedures [12,13]. We have
developed open-source algorithms to measure area and volume on a 3D facial model [13]
and then utilized these algorithms to enhance the free web-based software called Face
Analyzer [14] to help surgeons perform a more in-depth analysis of a patient’s face [1]. The
Face Analyzer software, hosted at digitized-rhinoplasty.com, is now capable of measuring
the area and volume of certain regions, such as the dorsal hump, nasal dorsum, root of the
nose (Radix), and tip of the nose, and it is based on several previous works [10,12,13].

When a new measurement device is developed in the medical field, it is crucial to
compare it with a gold standard or established standard to ensure its validity, reliability,
and effectiveness [15]. The gold standard is typically a measurement method or instrument
that is widely accepted as the best available or the most accurate. It is used as a reference
point to evaluate new tools or methods. The Bland–Altman plot has been upheld within
the medical community as the quintessential statistical method to ascertain the degree of
agreement, particularly when introducing new measurement methodologies.

This study introduces a new free web-based software application designed for compre-
hensive facial analysis, which is crucial for planning facial operations and evaluating their
results. By leveraging three-dimensional (3D) imaging techniques, the software enables
precise measurements of facial areas and volumes, enhancing the capabilities of facial
surgery planning and evaluation. The Bland–Altman analytical framework is employed
in this study to verify the fidelity of this web-based facial analysis software, comparing
its measurements against those obtained from the well-established 3D modeling software
called Blender. This comparison involves ten distinct measurements on 3D models of
subjects, encompassing five area measurements and five volume measurements.

Moreover, the Intraclass Correlation Coefficient (ICC) analysis is utilized to assess the
intra-rater and inter-rater reliabilities of the web software for these 3D area and volume
measurements. The meticulous verification of statistical assumptions, such as normality
and homoscedasticity, ensures the robustness of the analysis. The results affirm that the
web-based facial analysis software not only demonstrates agreement within 95% confidence
limits with the 3D software Blender, but also exhibits excellent performance in most intra-
rater and inter-rater reliability analyses. This underscores the utility of the free online
3D software in providing accurate, repeatable area and volume measurements, thereby
paving the way for substantial progress in facial surgery planning and assessment. The
findings from this study, therefore, highlight the potential of the web-based software as
an innovative and accessible tool, set to revolutionize the precision and effectiveness of
surgical outcomes in facial analysis [16].

In this study, we explain the development and operational aspects of the software and
showcase the results based on the observed and experimented data from our evaluations
of its reliability and agreement. This thorough examination is carried out to confirm that
the web-based 3D face analyzer [14] not only enhances the analytical capabilities of facial
surgeons [1] but also aligns with strict methodological standards [17,18]. The subsequent
sections of this article will present an in-depth analysis of our findings, which indicate a
promising level of agreement and reliability of the web-based software when compared
to the 3D software Blender. We will discuss how these results underscore the potential
efficacy of the free online 3D software in enhancing facial analysis, thereby contributing to
more effective surgical planning and evaluation. This study ultimately aims to illuminate
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the potential of integrating precise area and volume measurements into the field of facial
surgery, potentially leading to improved surgical outcomes.

2. Related Concepts and Research

The following section describes the general definition of reliability and the Intraclass
Correlation Coefficient (ICC) used to assess it. This includes an explanation of the ICC’s
underlying assumptions and guidelines for ensuring these assumptions are met. Following
this, we explore the concept of agreement and the use of the Bland–Altman plot to evaluate
agreement between measurement devices. The process of constructing and interpreting a
Bland–Altman plot is detailed. The section concludes by highlighting various studies that
have employed ICC and Bland–Altman plots to assess both reliability and agreement.

2.1. Reliability

In the context of medical measurement devices, ‘reliability’ refers to the consistency
and dependability of the device in providing accurate measurements across different in-
stances of use [19,20]. It implies that the device consistently produces the same results
under the same conditions. Two key aspects of reliability include repeatability and repro-
ducibility [21]. Repeatability is the ability of the device to produce the same results when
the same parameter is measured repeatedly under identical conditions. Reproducibility is
the device’s capacity to provide consistent measurements under varying conditions, such
as different times [22].

Measuring the reliability of a new medical measurement device is crucial because
it ensures patient safety by providing accurate diagnoses and treatment decisions, thus
reducing the risk of harm [23]. Reliability is important for cost-effectiveness as it minimizes
the need for repeat testing and additional treatments. In the realm of clinical research,
reliable devices are essential to ensure the integrity and validity of study results [16].
Additionally, the trust of healthcare professionals in their products also hinges on the
reliability of these devices. Overall, the reliability of medical devices is a cornerstone of
effective, safe, and efficient healthcare delivery.

2.2. Intraclass Correlation Coefficient (ICC)

The ICC is a statistical measure used to assess the reliability or consistency of measure-
ments made by different raters (observers, instruments, or measurement techniques) on
the same subject. In the context of medical devices, the ICC is a key tool used to evaluate
both intra- and inter-reliability [24].

The ICC quantifies the degree of agreement or correlation between different sets of
measurements. It ranges from 0 to 1, where 0 indicates no agreement and 1 represents
perfect agreement [25].

The ICC is commonly used in the medical field to assess the reliability of various types
of devices, especially those involved in diagnostic measurements, physical assessments,
and laboratory tests [26,27].

Checking the Assumptions of ICC
Many statistical methods, including certain forms of ICC, assume that the data being

analyzed are normally distributed. The Shapiro–Wilk test is used to check this assumption.
The Shapiro–Wilk test provides a p-value for each test. A p-value less than the chosen alpha
level (commonly 0.05) suggests that the data do not follow a normal distribution. A non-
significant result (p-value greater than alpha level) indicates that the normality assumption
has not been violated. If the data significantly deviate from a normal distribution, the
results of the ICC may not be reliable [28,29].

If the Shapiro–Wilk test has significant results, skewness and kurtosis values can be
used as additional measures to judge normality. Skewness and kurtosis provide insights
into the shape of the data distribution, which can help in understanding how the data devi-
ate from a normal distribution. Skewness measures the asymmetry of the data distribution.
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Kurtosis measures the ‘tailedness’ of the data distribution. If skewness is between −2 and
+2 and kurtosis is between −7 and +7, the data are considered to be normal [30].

Another assumption for certain statistical analyses, including some types of ICCs, is
that the variance within each group (e.g., measurements from each rater or instrument) is
consistent across all groups. If variances are unequal (heteroscedasticity), they can affect
the validity of the ICC. Checking for consistent variance is therefore crucial.

Levene’s test specifically checks whether the assumption of equal variances holds
true for a set of data. Levene’s test allows one to choose the measure of central tendency
(mean, median, and trimmed mean) to use for the test. The median is often a good
choice as it is less sensitive to outliers. The output of Levene’s test will include a p-
value. If this p-value is less than the alpha level (commonly 0.05), this suggests that
there is a statistically significant difference in the variances between groups, indicating
a violation of the homoscedasticity assumption. If the p-value is greater than the alpha
level, the null hypothesis of equal variances is not rejected, suggesting that the assumption
of homoscedasticity is reasonable. A significant result from Levene’s test indicates that
the variances are not equal (heteroscedasticity), which is a violation of one of the key
assumptions for certain statistical tests, including some types of ICCs [29,31].

2.3. Agreement

In the context of comparing two measurement instruments, ‘agreement’ refers to how
closely the measurements obtained from these instruments match each other [32]. It is
important to differentiate this from accuracy or reliability:

Accuracy: This refers to how close a measurement is to the true or actual value. When
evaluating the agreement between two instruments, accuracy is not directly assessed, unless
one of the instruments is considered a ‘gold standard’ or known to produce accurate results.

Reliability: This concerns the consistency of the measurements. A reliable instrument
will produce the same results under consistent conditions [33].

When discussing agreement between two measurement instruments, we are concerned
with questions like the following:

• Do the instruments produce similar results when measuring the same item? This
involves looking at the differences in the measurements from the two instruments for
the same subject or sample.

• Is there a consistent bias? If one instrument consistently measures higher or lower
than the other, this is referred to as a bias. The Bland–Altman analysis, for example,
helps identify and quantify this bias.

• How much do the measurements vary? This refers to the variability in the differences
between the two instruments.

• Are discrepancies related to the magnitude of the measurement? Sometimes, the
difference between instruments might change depending on the actual size or value
of what is being measured. For instance, two scales might agree closely for lighter
weights but diverge for heavier weights [32,33].

In summary, agreement in this context is about how well two measurement instru-
ments concur in their readings, taking into account both the consistency of the measure-
ments (lack of random error) and any systematic differences (bias) between them.

2.4. Bland–Altman Plot

The Bland–Altman plot is a widely used statistical method for assessing the agreement
between two different measurement methods. It is particularly useful in the medical field
to compare a new measurement technique against an established gold standard [34]. The
way it works is as follows:

Interpretation: If the differences within the limits of agreement are clinically acceptable,
the two methods may be used interchangeably. The presence of any trends or biases can
also be assessed, such as a tendency for differences to increase as the magnitude of the
measurement increases.
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Difference Plotting: In this study, the difference between the measurements of the two
methods for each subject is plotted against the mean of these measurements. This is carried
out to explore the potential relationship between measurement error and true value.

Limits of Agreement: The mean difference (estimating systematic bias) and 95%
limits of agreement (typically defined as 1.96 times the standard deviation of the mean
difference plus and minus the differences) are graphically calculated. These limits are used
to determine how different the new and gold standard methods are and to indicate whether
the new method can be used interchangeably with the gold standard [34,35].

Interpretation: If the differences within the limits of agreement are clinically acceptable,
the two methods can be used interchangeably. The presence of any trend or bias, such
as a tendency for differences to increase with an increasing measurement size, can also
be assessed.

Assumptions: The method assumes that the differences between the two methods
are normally distributed. Before using the Bland–Altman plot, it is important to check
for normality and that there is consistency in the measurement error across the range of
measurements.

The Bland–Altman plot does not test whether the two methods are equivalent or
whether either method is accurate. Instead, it assesses the consistency of the differences
between the two methods, which is an important distinction. It is a valuable tool for method
comparison studies because it highlights the magnitude of disagreement and helps to make
a judgment about whether this is acceptable for clinical application [35–37].

The following steps are used to draw the Bland–Altman plot:

• Collect Data: Two sets of measurements, taken on the same subjects or samples using
two different methods, are needed.

• Calculate the Mean and Difference: For each pair of measurements, calculate the mean
(average) and the difference (typically, Method 1–Method 2). Plot the mean on the
x-axis and the difference on the y-axis.

• Plot the Points: On a graph, plot each pair of means and differences as a single
point. The x-coordinate of the point is the mean of the two measurements, and the
y-coordinate is the difference between the two measurements.

• Calculate and Plot the Average Difference (Bias): Compute the average of all of the
differences. This represents the systematic bias between the two methods. Draw a
horizontal line at this value on the plot.

• Calculate and Plot the Limits of Agreement: The limits of agreement are calculated as
the average difference ± 1.96 times the standard deviation of the differences. These
limits estimate the range in which most differences between the two measurement
methods will fall. Draw two more horizontal lines on the plot: one at the upper limit
of agreement and another at the lower limit.

• Analyze the Plot: The plot can now be used to assess the agreement. Points that
lie within the limits of agreement suggest that the differences between the methods
are not clinically significant. The distribution of points can also indicate patterns,
such as increasing differences at higher measurement values. A regression analysis
may also need to be performed on the differences vs. means to check if there is a
proportional bias.

A regression analysis can determine the proportional bias in a Bland–Altman plot by
examining the relationship between differences in measurements (between two methods)
and the means of those measurements. Typically, a simple linear regression is run with
the differences between the two measurement techniques as the dependent parameter
and the means of the two techniques as the independent variable. The primary focus of
this regression analysis is the slope of the regression line: a considerable deviation of the
gradient from zero (positive or negative) signals a directional bias. This means that the
discrepancy between the two measurement techniques tends to increase or decrease as
the mean value increases. A slope that approaches zero and does not deviate significantly
from zero indicates that there is no proportional bias and a consistent agreement between
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the techniques across the measurement spectrum. The importance of the slope is often
determined by examining the p-value in the regression results: A small p-value (typically
below 0.05) indicates that the slope deviates significantly from zero and thus confirms
the presence of proportional bias. Conversely, a large p-value indicates that there is no
significant deviation of the slope from zero, implying the absence of proportional bias.

In the assessment of the agreement, the Bland–Altman plot is utilized as the statistical
method of choice within medical research to ascertain the accuracy of a novel measurement
technique against the established or gold standard [3,17,38].

For the evaluation of reliability, which pertains to the consistency and reproducibility
of the test outcomes, the Intraclass Correlation Coefficient (ICC) score is employed [38–41].
Numerous studies have evaluated the reliability of three-dimensional solutions, including
investigations on 3dMDFace [42–49], Canfield Vectra [8], and LifeViz (QuantifiCare) [9].
However, these studies have not encompassed the assessment of area and volume mea-
surements, and they were executed using commercial tools that may not be economically
accessible to many healthcare establishments.

Additional studies have contributed to the field. Marin Dit Bertoud et al. evaluated an
algorithm for its effectiveness and reliability in determining the percentage coefficient of
vitiligo depigmentation in facial areas, as reported in their publication [50]. Pieadra-Cascon
and colleagues undertook research to assess the accuracy and precision of extraoral 3D
facial reconstructions using a dual-structured illuminated face scanner, with a particular
focus on the consistency of measurements across different examiners. Their results revealed
significant variations between manual and digital methods in inter-regional landmark
measurements for all subjects, registering a mean accuracy of 0.32 mm for both approaches
and demonstrating a high intraclass correlation coefficient of 0.99 between operators [51].
Furthermore, Tomasik et al. conducted comprehensive research over five years into the
application of AI in automated 2D and 3D cephalometric analysis, specifically within digital
orthodontics. Their extensive investigations also encompassed facets such as facial analysis,
decision making based on algorithms, and the monitoring of treatment outcomes and
retention rates [52].

3. Methods and Materials

In the upcoming subsections, we will first present an overview of the web-based
software in Section 3.1. This will be followed by an introduction to the area and volume
measurements employed in this study, which are outlined in Section 3.2. We then explain
the 3D testing dataset (facial scans) used for this study in Section 3.3. Subsequently, in
Section 3.4, we delve into the specifics of the methodology adopted for assessing reliability,
and in Section 3.5, we focus on the agreement analysis.

3.1. Web-Based Software to Measure Area and Volume on 3D Facial Models

A free web-based software, Face Analyzer, was developed to help facial surgeons per-
form facial analysis, a crucial part of pre-surgery planning and post-surgery evaluation [10].

Face Analyzer worked with 3D facial models to provide a more reliable and accurate
facial analysis. However, it utilized traditional measurements such as distance and angle.
We introduced novel area and volume measurements for certain regions of the face [12]
and developed algorithms to compute these measurements [13].

In this study, we present the enhanced web-based tool Face Analyzer that incorporates
algorithms using JavaScript language to enable facial surgeons to measure the area and
volume of selected regions for the first time.

Figure 1 shows the enhanced Face Analyzer with the area and volume measurements
listed on the right panel. When a measurement is selected, all of the facial feature points
(landmarks) used in the computation of that measurement are listed on the left panel. After
selecting a landmark from the list on the left, the user can double-click on a point on the
face to mark and save its location. Once all of the landmarks for measurement are saved,
the user can click on the ‘C’ button to calculate the measurement. Figure 2 shows the value



BioMedInformatics 2024, 4 696

and boundaries for the ‘Alar Base’ area measurement on a generic 3D female face model. A
green dot indicates the landmark location, and its landmark abbreviation is displayed in a
blue box at the upper left side of the green dot.
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The user can select an area or volume measurement with pre-defined boundaries, as
shown in Figures 2 and 3. Moreover, the user can identify any four points on the face’s
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surface as boundary points by double-clicking on the face. When ‘Surface area between
four points’ or ‘Volume between four points’ measurements is selected, the measurements
are calculated between these four points, as shown in Figure 4.
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3.2. Area and Volume Measurements

We defined area and volume measurements utilizing the facial landmarks described
in the literature [43–45]. These area and volume measurements focus on the regions around
the nose and can be utilized to quantify the alterations performed via rhinoplasty. However,
new area and volume measurements can be defined for any region of the face, and web-
based software can be utilized for the computation of the measurements.

The same boundary landmarks define area and volume measurements with the same
name. For example, the supratip break point, tip defining points (left and right), and
columellar break point are the boundary landmarks used to compute both the area and
volume of the tip measurement. The boundaries of each measurement, as illustrated
in Figure 5, are denoted using standard landmark abbreviations (np_r, al_l, ac_r, sn_r,
etc.) [13].
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When an area measurement is performed, the area of the surface polygons is com-
puted and summed up within the boundary lines to find the total area. When a volume
measurement is performed, the maximum depth point is used to identify the base area. The
volume of the space between the base area and the surface area is computed. The details of
the area and volume algorithms are described in Topsakal et al. [13].
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3.3. Test Dataset

The area and volume measurements were computed on 3D models from twenty
Caucasian subjects (10 female and 10 male) who volunteered for the research study. We
utilized a face scanning software library provided by the company Bellus3D, which utilized
the true depth camera of iPhone X or later to scan 3D objects without the need for an
external camera. These 3D models are part of a larger 3D facial scan dataset collected
in a previous study [49]. The 3D models had around 200K polygons. The 3D models
were imported into the 3D software Blender and the web-based software for taking the
measurements.

Red dots were placed on the texture images of the 3D models to indicate each facial
landmark used in the measurements. This approach maintained consistent landmark
identification, minimizing variations in landmark positioning when comparing agreement
between the web software and Blender software (version 3.2, Amsterdam, The Netherlands).
Figure 6 illustrates these texture images with the red dots.
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Figure 6. Facial landmarks are marked with red dots on the textured image of the 3D model to reduce
marking discrepancies for the agreement measurements.

3.4. Intra- and Inter-Reliability Analysis

The evaluation of the intra-rater and inter-rater reliabilities of the facial analyzer
software for computing area and volume measurements was conducted utilizing the
Intraclass Correlation Coefficient (ICC) test. This analysis was carried out by two raters,
who were computer science students with specific training in identifying cue locations,
who performed the necessary measurements. Each rater independently undertook two
distinct measurement sessions, separated by a minimum one-week interval, to mitigate the
potential influence of recall bias. The intra-rater reliability was ascertained by comparing
the two sets of measurements from a single rater, whereas the inter-rater reliability was
derived from the second measurement set of both raters.

In the process of executing the ICC analysis, the Shapiro–Wilk statistical test was
employed to verify the consistency of variance assumptions, as referenced in sources [40,53].
Additionally, Levene’s test was applied to ascertain the homogeneity of variances, or
homoscedasticity.

Subsequent to the validation of these assumptions, an ICC analysis was carried out,
with the results being articulated alongside 95% confidence intervals. The computation
of both the intra-rater and inter-rater reliabilities was achieved through the utilization
of the absolute agreement criterion and the implementation of a two-way mixed effects
model, as delineated in sources [54,55]. We calculated the required sample size to achieve
an expected reliability of 85%, with a 95% confidence level, for the assessments conducted
by two raters. The analysis indicated that a minimum sample size of 15 is necessary to
meet these statistical parameters [56,57].
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3.5. Agreement Analysis

An agreement analysis was undertaken to assess the efficacy of a measurement in-
strument relative to an established gold standard. Blender is recognized as a robust 3D
modeling platform, and it is employed extensively in the generation of three-dimensional
visual artworks [55]. We utilize the 3D software Blender as the gold standard for measuring
the areas and volumes in 3D models, leveraging its advanced capabilities to ensure precise
and accurate assessments that are essential for high-quality modeling. There are other
established proprietary software that can measure the areas and volumes of 3D models,
such as 3ds Max and Maya. However, using open-source software like Blender can be
advantageous for reasons like accessibility and transparency. Moreover, Blender is a widely
used software for comparison studies in the medical field [58].

Area and volume quantifications were conducted on the subjects’ three-dimensional
representations by employing Blender along with web-based facial analysis applications.
In the agreement analysis, we meticulously marked the texture map of the 3D constructs
with a red point at each critical landmark pertinent to the measurements. This procedure
was instrumental in diminishing variability and precluding inaccuracies attributable to the
annotation process.

The Bland–Altman plot, which represents a scatter diagram of discrepancies against
the mean of two separate measurements, was used [16]. As explained in the Related
Concepts Section, this plot shows three different lines: the central line represents the mean
discrepancy, while the upper and lower lines represent the 95% confidence limits (upper
bound = mean + 1.96 × SD, lower bound = mean − 1.96 × SD), as shown in Figure 7.
The mean, standard deviation, lower bound, and upper bound values used to draw the
Bland–Altman plot in Figure 7 are presented in Table 1. One of the critical assumptions of
the Bland–Altman fit analysis is that these variances are normally distributed. Normality
was verified using the Shapiro–Wilk statistical test. Once the Bland–Altman plot is defined,
it becomes important to understand whether there is a pattern between points that deviate
above or below the mean discrepancy, as such a pattern would indicate a proportional bias.
To measure proportional bias, a linear regression analysis was conducted with the difference
as the dependent variable and the mean as the independent variable. The Shapiro–Wilk
statistical test and significance values for linear regression are listed in Table 1. The steps
for developing a Bland–Altman plot and checking its assumptions are explained in the
Related Concepts Section.

Table 1. The mean, std, lower, and upper limit values used to draw the Bland–Altman plot and the
significance values of the Shapiro–Wilk test and linear regression.

Mean Std Lower Upper Shapiro–Wilk
Significance

Linear Regression
Significance

Area—Tip −2.28 4.91 −11.89 7.34 0.05 0.68
Area—Nasal Dorsum −6.50 17.68 −41.15 28.15 0.12 0.34

Area—Entire Nose 9.11 14.90 −20.09 38.31 0.07 0.56
Area—Dorsal Hump 2.79 7.93 −12.76 18.33 0.13 0.45
Area—Root of Nose 0.34 8.62 −16.57 17.24 0.99 0.11

Volume—Tip 4.48 44.61 −82.96 91.92 0.66 0.11
Volume—Nasal Dorsum 160.00 346.60 −519.34 839.34 0.05 0.15

Volume—Entire Nose −244.36 416.56 −1060.82 572.10 0.17 0.81
Volume—Dorsal Hump 81.75 142.00 −196.57 360.07 0.02 0.15
Volume—Root of Nose 40.74 99.10 −153.50 234.98 0.82 0.67

The area measurements are in mm2 and the volume measurements are in mm3.
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4. Results

The presented statistical analysis of reliability and internal/external evaluability was
conducted using IBM SPSS Statistics, Version 29 (IBM Corp., Armonk, NY, USA) software.

4.1. Statistical Analysis of Intra- and Inter-Reliability

An ICC analysis was employed to ascertain the dependability of the measurements.
To determine adherence to the presuppositions of normality and constant variance, the
Shapiro–Wilk statistical method was applied for the normality assessment, and Levene’s
test was utilized to evaluate homoscedasticity. Table 2 presents the results of the Levene
test, Shapiro–Wilk test, Skewness, and Kurtosis. An introduction to these concepts was
given in the Related Concepts Section.

Table 2. Checking the assumptions of the ICC.

Measurement Type Levene—Signif. No. Shapiro–Wilk—Signif. Skewness Kurtosis

Area—tip 0.997 1 0.34 0.67 0.01
2 0.26 0.68 −0.06
3 0.28 0.70 −0.02

Area—nasal dorsum 0.999 1 0.14 0.75 −0.12
2 0.10 0.80 −0.04
3 0.14 0.75 −0.12

Area—entire nose 1 1 0.04 0.94 0.51
2 0.04 0.92 0.51
3 0.04 0.93 0.50

Area—dorsal hump 0.998 1 0.02 1.30 1.54
2 0.02 1.33 1.66
3 0.02 1.29 1.37

Area—root of nose 0.947 1 0.85 0.00 0.15
2 0.86 −0.04 0.52
3 0.42 0.09 1.44

Volume—tip 0.987 1 0.15 1.02 1.43
2 0.31 1.28 2.25
3 0.12 1.03 1.37

Volume—nasal dorsum 0.994 1 0.51 0.64 0.14
2 0.53 0.68 0.33
3 0.45 0.66 0.21

Volume—entire nose 0.995 1 0.17 0.69 −0.34
2 0.18 0.68 −0.31
3 0.17 0.73 −0.17

Volume—dorsal hump 0.995 1 0.03 1.86 4.31
2 0.03 1.86 4.34
3 0.03 1.77 3.82

Volume—root of nose 0.959 1 0.96 −0.09 −0.63
2 0.92 −0.08 −0.81
3 0.85 0.29 −0.22

The Shapiro–Wilk test’s p-values for four measurements were significant: ‘area—entire
nose’ (p-value = 0.04 for all raters), ‘area—dorsal hump’ (p-value = 0.02 for all raters), and
‘volume—dorsal hump’ (p-value = 0.03 for all raters). The rest of the measurements were
not significant and hence conformed to normality.

For the measurements, we assessed the skewness and kurtosis values of the data for
which a significant p-value was obtained in the Shapiro–Wilk test. The data are considered
normal if the skewness is between −2 and +2 and the kurtosis is between −7 and +7 [30].
The skewness and kurtosis values for ‘area of the entire nose’, ‘area of the dorsal ridge’,
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and ‘volume of the dorsal ridge’ were less than 1, 2, and 4, respectively. Therefore, we
concluded that the skewness and kurtosis values were within acceptable ranges for a
normal distribution. We elaborated on how skewness and kurtosis can be utilized to
check normality in the Related Concepts Section when the Shapiro–Wilk test yielded
significant values.

Levene’s test was performed to check the homoscedasticity assumption for the ICC.
The results of Levene’s test showed that the significance for all measures was above 0.9,
indicating that the variances for the measures were equal.

Table 3 presents the ICC analysis outcomes pertaining to the intra-program reliability
and inter-program reliability.

Table 3. The results of the ICC statistical analysis (N = 20). The lower and upper bounds of the 95%
confidence interval is given in parenthesis.

Measurement Intra-Reliability Inter-Reliability

Area—Dorsal Hump 1.0 (0.999–1.0) 1.0 (0.999–1.0)
Area—Entire Nose 1.0 (0.999–1.0) 1.0 (1.0–1.0)

Area—Nasal Dorsum 0.999 (0.999–1.0) 0.999 (0.999–1.0)
Area—Root of Nose 0.996 (0.991–0.999) 0.820 (0.553–0.928)

Area—Tip 0.998 (0.995–0.999) 0.999 (0.997–1.0)
Volume—Dorsal Hump 1.0 (0.999–1.0) 0.999 (0.999–1.0)
Volume—Entire Nose 0.999 (0.998–1.0) 0.999 (0.997–1.0)

Volume—Root of Nose 0.998 (0.984–0.999) 0.899 (0.741–0.960)
Volume—Nasal Dorsum 0.999 (0.998–1.0) 0.998 (0.996–0.999)

Volume—Tip 0.994 (0.984–0.997) 0.995 (0.987–0.998)

An ICC of less than 0.5 is considered poor, 0.50 to 0.75 is considered moderate, 0.75 to
0.90 is considered good, and 0.90 to 1.00 is considered excellent [59–61]. The intra-reliability
of the web-based software for all measurements is excellent, the inter-reliability of the
‘area—the root of nose’ measurement is good, and the rest of the inter-reliability is excellent.

4.2. Statistical Analysis of Agreement

Ten measurements were performed on the 3D models of twenty of the subjects utilizing
either the Face Analyzer tool or the Blender application. Figure 7 describes the Bland–
Altman charts that were methodically used to assess the agreement of the measurements
obtained from both Blender and the web application. In these plots, the central tendency
of measurement discrepancies is represented by a blue line, while the red contours define
the 95% limits of certainty for these observations. The fact that the observations fall
predominantly within these confidence intervals indicates statistical agreement between
the two measurement methods.

The assumption of data normality was rigorously examined via the Shapiro–Wilk
test. During this test, four measurements surfaced with statistically noteworthy p-values,
prompting further investigation into their skewness and kurtosis metrics, which ultimately
were ascertained to be within the conventional thresholds for a normal distribution. Conse-
quently, there was no significant evidence to suggest a deviation from normality across the
dataset [28,29,60,61].

To ensure that there was no proportional bias in the measurements, a linear regression
test was performed using the SPSS package program, with the ‘difference’ between the two
sets of measurements as the dependent variable and their ‘mean’ value as the independent
variable. The ensuing p-values exceeded the 0.05 threshold, thereby substantiating the
absence of proportional bias within the comparative dataset.

5. Discussion

Facial analysis is a vital component of many plastic and reconstructive surgical proce-
dures. In recent years, 3D models have become increasingly popular for facial analysis due
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to their ability to capture a more detailed and accurate representation of the face. Several
studies have highlighted the advantages of using 3D models for facial analysis, including
improved accuracy, reproducibility, and visualization [5,6,11,61–63].

The Face Analyzer web app is a software tool that utilizes 3D models for facial analysis
and incorporates these advantages. In this study, the Face Analyzer software has been fur-
ther enhanced with area and volume measurements, providing a more in-depth analysis of
the face. This allows facial surgeons to consider these parameters during pre-operative and
post-operative evaluations, which are critical in achieving optimal surgical outcomes [64].
The web-based software is free and publicly available at digitized-rhinoplasty.com, making
it accessible to a broad range of users.

With the increasing availability of smart mobile devices capable of capturing 3D
images, we expect the utilization of 3D measurements, such as area and volume, to become
more widespread for facial analysis and, in turn, for facial surgeries [65]. The Face Analyzer
web-based software is well suited for this purpose as it provides a reliable and accurate
means of measuring the facial area and volume, which are essential parameters for many
facial surgical procedures [66].

To assess the accuracy and reliability of the Face Analyzer software, we examined the
agreement between the area and volume calculations obtained through the web application
and Blender, an online 3D modeling program.

It is important to recognize that discrepancies between the two software systems’
markings can arise from two main factors: errors in the marking process and differences
in the software algorithms. To minimize marking errors, red dot markers were placed on
landmarks in the texture images of the 3D models, as demonstrated in Figure 6. This strat-
egy aimed to ensure that the majority of the measurement differences could be attributed
to the software algorithms.

Our observations showed that the time required to take the area and volume measure-
ments using the Face Analyzer web app was significantly less than that of the Bellus3D
software [57,58]. This is because preparation for taking measurements in Blender requires
carefully cutting the region using boundary landmarks, while the web app enables users
to simply double-click to identify the boundary landmarks and automatically creates the
boundary lines between them. Once the boundary landmarks are identified, the computa-
tion of the area and volume is instantaneous for both software.

The intra-reliability and inter-reliability scores of the web-based software Face Ana-
lyzer were also evaluated using the intraclass correlation coefficient (ICC) test. The results
showed that the software’s reliability for all but one measurement was considered excellent,
with one measurement rated as good, as listed in Table 3 [59].

While the findings of this study are promising, indicating substantial agreement
and reliability between the newly introduced web-based software and the established 3D
software Blender, it is important to note the limitation imposed by the small sample size.
The scope of data, restricted to ten measurements on 3D models, may not fully represent
the diverse range of facial structures encountered in clinical practice. Consequently, further
research involving a larger and more varied sample is essential to validate these initial
findings and ensure the robustness and generalizability of the software’s performance in
real-world surgical planning and outcome assessment.

The free web software designed for volume and area measurements holds significant
potential in facial analysis. Additionally, it could prove useful in assessing facial changes,
particularly when comparing superimposed serial 3D patient images. Häner et al. points
out the limitations of 2D imaging and suggests using 3D photography for greater accuracy,
identifying specific forehead and nose areas for effective superimposition in growing indi-
viduals [67]. Wampfler and Gkantidis stressed the importance of systematically evaluating
superimposition methods, suggesting that surface-based registration may be more effective
than landmark-based approaches, although further research is needed due to the variability
and biases in current studies [68].



BioMedInformatics 2024, 4 705

The utilization of 3D facial model analyses emerges as a pivotal tool in dental pathol-
ogy, offering a vast scope for exploration due to the diverse diagnostic and therapeutic
phases encountered in patient care. Particularly in orthodontics, these models are instru-
mental for the extraction of facial landmarks, which are crucial for categorizing dental
occlusion types and quantifying the asymmetry resulting from such conditions [69].

Moreover, the study by Cai et al. underscores the extensive application of 3D facial
models in the domains of oculoplastic, eyelid, orbital, and lacrimal diseases, providing
a holistic approach to patient assessment. The methodology is recognized for its role in
the early detection and diagnosis of conditions like blepharoptosis and in monitoring the
progression of thyroid eye disease. Notably, these models are integral in enhancing the
precision of therapeutic strategies, particularly in formulating meticulous surgical plans for
the treatment of blepharoptosis [70].

6. Conclusions

Recent technological advancements have enabled the integration of 3D technologies
into surgeons’ pre-operative analyses and post-operative assessments. However, existing
software tools for facial analysis lacked the inclusion of area and volume measurements.
This study introduces a web-based software, Facial Analyzer, which integrates area and
volume measurements to enhance pre-operative and post-operative facial analysis in
surgery. The software’s agreement and reliability, validated using 3D facial scans and
metrics like the Bland–Altman plot and ICC, demonstrate its effectiveness and accuracy in
measuring the area and volume of certain regions of the face. The web-based user-friendly
interface underscores its potential to significantly improve surgical planning and outcome
assessment, marking a substantial advancement in 3D facial analysis technology.
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(3D) Scans for Evaluating Facial Soft Tissue. Sensors 2023, 23, 2412. [CrossRef] [PubMed]

46. Abbas, L.F.; Joseph, A.K.; Day, J.; Cole, N.A.; Hallac, R.; Derderian, C.; Jacobe, H.T. Measuring Asymmetry in Facial Morphea via
3-Dimensional Stereophotogrammetry. J. Am. Acad. Dermatol. 2023, 88, 101–108. [CrossRef]

47. Celikoyar, M.M.; Perez, M.F.; Akbas, M.I.; Topsakal, O. Facial Surface Anthropometric Features and Measurements with an
Emphasis on Rhinoplasty. Aesthetic Surg. J. 2021, 42, 133–148. [CrossRef]

48. Topsakal, O.; Glinton, J.; Akbas, M.I.; Celikoyar, M.M. Open-Source 3D Morphing Software for Facial Plastic Surgery and
Facial Landmark Detection Research and Open Access Face Data Set Based on Deep Learning (Artificial Intelligence) Generated
Synthetic 3D Models. Facial Plast. Surg. Aesthet. Med. 2023. [CrossRef]

49. Dogan, N. Bland-Altman Analysis: A Paradigm to Understand Correlation and Agreement. Turk. J. Emerg. Med. 2018, 18, 139–141.
[CrossRef]

50. Bertoud, M.D.Q.; Bertold, C.; Ezzedine, K.; Pandya, A.G.; Cherel, M.; Martinez, A.C.; Seguy, M.A.; Abdallah, M.; Bae, J.M.; Böhm,
M.; et al. Reliability and Agreement Testing of a New Automated Measurement Method to Determine Facial Vitiligo Extent Using
Standardized Ultraviolet Images and a Dedicated Algorithm. Br. J. Dermatol. 2023, 190, 62–69. [CrossRef]

51. Piedra-Cascon, W.; Meyer, M.J.; Methani, M.M.; Revilla-León, M. Accuracy (Trueness and Precision) of a Dual-Structured Light
Facial Scanner and Interexaminer Reliability. J. Prosthet. Dent. 2020, 124, 567–574. [CrossRef] [PubMed]

52. Tomasik, J.; Zsoldos, M.; Oravcova, L.; Lifkova, M.; Pavleova, G.; Strunga, M.; Thurzo, A. AI and Face-Driven Orthodontics: A
Scoping Review of Digital Advances in Diagnosis and Treatment Planning. AI 2024, 5, 158–176. [CrossRef]

53. Topsakal, O.; Akbas, M.I.; Storts, S.; Feyzullayeva, L.; Celikoyar, M.M. Textured Three Dimensional Facial Scan Data Set: Amassing
a Large Data Set through a Mobile iOS Application. Facial Plast. Surg. Aesthetic Med. 2023; ahead of print. [CrossRef]

54. Landers, R. Computing Intraclass Correlations (ICC) as Estimates of Interrater Reliability in SPSS. Authorea Prepr. 2015. [CrossRef]
55. Blender 3D. A 3D Modelling and Rendering Package. 2021. Available online: http://www.blender.org (accessed on 16 November

2023).
56. Arifin, W.N. Sample Size Calculator (Web). 2024. Available online: https://wnarifin.github.io/ssc/ssicc.html (accessed on 24

January 2024).
57. Borg, D.N.; Bach, A.J.E.; O’Brien, J.L.; Sainani, K.L. Calculating Sample Size for Reliability Studies. PM&R 2022, 14, 1018–1025.

[CrossRef]
58. Hair, J.F.; Black, W.C.; Babin, B.J. Multivariate Data Analysis; Cengage Learning Emea: Hampshire, UK, 2010.
59. George, D.; Mallery, P. SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 Update; Allyn & Bacon: Boston, MA, USA,

2010.
60. Urban, R.; Haluzová, S.; Strunga, M.; Surovková, J.; Lifková, M.; Tomášik, J.; Thurzo, A. AI-Assisted CBCT Data Management in

Modern Dental Practice: Benefits, Limitations and Innovations. Electronics 2023, 12, 1710. [CrossRef]

https://doi.org/10.1109/TSE.2023.3288901
https://doi.org/10.3390/app12010511
https://datatab.net/tutorial/bland-altman-plot
https://doi.org/10.3390/molecules28134905
https://doi.org/10.1177/1536867X231196488
https://doi.org/10.1371/journal.pone.0278915
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.1371/journal.pone.0289531
https://doi.org/10.1186/s12874-018-0550-6
https://doi.org/10.1007/s10742-022-00293-9
https://doi.org/10.1016/j.ijom.2022.06.022
https://doi.org/10.1111/ocr.12625
https://doi.org/10.1016/j.jdent.2023.104775
https://www.ncbi.nlm.nih.gov/pubmed/37944629
https://doi.org/10.3390/s23052412
https://www.ncbi.nlm.nih.gov/pubmed/36904614
https://doi.org/10.1016/j.jaad.2022.05.029
https://doi.org/10.1093/asj/sjab190
https://doi.org/10.1089/fpsam.2023.0030
https://doi.org/10.1016/j.tjem.2018.09.001
https://doi.org/10.1093/bjd/ljad304
https://doi.org/10.1016/j.prosdent.2019.10.010
https://www.ncbi.nlm.nih.gov/pubmed/31918895
https://doi.org/10.3390/ai5010009
https://doi.org/10.1089/fpsam.2023.0232
https://doi.org/10.15200/winn.143518.81744
http://www.blender.org
https://wnarifin.github.io/ssc/ssicc.html
https://doi.org/10.1002/pmrj.12850
https://doi.org/10.3390/electronics12071710


BioMedInformatics 2024, 4 708

61. Plooij, J.M.; Swennen, G.R.J.; Rangel, F.A.; Maal, T.J.J.; Schutyser, F.A.C.; Bronkhorst, E.M.; Kuijpers–Jagtman, A.M.; Bergé, S.J.
Evaluation of Reproducibility and Reliability of 3D Soft Tissue Analysis Using 3D Stereophotogrammetry. Int. J. Oral Maxillofac.
Surg. 2009, 38, 267–273. [CrossRef] [PubMed]

62. Ceinos, R.; Tardivo, D.; Bertrand, M.-F.; Lupi-Pegurier, L. Inter- and Intra-Operator Reliability of Facial and Dental Measurements
Using 3D-Stereophotogrammetry. J. Esthet. Restor. Dent. 2016, 28, 178–189. [CrossRef]

63. Lobato, R.C.; Camargo, C.P.; Buelvas Bustillo, A.M.; Ishida, L.C.; Gemperli, R. Volumetric Comparison Between CT Scans and
Smartphone-Based Photogrammetry in Patients Undergoing Chin Augmentation with Autologous Fat Graft. Aesthetic Surg. J.
2022, 43, NP310–NP321. [CrossRef]

64. Aponte, J.D.; Bannister, J.J.; Hoskens, H.; Matthews, H.; Katsura, K.; Da Silva, C.; Cruz, T.; Pilz, J.H.M.; Spritz, R.A.; Forkert, N.D.;
et al. An Interactive Atlas of Three-Dimensional Syndromic Facial Morphology. Am. J. Hum. Genet. 2024, 111, 39–47. [CrossRef]

65. Quispe-Enriquez, O.C.; Valero-Lanzuela, J.J.; Lerma, J.L. Craniofacial 3D Morphometric Analysis with Smartphone-Based
Photogrammetry. Sensors 2024, 24, 230. [CrossRef] [PubMed]

66. Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Nożewski, J.; Janiszewska-Olszowska, J. AI in Orthodontics:
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