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Abstract: As artificial intelligence (AI) integrates within the intersecting domains of healthcare and
computational biology, developing interpretable models tailored to medical contexts is met with
significant challenges. Explainable AI (XAI) is vital for fostering trust and enabling effective use
of AI in healthcare, particularly in image-based specialties such as pathology and radiology where
adjunctive AI solutions for diagnostic image analysis are increasingly utilized. Overcoming these
challenges necessitates interdisciplinary collaboration, essential for advancing XAI to enhance patient
care. This commentary underscores the critical role of interdisciplinary conferences in promoting
the necessary cross-disciplinary exchange for XAI innovation. A literature review was conducted
to identify key challenges, best practices, and case studies related to interdisciplinary collaboration
for XAI in healthcare. The distinctive contributions of specialized conferences in fostering dialogue,
driving innovation, and influencing research directions were scrutinized. Best practices and recom-
mendations for fostering collaboration, organizing conferences, and achieving targeted XAI solutions
were adapted from the literature. By enabling crucial collaborative junctures that drive XAI progress,
interdisciplinary conferences integrate diverse insights to produce new ideas, identify knowledge
gaps, crystallize solutions, and spur long-term partnerships that generate high-impact research.
Thoughtful structuring of these events, such as including sessions focused on theoretical foundations,
real-world applications, and standardized evaluation, along with ample networking opportunities,
is key to directing varied expertise toward overcoming core challenges. Successful collaborations
depend on building mutual understanding and respect, clear communication, defined roles, and a
shared commitment to the ethical development of robust, interpretable models. Specialized confer-
ences are essential to shape the future of explainable AI and computational biology, contributing
to improved patient outcomes and healthcare innovations. Recognizing the catalytic power of this
collaborative model is key to accelerating the innovation and implementation of interpretable AI in
medicine.

Keywords: explainable AI (XAI); interdisciplinary conferences; GLBIO ISCB; healthcare informatics;
computational biology; AI ethics in healthcare; algorithmic transparency; AI in medical decision
making; patient-centered AI; regulatory aspects of healthcare AI

1. Introduction

As emergent technologies push toward the full attainment of personalized medicine,
computational biology emerges as an integral practice for deciphering the complexity of
biomedical interactions [1,2]. Large collections of patient data offer genomic, proteomic,
metabolomic, and histopathological insights. When analyzed in concert, newly elucidated
cellular interactions uncover novel treatment targets and disease mechanisms. Alongside
this focus on data-driven insights, a growing recognition of the need for transparency and
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interpretability in artificial intelligence (AI) systems has spurred collective collaboration
among clinicians, data scientists, and multidisciplinary teams of software engineers, quality
experts, and domain specialists [3].

As machine learning (ML) models have become more complex and harder to interpret,
the need for “explainable AI” (XAI), particularly when used in healthcare, has grown
[4,5]. Though model-derived outputs may align with clinical guidelines, the algorithmic
‘reasoning’ behind ML predictions is often opaque and indecipherable [6]. To align with the
evidence-based framework of healthcare, the decisions of computer aided diagnostic (CAD)
tools must be seamlessly interrogable by the clinicians who utilize them in practice [7,8].

XAI aims to overcome the indecipherable ‘black-box’ nature of ML models to reveal
how ML predictions are made [7–9]. In healthcare, accountability and explainability are
inextricably linked. As AI systems used in healthcare must adhere to the same legal, ethical,
and Hippocratic principles as practitioners, explainability is a fundamental prerequisite [8].

Recent years have seen a rise in the development of domain-specific XAI techniques
tailored to healthcare and computational biology applications [5,10]. These techniques aim
to address the need for accurate and interpretable models, the integration of data from
multiple sources, and the management and analysis of large datasets [5].

In the healthcare setting, the interpretability of XAI tools is crucial for clinicians to
trust and effectively use these systems in clinical decision support. However, the degree to
which doctors can understand the reasoning provided by these XAI tools can vary. The
complexity of the explanation, the clinician’s familiarity with AI and ML concepts, and
the presentation of the explanation are among many influencing factors. As doctors are
not typically domain experts in the design of XAI tools, the effectiveness of AI tools in
clinical settings will depend on how well they can convey complex AI decision-making
processes in a way that clinicians can understand and trust. Therefore, while doctors may
not be the primary designers of XAI tools, their input is invaluable in creating clinically
relevant explanations. To create tools that are both technically sound and clinically relevant,
the involvement of clinicians in the design process may greatly enhance the usability and
effectiveness of these tools in clinical practice.

Interdisciplinary organizations such as the International Society for Computational
Biology (ISCB) and specialized conferences such as the International Conference on Medi-
cal Image Computing and Computer Assisted Intervention (MICCAI) play a crucial role
in molding diverse expertise in exchange for research, ideas, and collaborative partner-
ships [11–13]. Through such collaborative ventures, the transparency and interpretability
of AI systems may improve in healthcare and computational biology sectors [11–14].

2. Explainable AI in Healthcare: Applications and Challenges

XAI provides tools to understand how AI models arrive at specific decisions for in-
dividual patients. For instance, in the context of COVID-19, XAI methods may aid in
identifying patterns and factors that contribute to disease spread and severity, denoting
the genesis of targeted interventions and treatments [15]. For chronic kidney disease, XAI
methods may elucidate granular understanding of disease progression and the impact of
different treatment options, leading to more personalized and effective patient care [16].
The application of XAI in analyzing electronic medical records (EMRs) can uncover valuable
insights into patient health trends, treatment outcomes, and potential risk factors, facili-
tating earlier intervention and preventative care [17]. In the case of fungal or bloodstream
infections, interpretability methods can assist in the rapid and accurate identification of
pathogens, enabling timely and appropriate treatment decisions [18]. Fundamental capa-
bilities of XAI include pattern recognition (e.g., risk factors for COVD-19, indicators of
kidney disease progression), natural language processing (NLP) [e.g., EMR data insights],
and image understanding (e.g., pathogen identification, kidney disease diagnosis). When
used alongside broader pattern recognition, NLP and image understanding enhance the
interpretation of complex healthcare data. Multimodal XAI is therefore a requisite for
enhanced understanding.
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Techniques such as LIME (local interpretable model-agnostic explanations) provide
simplified breakdowns for a single case or ‘local approximations’, identifying the most
important components of patient data by assigning ‘feature importance values’ to each
datapoint used by an AI model, and formulate easy-to-follow decision logic through the
creation of ‘high-precision rules’ that mimic how AI makes its predictions, facilitating
physician comprehension of model reasoning. SHAP (Shapley additive explanations)
and ‘Anchors’ are other examples of XAI techniques that have been applied in real-world
healthcare settings for predicting cancer survival rates, understanding disease risk factors,
reducing hospital readmissions, and developing personalized treatment plans. A COVD-19
severity prediction model may utilize a variety of data points such as patient demographics,
symptoms, and laboratory results to predict the likelihood that an individual COVID-19
patient will develop severe complications. In this instance, LIME may reveal AI model
ascription of high severity risk as primarily driven by a patient age and underlying health
conditions. Consequently, the information aids physician prioritization of monitoring
and interventions. To further understand how different factors drive model predictions
overall, SHAP analysis may indicate that patient age was consistently the most important
feature in determining risk across numerous patients, followed closely by pre-existing
conditions such as diabetes and chronic respiratory conditions such as chronic obstructive
pulmonary disease (COPD). Finally, Anchors may generate clear rules that explain the
model’s reasoning. For example: ‘IF patient is over 65 and has COPD, THEN predict high
risk of severe COVID-19 complications’. These simplified rules offer additional clarity to
healthcare providers, enabling them to better understand and trust the model’s predictions
(Figure 1).
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Pattern recognition is a core ability of AI models, enabling them to identify regularities
and correlations within complex data. For healthcare use, with respect to cases involving
image analysis, pattern recognition entails computational identification of visual patterns
that can be associated with diagnoses or other outcomes. While XAI techniques are all
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designed to uncover important patterns within data, specific techniques primarily rely on
pattern recognition whereas others extend to a broader scope (Table 1).

Table 1. XAI techniques that rely heavily on pattern recognition versus techniques with a broader scope.

Pattern Recognition Broader Scope

Grad-CAM, Grad-CAM++,
Guided Backpropagation

Visualize areas of the image
that strongly influence the

model’s decision, essentially
highlighting patterns that the
AI associates with a specific

diagnosis.

Testing with concept
activation vectors (TCAV)

Purposed for identification of
high-level concepts learned by

the AI model. Provides
explanations that are more
easily grasped by domain

experts, e.g., doctors,
compared to raw pixel

importance.
Concepts, though based upon
patterns, involve additional

‘abstraction’. Researchers have
used TCAV to analyze AI
models trained on breast
histopathology images,

identifying mitosis and tubule
formation [19]. These

high-level concepts, e.g.,
presence of tumor cells and

inflammation, which are
learned by the model are
identified by TCAV and

assessed with respect to how
influential they are in the

model’s final prediction, e.g.,
model’s ability to detect

malignancy.
TCAV can potentially help

uncover algorithmic biases by
revealing if a model is reliant
upon inappropriate concepts
for its decisions. Therefore,

TCAV requires careful
definition of relevant concepts

to be most useful.

LIME and Shapley values (in
image analysis context)

Explain predictions by
identifying the importance of

individual image patches,
demonstrating how specific

patterns within the image are
weighted by the model.

Counterfactual explanations

Focus on identifying critical
image features that, when

altered, [would] change the
model’s prediction.

Predicated upon feature
influence and causality versus

pattern identification.

Image-based healthcare specialties including radiology, dermatology, and ophthal-
mology are rapidly adopting AI for visual pattern recognition, creating space for unique
applications within each field.

Pathology, with its rich datasets of whole slide images (WSIs) and potential for high-
impact diagnoses, is a leading area for AI integration in medicine. Complex WSIs, con-
taining an immense amount of high-resolution visual information ripe for AI-powered
pattern recognition, e.g., tumor classification, grading, and biomarker identification, are
therefore among the primary targets for XAI exploration [20,21]. XAI image analysis of
WSIs includes attention-based techniques, e.g., Grad-CAM and Grad-CAM++, which high-
light areas within the WSI that contribute the most to the model’s prediction. ‘Guided
backpropagation’, similar to Grad-CAM, provides a more fine-grained visualization of im-
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portant image regions. ‘Patches’, pixel-level regions of WSIs, may be interpreted by LIME,
which creates simplified models for individual image patches within WSIs, providing local
explanations for how these regions influenced the overall prediction. Shapley values can be
adapted to image data to determine the contribution of each patch to the model’s decision,
offering a more global picture of feature importance. Counterfactual explanations aid in
concept-based explanations by generating slightly modified versions of the WSI to show
what minimal changes would be needed to alter model predictions. The mechanism aids
pathologists in the identification of regions and features critical to the model’s decision.
Combining techniques like Grad-CAM with patch-based approaches or concept-based
explanations can offer richer, multi-level insights. However, rigorous validation of XAI
methods is crucial before full integration into clinical workflows.

As AI is increasingly utilized in patient care as a co-pilot to physician-centric diagnostic,
prognostic, and therapeutic applications, medical, legal, ethical, and societal questions are
growing [4–6,22]. The current majority of interpretable ML methods are domain-agnostic.
Having evolved from fields such as computer vision, automated reasoning, or statistics,
direct application to bioinformatics problems is challenging without customization and
domain adaptation [8]. AI models that lack transparency are often developed by non-
medical professionals. A lack of control may result over the derivation of model results by
end users, such as healthcare providers and patients [23].

AI systems require large amounts of data, and the quality and availability of these
data is crucial for the performance of these systems. However, datasets used to develop AI
systems often include unforeseen gaps, despite intensive attempts to clean and analyze the
data. Issues with regulation and compatibility across institutions also constrain the amount
of data that can be utilized to develop efficient algorithms [24].

The implementation of AI in clinical settings is also stymied by a lack of empirical
data validating the effectiveness of AI-based interventions in planned clinical trials. Most
research on AI applications has been conducted in non-clinical settings, making it challeng-
ing to generalize research results [24] and raising questions about safety and efficacy [25].
Some argue that the opaque nature of many AI systems implies that physicians and patients
cannot and should not rely on the results of such systems. In contrast, others oppose the
central role of explainability in AI [26–28].

Logistical difficulties in implementing AI systems in healthcare include barriers to
adoption and the need for sociocultural or pathway changes [29]. All stakeholders, includ-
ing healthcare professionals, computational biologists, and policymakers, are increasingly
compelled to understand each other’s domain in order to identify a solution [30–35].

2.1. Legal Implications

Currently, there is a paucity of well-defined regulations that specifically address issues
which may arise due to the use of AI in healthcare settings [36]. This includes concerns
about safety and effectiveness, liability, data protection and privacy, cybersecurity, and
intellectual property law [37]. For instance, the sharing of responsibility and accountability
when the implementation of an AI-based recommendation causes clinical problems is not
clear [38].

2.2. Ethical Implications

Ethical dilemmas about the application of AI in healthcare encompass a broad range
of issues, including privacy and data protection, that are paramount due to the sensitive
nature of personal health information. Informed consent is also critical, as patients must
understand and agree to the use of AI in their healthcare procedures, recognizing the
implications and outcomes associated with these technologies. Social gaps, characterized
by disparities and inequalities within healthcare systems and broader society, may be
intensified by the introduction of AI. For example, healthcare access disparities can result in
unequal medical AI distribution across different socioeconomic populations and healthcare
systems, potentially widening existing health inequities.
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Furthermore, the incorporation of AI in healthcare raises questions about the preser-
vation of medical consultation, which traditionally involves nuanced human interaction
and shared decision-making between a patient and a healthcare provider. The personal
touch of empathy and sympathy, both of which are foundational to patient care, may not be
fully replicable by AI systems. While AI can enhance diagnostic and treatment processes,
it is crucial to maintain the human elements of understanding and compassion that are
integral to the healing process. It is also important to ensure that AI supports, rather than
replaces, the human-centric aspects of medical consultations, allowing for the continuation
of personalized care that addresses individual patient needs and concerns [39]. There are
also concerns about intrinsic biases in the data used in AI system tests, which can lead
to poor or negative outcomes [40]. The principles of medical ethics, including autonomy,
beneficence, nonmaleficence, and justice, should be emphasized before integrating AI into
healthcare systems [22,39].

2.3. Societal Implications

AI can lead to healthcare inequities through biased data collection, algorithm develop-
ment, and a lack of diversity in training data [41]. Such inequities may lead to automation
bias, which can lead to discrimination and inequity at great scale [42]. Furthermore, the
rapid and commercial development of AI could challenge known methods, protocols,
standards, and regulatory measures that govern the development, deployment, and man-
agement of technology in healthcare settings. This could necessitate new national and
international regulations to ensure that AI is developed and used ethically, safely, and equi-
tably in healthcare [22]. Ensuring ethical and legal implementation of AI, with consideration
to societal implications, requires continuous attention and thoughtful policy [43].

To ensure that AI-powered decisions uphold the principles of patient-centered care,
they must be developed with a focus on patient engagement and autonomy. Patient-
centered care treats individuals as active participants in their health management, where
their preferences and values guide clinical decisions. Trust in AI systems, then, hinges on
their ability to operate transparently and provide explanations that patients can understand.
Only with such clarity can patients confidently and independently choose to accept the
recommendations provided by AI [6].

2.4. Bridging the Gap with Computational Biology

With the emergence of high-throughput technologies which generate massive amounts
of data requiring advanced data analysis techniques, the lines between bioinformatics
and data science have become increasingly indistinct. Both fields now share common
methodologies and tools to manage, analyze, and interpret large datasets (Figure 2).
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As the field of life sciences shifts towards a more data-centric, integrative, and compu-
tational approach, biomedical researchers must cultivate bioinformatics proficiency to keep
pace with this evolution [44].

Skill gaps in this proficiency may impede modern research and fuel a global need for
bioinformatics education and training. Bridging this gap is critical to the advancement of
healthcare research including pharmaceutical and biopharmaceutical arenas [44].

Policy makers and research funders should acknowledge the existing gap between the
‘two cultures’ of clinical informatics and data science. The full social and economic benefits
of digital health and data science can only be realized by accepting the interdisciplinary
nature of biomedical informatics and by supporting a significant expansion of clinical
informatics capacity and capability [45].

3. The Importance of Interdisciplinary Collaboration

Interdisciplinary collaboration is crucial for the development and implementation
of robust and effective AI solutions in healthcare. A conglomeration of diverse exper-
tise, including physicians, researchers, technologists, and policymakers, is necessary to
effectively refine AI algorithms, validate their clinical utility, and address the ethical and
regulatory challenges associated with their implementation [46]. While progress has been
made, substantial challenges persist. These include the need for: (1) algorithmic and theo-
retical clarity, e.g., developing deeper theoretical foundations for interpretability, including
defining what constitutes explainability in various contexts and (2) trust and responsibility,
e.g., aligning AI decision making with ethical guidelines ensuring fairness, accountability,
and transparency. The following case studies illuminate the complex challenges inherent
in the successful integration of AI into healthcare settings. To navigate these complexities
and ensure ethical implementation, trust, and accountability in AI solutions deployed
within patient care environments, collaborative interdisciplinary approaches fostering
robust ethical XAI frameworks are essential.
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3.1. Case Studies and Examples
3.1.1. Human-in-the-Loop (HITL) Approach

Sezgin E. emphasizes the importance of a human-in-the-loop (HITL) approach in
healthcare AI, where AI systems are guided, communicated, and supervised by human
expertise. This approach ensures safety and quality in healthcare services. Multidisci-
plinary teams are essential for exploring cost-effective and impactful AI solutions within
this framework and for establishing robust HITL protocols [47]. These teams have suc-
cessfully designed AI systems that significantly reduce diagnostic errors, enhance patient
engagement through personalized care plans, and streamline operational efficiencies in
healthcare facilities. To fully realize the potential of the HITL approach, it is crucial to
evaluate solutions by quantifying their improvements in patient outcomes and operational
efficiency, all while ensuring ethical use through ongoing feedback and human oversight.

• Algorithmic/theoretical tie-in: defining interpretability is key, as it impacts how HITL
systems communicate with physicians. Information like confidence scores, visual
highlights of influential image areas, and insights into alternative diagnoses to AI
reasoning can all help physicians calibrate their trust in AI recommendations.

• Trust/responsibility tie-in: HITL protocols should include logging instances where
physicians override the AI, along with their justifications. These data are valuable
for quality assurance, refinement of AI models, and for detecting potential biases in
the training data. While diverse datasets are crucial, HITL provides real-world bias
detection—if physicians of a certain specialty consistently disagree with the AI, it
could point to issues in the underlying data.

3.1.2. Interdisciplinary Research in Digital Health

Krause-Jüttler G. et al. provide a valuable case study on interdisciplinary research
in digital health, involving collaboration among 20 researchers from medicine and en-
gineering [48]. Their study emphasizes that success in these projects depends not only
on individual expertise and adaptability, but also on effective team dynamics and orga-
nizational support. Factors like mutual respect, shared goals, and structures facilitating
interaction are crucial for overcoming the challenges of interdisciplinary work.

• Algorithmic/theoretical tie-in: this case indirectly highlights the need for shared
theoretical foundations. Medical researchers and computer scientists may approach AI
in healthcare from different theoretical angles—one focusing on disease mechanisms,
the other on computational efficiency. Aligning these perspectives is key to ensuring
the AI tools developed truly address relevant medical needs.

• Trust/responsibility tie-in: interdisciplinary teams are better equipped to tackle ethical
considerations from the outset of digital health solution design. Diverse perspectives
help identify potential biases or unintended consequences early on, allowing for
proactive measures. Such teams can also establish ethical oversight mechanisms,
potentially incorporating student feedback as in the case of an intelligent tutoring
system, to ensure values alignment throughout the development process.

3.1.3. Intelligent Tutoring System for Medical Students

Bilgic E. and Harley JM. demonstrate the power of interdisciplinary collaboration in
developing innovative educational tools [49]. By combining expertise in AI, educational
psychology, and medicine, they created an intelligent tutoring system used to simulate com-
plex patient scenarios. The system improved diagnostic accuracy and enhanced decision-
making skills by providing immediate personalized feedback and personalized learning
pathways adapted to student needs. Integrated insights led to the development of realistic
patient interactions and adaptive difficulty levels, making the learning experience more
engaging and effective.

• Algorithmic/theoretical tie-in: explaining AI decisions to students poses unique
challenges, e.g., different levels of explanation compared to medical experts. This case
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highlights the need for XAI methods that can adapt based on the user’s knowledge
level, making AI reasoning understandable to learners.

• Trust/responsibility tie-in: in an educational context, it is especially important to
ensure that the AI system itself is not a source of flawed reasoning or biases. Rigorous
ethical oversight, potentially involving educational experts, is needed to analyze the
system’s logic and the data it uses. This helps prevent the unintentional teaching of
incorrect clinical assumptions or harmful stereotypes.

3.1.4. Quality Management Systems (QMS) in Healthcare AI

Integrating quality management system (QMS) principles into the development and
deployment of healthcare AI is crucial for bridging the gap between research and real-
world clinical use. A well-designed QMS establishes rigorous standards for safety, efficacy,
and ethical compliance throughout the AI lifecycle [50,51]. Implementing a QMS requires
adaptability to specific healthcare settings and close interdisciplinary collaboration. It
fosters awareness, education, and organizational change by aligning AI development
with clinical needs and ensuring a user-centered approach. The result is increased system
reliability, improved patient outcomes, and streamlined workflows.

• Algorithmic/theoretical tie-in: for QMS to meaningfully ensure the quality of AI
systems, we need robust theoretical definitions of concepts like interpretability. Def-
initions for measuring interpretability and AI benchmarks deemed sufficiently safe
for clinical use are essential for establishing clear quality metrics within the QMS
framework.

• Trust/responsibility tie-in: clear ethical guidelines and regulatory frameworks are fun-
damental for responsible AI in healthcare. Interdisciplinary teams, including ethicists,
healthcare practitioners, and AI experts, are best positioned to develop comprehensive
QMS protocols. These protocols should encompass ethical considerations at all stages,
ensuring that patient safety, fairness, and transparency are embedded in AI systems.

Cross-disciplinary collaboration can be highly rewarding yet challenging. We propose
a series of best practices for successful cross-disciplinary collaboration based on research
findings (Figure 3).

Successful cross-disciplinary collaboration in bioinformatics requires a firm founda-
tion built on mutual understanding, respect, and open-mindedness to diverse perspec-
tives [52,53]. Fostering routine dialogue through joint workshops and academic initiatives
encourages building this foundation, as does providing mentorship to early-career re-
searchers navigating this complex terrain [54,55].

Additionally, implementing structures and strategies to promote accountability and
effective communication is crucial. Clarifying team member roles, developing comprehen-
sive data stewardship plans for accessibility and reproducibility, and articulating a unifying
vision can bridge disciplinary gaps [56–60]. Understanding and accommodating varying
research paces across disciplines is also key to maintaining momentum in a collaborative
research collective [14,61]. Cultivating an egalitarian and cohesive research collective de-
pends on equitable valuing of all inputs, regular sharing of insights and resources, and
refining approaches through continuous feedback [62–66]. Successful collaboration requires
firm foundations of mutual understanding, respect, transparency, and proactive conflict res-
olution to navigate inherent challenges. By following these best practices, cross-disciplinary
teams can reap the benefits of embracing a diverse range of expertise through structured
exchanging of ideas, data, and people for bioinformatics advancement [67–69].
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• Trust/responsibility tie-in: clear ethical guidelines and regulatory frameworks are 
fundamental for responsible AI in healthcare. Interdisciplinary teams, including eth-
icists, healthcare practitioners, and AI experts, are best positioned to develop com-
prehensive QMS protocols. These protocols should encompass ethical considerations 
at all stages, ensuring that patient safety, fairness, and transparency are embedded 
in AI systems. 
Cross-disciplinary collaboration can be highly rewarding yet challenging. We pro-

pose a series of best practices for successful cross-disciplinary collaboration based on re-
search findings (Figure 3).  

 
Figure 3. Best practices for successful cross-disciplinary collaboration. 
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3.2. The Role of Academia, Industry, and Healthcare Professionals

Academia, industry, and healthcare professionals all play essential roles in fostering
interdisciplinary collaboration in healthcare AI.

Academia:

• Provides education and training in AI-related fields, advancing theoretical understand-
ing and practical applications in healthcare.

• Fosters collaboration through joint programs, courses, and research projects uniting disci-
plines like medicine, computer science, engineering, and ethics [70–72]. By promoting
interdisciplinary education and research, academia bridges the gap between data science
and clinical contexts, ensuring AI solutions address real-world healthcare needs.

Industry:

• Drives development, implementation, and evaluation of AI solutions in healthcare
settings [73].

• Collaborates with academia and healthcare providers to translate research into practice,
addressing real-world problems and providing resources and expertise [73,74].

• Participates in conferences and workshops for knowledge sharing and idea generation,
further amplifying cross-disciplinary interaction [74].

Healthcare professionals:

• Offer essential clinical insights to identify priority areas for AI implementation and
guide the development and evaluation of solutions [75].

• Collaborate on interdisciplinary research projects, share domain expertise, and advo-
cate for the effective and ethical integration of AI within the healthcare practice [75,76].

4. The Role of Conferences in Fostering Collaboration and Innovation

Conferences are vital for interdisciplinary knowledge exchange, fostering global con-
nections and forming professional networks [77–79]. Special sessions within these confer-
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ences can create an even richer environment for fostering progress in explainable AI (XAI).
These focused sessions bring together a diversity of researchers, physicians, scientists,
and computational biologists to delve deeper into specific XAI challenges and opportu-
nities. Opportunities for more in-depth discussions and hands-on experiences augment
collaboration and innovative potential among participants [80].

The benefits of interdisciplinary collaboration for XAI advancements may be maxi-
mized by thoughtful structuring of a special session of [78] (Table 2).

Table 2. Example of a special session conference format.

Day Session Component Details Purpose

Day 1 Keynote speech

Delivered by a leader in XAI, healthcare
AI, or a relevant field. Emphasizes the

need for interdisciplinary approaches for
real-world XAI success.

Sets thematic tone with a focus on
collaboration, sparks critical discussion,

prepares for deeper dives.

Day 1 Invited talks

Featured speakers track: senior
pathologists, radiologists, data scientists,
and computational biology experts offer

insights into established XAI models,
applications, and ongoing research. May

present case studies showcasing successful
interdisciplinary collaborations.

Emerging leaders track: rising researchers
including medical residents, fellows, and
PhD candidates unveil cutting-edge work,

new algorithms, or novel use cases for
XAI. A chance to expose participants to

cross-disciplinary innovation.
Industry track: industry representatives
provide a practical perspective on XAI

implementation. Focus on collaborative
models, addressing barriers to tech
adoption in healthcare and bridging

academia–industry gaps.

Provides perspectives across disciplines,
levels of expertise, and collaboration

success stories.

Day 2 Workshop: ML and LLMs for
precision medicine

Interactive session with interdisciplinary
case studies and group modules on

generative AI, LLMs, and traditional ML.
Participants with diverse training

backgrounds leverage their combined
skillsets in a session-facilitated tutorial on
co-creating a prototype medical AI device.

This tutorial will guide participants
through the process of integrating their

expertise to design and build a functional
prototype AI tool addressing a specific

medical need.

Offers practical training with an
emphasis on cross-domain skillsets for

innovative applications.

Day 2 Poster presentations and
networking/lunch break

Includes interdisciplinary poster
presentations with judging, feedback
highlighting collaborative work, and

winner announcement.

Showcases diverse research with a focus
on collaboration, encourages

networking across fields, highlights
standout projects.

Day 2 Oral presentations

Selected papers presented (20 min each),
emphasizing XAI methods developed

through interdisciplinary teams, focusing
on diverse medical data modalities and

model trustworthiness.

In-depth exploration of collaborative
XAI research with real-world impact.
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Table 2. Cont.

Day 2 Closing remarks/speech

Summary of the day’s discussions and
insights, highlighting key takeaways,

emphasizing impactful future
developments in medical AI, and stressing

the continued importance of strong
cross-disciplinary partnerships.

Provides closure, reinforces
collaboration importance, motivates

future collaborative efforts.

Key: XAI—explainable artificial intelligence, ML—machine learning, LLM—large language model.

While interdisciplinary conferences are not the sole driver of XAI progress, they
play a crucial and distinct role within the broader innovation ecosystem. Conferences
bring together professionals from diverse fields like psychology, computer science, ethics,
and healthcare, fostering a holistic understanding of AI systems and emphasizing the
importance of user-centric explanations and ethical considerations in XAI development.
Computer scientists and statisticians can collaborate to create new methods for generating
interpretable models, while domain experts can provide essential feedback and validation.
Additionally, innovative XAI solutions often emerge from the serendipitous integration of
insights from disparate methodologies. For instance, collaborations between data scientists
and legal experts can ensure compliance with frameworks while maintaining technical
feasibility, and social scientists partnering with computer scientists can create user-friendly
and intuitive XAI tools.

Global collaboration and networking at conferences are essential for disseminating
and scaling XAI initiatives. Rapid feedback on early-stage concepts helps refine ideas and
avoid dead ends. For example, a medical ethicist raising concerns about potential bias in a
system could prompt its redesign, preventing harm. Direct interactions with end users like
clinicians provide valuable feedback, driving user-oriented improvements in XAI tools.

Specialized conferences play a crucial role. For instance, the Association for Comput-
ing Machinery Conference on Fairness, Accountability, and Transparency (ACM FAccT)
conference has united perspectives from multiple disciplines to shape core XAI frame-
works, models, and evaluation methods. Presentations on algorithmic bias have informed
techniques to improve model interpretability and auditability [19,81–83]. The AI for Good
Global Summit (International Telecommunication Union/ITU) promotes AI to advance
global development priorities in health, climate, and sustainable infrastructure. These
events and others facilitate long-term research partnerships, leading to high-impact publi-
cations on various aspects of XAI including visualization tools, user-centric evaluations,
and algorithmic fairness [84–88].

Standardization is essential for XAI reproducibility and reliability. Conferences can
spearhead the establishment of standardized frameworks and best practices, including
evaluation criteria for XAI methods and guidelines for responsible AI development [89–91].

Targeted conferences like the International Conference of Learning Representations
(ICLR) provide in-depth knowledge sharing on representation learning. ICLR 2022 work-
shops featuring AI developers, social scientists, and medical professionals helped crystallize
priorities for patient-facing XAI in healthcare by addressing subjects spanning from ma-
chine learning for social good to practical machine learning for developing countries and
accountable and ethical use of AI technologies in high-stake applications. Such multidisci-
plinary discussions rapidly identify gaps and lead to solutions.

Gaps addressed in interdisciplinary conferences may serve as accelerants for innova-
tion throughout rippling webs of multidisciplinary discussion. Initiatives like the “Practical
ML for Developing Countries Workshop” at ICLR 2022 brought together representatives
from academia, industry, and government agencies to reflect on aspects of designing and
implementing AI solutions in resource-constrained environments. Such focused collabo-
ration of expertise not only accelerates innovation cycles in XAI research and application,
but may be expanded upon by interdisciplinary cohorts who converge at other specialized
venues. As an example, the Economics of Artificial Intelligence Conference hosted by
the National Bureau of Economic Research (NBER) features interdisciplinary collabora-
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tions among researchers from various institutions to advance exploration of economic
implications of AI to build trust in AI systems and ensure compliance with regulations
like the European Union General Data Protection Regulation (GDPR). While the GDPR
is an EU regulation, its influence is global. Many countries have adopted similar data
privacy frameworks, and organizations worldwide need to be aware of its principles when
handling the data of EU citizens. Conferences disseminate knowledge about regulatory
requirements and promote the adoption of responsible AI practices.

Virtual conferences increase accessibility and inclusivity, extending reach and promot-
ing diverse participation [78]. This shift toward virtual formats, as demonstrated by the
adaptability of ISCB’s GLBIO conference series, broadens accessibility and representation,
enriching discussions with diverse research and viewpoints [77,80,92–94]. GLBIO has also
made efforts to promote diversity and inclusivity by offering fellowship awards and by
prioritizing considerations for first-time attendees, individuals from underrepresented
groups, and students [94].

Conferences foster collaboration and networking with diverse researchers, impacting
access to resources and enhancing social trust within the research community [79]. GLBIO
has incorporated novel approaches, such as “matchmaking” sessions, to actively encourage
communication and collaborations [95,96].

Speakers play a key role in audience engagement and innovation, with the ability
to adapt content for interactivity [97]. Similarly, academic conferences serve as platforms
for situated learning, research sharing, and agenda setting. Organizations promoting
XAI discourse for healthcare must adapt to various complexities associated with major
conference organization to support field innovation [80].

Advancing XAI through Goal-Oriented Collaboration

To effectively tackle the challenges of interpretable AI, conferences must strive to direct,
instead of simply gather, a diversity of perspectives honed to address specific XAI obstacles.
A focus on foundational gaps should be emphasized, with dedicated tracks and sessions
focused on theoretical limitations of current AI models and the need for breakthroughs
in interpretability by design. Sessions should delve into the theoretical foundations, cur-
rent research, and practical applications in making algorithms more understandable and
interpretable. As compliment, keynote speakers may highlight the core theoretical hurdles
related to explainability, setting a clear agenda for the conference.

Targeted interdisciplinary projects may be facilitated by seed funding through the
offering of small grants to encourage teams formed during the conference to pursue
collaborative projects directly addressing the fundamental challenges in interpretable
AI. Implementation of ‘challenge workshops’ or cross-disciplinary ‘hackathons’ invites a
focused space for interdisciplinary teams aiming to develop new interpretability approaches
to work on specific, well-defined theoretical or algorithmic problems.

To bridge theory and practice, sessions discussing application-driven challenges are
essential. Stakeholders and end users, e.g., policymakers, ethicists, physicians, legal
scholars, industry, affected communities, and domain experts, outline real-world cases
where explainability is essential but current AI falls short. Joint presentations incentivize
researchers across disciplines to co-present work, demonstrating how theoretical advances
translate into practical tools. Integration of theoretical and applied research is crucial
for translating theoretical insights into actionable strategies for building interpretable AI
systems.

Advancement of theoretical and practical knowledge may be accomplished through
the invitation of keynote speakers from various disciplines such as psychology, cognitive
science, and domain-specific areas to provide insights into human interpretability and its
integration into AI models. Tutorials on the theoretical foundations of AI may be offered
specifically for non-computer scientists, fostering a shared language for collaboration.
Explainability ‘clinics’ may be established whereby practitioners can express issues they face
with XAI implementation to theoreticians who can offer insights and potential solutions.
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Submissions focusing on the development of AI models with built-in interpretability should
be encouraged.

Emphasis on evaluation and reproducibility may be emphasized through standardiza-
tion workshops, i.e., a dedicated space for developing standardized metrics for interpretabil-
ity or benchmarks to compare different XAI methods. Encouragement of open-source code
sharing may be accomplished through sessions on sharing code, models, and datasets to
promote reproducibility and research. Sessions on replicating foundational XAI research
results may facilitate breakthroughs in addressing reproducibility challenges. Publishing
of detailed conference proceedings ensures accessibility of findings and discussions for a
wider audience, fostering further collaboration. Additional support for interdisciplinary
collaboration, e.g., networking, research initiatives, funding, is ideal to foster engagement
with the broader AI community, raising awareness and encouraging collaboration beyond
the conference.

Encouragement of ethical and responsible AI development is integral to XAI advance-
ment. Discussions on the ethical and societal implications of interpretable AI may be
facilitated through ethics workshops emphasizing transparency, fairness, accountability,
and run in alignment with societal values. Social scientists and ethicists are ideal for
inclusion in this discourse to guide ethical AI development and address its social impact.

5. Looking Forward: Future Directions and Innovations

Explainable AI (XAI) and computational biology are two rapidly evolving fields that
are expected to bring significant advancements in the future.

5.1. Future Trends in Explainable AI

XAI aims to make the decision-making process of AI models transparent and under-
standable. This is particularly important in healthcare, where the decisions made by AI can
have significant impacts on patient outcomes [6,22,26,98].

As we enter a period of unparalleled data accumulation and analysis, computational
biology will continue to promote our understanding of molecular systems [1]. The success
and wide acceptance of open data projects will impact how patients, healthcare practition-
ers, and the general public view computational biology as a field [1]. The development of
XAI for demystifying complex biological models will enable medical professional compre-
hension and trust of AI-based clinical decision support systems [26]. By understanding
how a model works, researchers can identify potential biases or shortcomings and refine
the model for improved accuracy. Furthermore, XAI may reveal unexpected patterns or
relationships within biological data, e.g., gene interactions and protein structures, leading
to new research questions and potential breakthroughs.

The future of XAI in healthcare is expected to focus on addressing the interdisciplinary
nature of explainability, which involves medical, legal, ethical, and societal considera-
tions [6]. This will require fostering multidisciplinary collaboration and sensitizing devel-
opers, healthcare professionals, and legislators to the challenges and limitations of opaque
algorithms in medical AI [6]. By translating complex biological findings into actionable
insights that doctors and researchers can readily understand and utilize, XAI can bridge the
gap between data and actionable insights. This includes personalized treatment approaches
that derive from an understanding of how individual factors influence biological processes
through interpretable models.

5.2. Healthcare 5.0 and Explainable AI

Healthcare 5.0 is a vision for the future of healthcare that focuses on real-time pa-
tient monitoring, ambient control and wellness, and privacy compliance through assisted
technologies [99]. XAI has emerged as a critical component in the evolution of healthcare,
particularly in the context of Healthcare 5.0, where it plays a pivotal role in unlocking
opportunities and addressing complex challenges [100]. XAI aims to produce a human-
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interpretable justification for each model output, increasing confidence if the results appear
plausible and match clinicians’ expectations [99].

In the context of Healthcare 5.0, XAI can assist in finding suitable libraries that support
visual explainability and interpretability of the output of AI models [99]. For instance, in
medical imaging applications, end-to-end explainability can be provided through AI and
federated transfer learning [99].

5.3. Balancing Explainability and Accuracy/Performance in Future AI Models

More complex systems are capable of modeling intricate relationships in the data,
leading to higher accuracy, but their complexity often makes them less interpretable [101].
This trade-off between accuracy and explainability is a significant concern, especially for
complex deep learning techniques [102].

Research has shown that while professionals and the public value the explainability of
AI systems, they may value it less in healthcare domains when weighed against system
accuracy [101]. Van der Veer SN et al. found that 88% of responding physicians preferred
explainable over non-explainable AI, but without asking respondents to make the trade-off
between explainability and accuracy [101].

However, the absence of a plausible explanation does not imply an inaccurate model [99].
Therefore, instead of setting categorical rules around AI explainability, policymakers should
consider the context and the specific needs of the application [101].

The future of healthcare and research is poised to be significantly influenced by advance-
ments in AI, computational biology, and their integration into various clinical practice and
research arenas. These advancements are expected to revolutionize drug discovery, disease
diagnosis, treatment recommendations, and patient engagement [10,103–107].

One of the most promising areas of exploration is the application of AI and computa-
tional biology in drug discovery. AI can transform large amounts of aggregated data into
usable knowledge by fielding the complex relationship between input and output variables
for high-dimensional data, i.e., potential chemical compounds and the range of properties
or biological activities for consideration, an ability which can expedite the process of drug
discovery and optimization [10,104,107,108]. For instance, the reinforcement learning for
structural evolution (ReLeaSE) system, implemented at the University of North Carolina,
demonstrates the ability to design new, patentable chemical entities with specific biological
activities and optimal safety profiles, potentially shortening the time required to bring a
new drug candidate to clinical trials [108].

Technological advancements in AI and data science are expected to continue at a rapid
pace, with the AI-associated healthcare market projected to grow significantly [109,110].
These advancements are not only revolutionizing healthcare, but also transforming the
practice of medicine [75,103,111,112].

Future research topics and areas of exploration are likely to focus on the ethical,
legal, and societal challenges posed by the rapid advancements in AI. Addressing these
challenges will require a multidisciplinary approach and the development of more rigorous
AI techniques and models [103,113,114].

Conferences and special issues of journals will play a crucial role in shaping these
future directions. Examples include the Journal of Biomedical and Health Informatics
special issues on topics such as “Ethical AI for Biomedical and Health Informatics in the
Generative Era” and “Advancing Personalized Healthcare: Integrating AI and Health In-
formatics” [114]. These platforms provide opportunities for interdisciplinary collaboration
among AI experts, computer scientists, healthcare professionals, and informatics specialists,
vital for the development of robust AI systems and ethical guidelines [103,114].

6. Conclusions

While interdisciplinary collaboration is invaluable in addressing the challenges of
interpretable AI—bringing together expertise from computer science, cognitive science,
psychology, and domain-specific knowledge—it is not a panacea. The obstacles are deeply
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rooted in the fundamental nature of the algorithms themselves, requiring advances in both
the theoretical underpinnings of AI and the development of new, inherently interpretable
models. Nonetheless, collaborations across fields can foster innovative approaches to
interpretability, such as leveraging human-centric design principles or drawing on theories
of human cognition to inform model development. AI applications in healthcare demand
transparency and explainability to address legal, ethical, and societal concerns, especially
in clinical decision-making and patient care [72–75]. The integration of AI and compu-
tational biology into healthcare and research holds immense potential for accelerating
discoveries, improving diagnostics, and enhancing patient care. However, it also poses sig-
nificant challenges that need to be addressed through continued research, innovation, and
interdisciplinary collaboration [103,113,114]. Computational biology is pivotal to linking
data science to clinical applications, necessitating interdisciplinary collaboration and train-
ing [34]. Despite ongoing efforts, the field of interpretable AI is still in its early stages. This
is partly because the complexity of models continues to increase as AI research progresses,
often outpacing the development of interpretability techniques. Additionally, there is not
yet a consensus on the best practices for AI interpretability, nor is there a standardized
framework for evaluating the effectiveness of different interpretability methods. The future
of explainable AI and computational biology is promising, with significant advancements
expected in the development of transparent AI models and new computational methods
for biological research. The future of XAI and computational biology in the context of
Healthcare 5.0 will likely involve a careful balance between explainability and accuracy,
with the ultimate goal being that of enhancing patient outcomes and upholding the essen-
tial elements of compassion, empathy, and ethical considerations that define the core of
healthcare [100]. These advancements will likely have a profound impact on healthcare and
biological research, leading to a deeper understanding of biological systems and improved
patient outcomes [72–76].

Conferences are key for collaboration and innovation, uniting experts across fields,
enabling knowledge exchange, and stimulating idea sharing [73–75,103]. They are vital
for academic progress, research refinement, and fostering real-world impacts. The role of
academia, industry, and healthcare professionals in fostering interdisciplinary collaboration
is crucial for effective AI implementation in healthcare.
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