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Simple Summary: A subgroup of men with prostate cancer have defects in genes that mediate the
repair of DNA damage. These men also suffer from a more rapid disease progression and early
metastatic dissemination. The underlying cause of this finding is incompletely understood. In
the present study, we show that deficiency in DNA damage repair proteins is associated with an
enhanced prostate cancer cell motility. The enhanced motility involves oxidative stress, since the
antioxidant N-acetylcysteine was found to abrogate this effect. Our results underscore that DNA
damage repair protein deficiency may be more directly involved in prostate cancer cell dissemination
than previously thought.

Abstract: Introduction: DNA damage repair gene deficiency defines a subgroup of prostate cancer
patients with early metastatic progression and unfavorable disease outcome. Whether deficiency in DNA
damage repair genes directly promotes metastatic dissemination is not completely understood. Methods:
The migratory behavior of prostate cancer cells was analyzed after siRNA-mediated knockdown of
DNA damage repair and checkpoint proteins, including BRCA2, ATM, and others, using transwell
migration assays, scratch assays and staining for F-actin to ascertain cell circularity. Cells deficient in
BRCA2 or ATM were tested for oxidative stress by measuring reactive oxygen species (ROS). The effects
of ROS inhibition on cell migration were analyzed using the antioxidant N-acetylcysteine (NAC). The
correlation between BRCA2 deficiency and oxidative stress was ascertained via immunohistochemistry
for methylglyoxal (MG)-modified proteins in 15 genetically defined primary prostate cancers. Results:
Prostate cancer cells showed a significantly increased migratory activity after the knockdown of BRCA2
or ATM. There was a significant increase in ROS production in LNCaP cells after BRCA2 knockdown
and in PC-3 cells after BRCA2 or ATM knockdown. Remarkably, the ROS scavenger NAC abolished the
enhanced motility of prostate cancer cells after the knockdown of BRCA2 or ATM. Primary prostate
cancers harboring genetic alterations in BRCA2 showed a significant increase in MG-modified proteins,
indicating enhanced oxidative stress in vivo. Conclusions: Our results indicate that DNA damage repair
gene deficiency may contribute to the metastatic dissemination of prostate cancer through enhanced
tumor cell migration involving oxidative stress.
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1. Introduction

Prostate cancer is the leading non-cutaneous cancer in men [1]. While localized
prostate cancer can be cured via surgery or radiotherapy, locally advanced or metastatic
disease is associated with a poor prognosis and often a lethal disease outcome [2,3]. There-
fore, the ability of prostate cancer cells to migrate, to invade the surrounding tissue, and to
colonize distant metastatic niches has direct consequences for patient prognosis.

Although the mechanisms underlying tumor cell migration and invasion have been ex-
tensively studied [4], relatively little is known about whether, and to what extent, recurrent
genetic alterations modulate these activities. In prostate cancer, there is compelling evidence
that mutations in genes involved in the homologous recombination-mediated repair (HRR)
of DNA double-strand breaks, most notably BRCA2, define a subset of patients with a ther-
apeutic vulnerability to PARP inhibition and platinum compounds [5–7]. This subgroup of
men with prostate cancer also shows distinct clinical characteristics, including a higher rate
of lymph node and distant metastasis and poorer patient survival outcomes [8–10]. More-
over, there is evidence that prostate cancers harboring BRCA2 mutations not only show
enhanced genomic instability but are also predisposed to castration resistance [11]. The
development of castration resistance, i.e., tumor progression despite androgen-deprivation
therapy and circulating testosterone at the castrate level, is a multifactorial process that
involves intrinsic and extrinsic factors, including oxidative stress [12]. More rapid disease
progression and unfavorable patient survival are not limited to BRCA1/2 germline variants
but are also found in patients with somatic mutations [10,13,14].

Among the main functions of BRCA2 is the regulation of the activity of RAD51 during
the error-free HRR of DNA double-strand breaks. Besides BRCA2, there are a number of
other genes involved in HRR that are recurrently altered in prostate cancer, such as BRCA1
or ATM. It is noteworthy that despite their intricately coordinated action during HRR,
their gene products vary greatly in terms of function. While BRCA2 physically interacts
with single-stranded DNA and RAD51 [15], BRCA1 is a highly multifunctional protein
with multiple interaction partners and ubiquitin–ligase activity [16–18]. ATM coordinates
DNA damage repair though its function as a protein kinase [17]. Genes involved in the
error-prone non-homologous end joining pathway of DNA double-strand break repair
are not commonly altered in prostate cancer [19]. Other examples of DNA damage repair
proteins found to be mutated in prostate cancer are involved in DNA mismatch repair
such as MSH2 or MSH6 [19–22] or perform functions at the interface of DNA replication,
repair, and recombination, such as the BLM [23], WRN [20], or RECQL4 helicases [24].
Lastly, TP53, the central tumor suppressor gene involved in DNA damage checkpoint
control, is mutated in a substantial fraction of prostate cancers, which typically show a
more unfavorable clinical course of disease [10,20,25].

Whether, and to what extent, DNA damage repair gene deficiency can promote the
metastatic spread of prostate cancer is incompletely understood. In the present study, we
interrogate the role of a number of frequently altered DNA damage repair and checkpoint
proteins in prostate cancer cell migration, a crucial first step in tumor cell dissemination.

2. Materials and Methods
2.1. Cell Lines and Transfections

LNCaP and PC-3 cells were obtained from LGC (Teddington, UK). LNCaP cells
were maintained in RPMI 1640 (Life Technologies, Darmstadt, Germany), and PC-3 were
maintained in F-12K (LGC, Wesel, Germany). Media were supplemented with 0.2% ampho-
tericin B (Life Technologies), 0.5% streptomycin/penicillin (Sigma-Aldrich, Taufkirchen,
Germany), and 10% fetal bovine serum (Life Technologies). Cells were cultured at 37 ◦C and
5% CO2. For gene knockdown, 1 × 105 LNCaP or PC-3 cells were plated and transfected
after 24 h with siRNAs (Qiagen, Hilden, Germany) using the DharmaFECT® 3 transfection
reagent (Life Technologies) according to the manufacturer’s recommendations. The siRNA
target sequences were ATM: GCAAAGCCCUAGUAACAUA; BRCA1: CCAAAGCGAG-
CAAGAGAAU: BRCA2: GAAGAAUGCAGGUUUAAUA; MSH6 CCACAUGGAUGCU-
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CUUAUU; RECQL4: GCGACCACCUAUACCCAUU; and TP53 GUGCAGCUGUGGGUU-
GAUU. A non-targeting sequence (UGGUUUACAUG UCGACUAA) was used as a control.
The knockdown of each protein was verified via immunoblot analysis (Supplementary
Figure S1). Immunoblotting was performed as previously described [26]. Antibodies were
directed against ATM (MAT4G10/8, Sigma-Aldrich, 1:1000), BRCA1 (MS110, Millipore,
Burlington, MA, USA, 1:1000), BRCA2 (5.23, Millipore, 1:200), MSH6 (44/MSH6, Becton
Dickinson Biosciences, Temse, Belgium, 1:1000), RECQL4 (Novus Biologicals, Centennial,
CO, USA, cat: 25470002, 1:2000), p53 (DO-1, Santa Cruz, Santa Cruz, CA, USA, 1:1000),
Tubulin (DM1A, Cell Signaling, Beverly, MA, USA, 1:1000), or GAPDH (0411, Santa Cruz,
1:500).

2.2. Wound Healing, Transwell Migration, and 3D Spheroid Invasion Assays

LNCaP or PC-3 cells grown to near confluency were scratched using a 10 µL pipette tip
followed by replacement of cell culture media. Digital images of the scratches were obtained
every 3 h for up to 18 h (PC-3 cells) or every 6 h for up to 96 h (LNCaP cells). Scratched
areas were evaluated with the TScratch (version 1.0) (https://github.com/cselab/TScratch
(accessed on 21 May 2019)) software [27]. For the transwell migration assays, Nunc®

polycarbonate cell culture inserts with 8 µm pore size (Life Technologies) were used.
N-acetylcysteine (NAC; Abcam, Rozenburg, The Netherlands) was added at a 100 µM
concentration inside the inserts for the duration of incubation. For quantification, cells
were fixed with 4% paraformaldehyde (PFA, Sigma-Aldrich) and stained with 0.1% crystal
violet (Sigma-Aldrich). The cells were dissolved in 2% SDS (Sigma-Aldrich), and optical
density was measured at 560 nm. The cell invasion assay was performed using the Cultrex
3D Spheroid Basement Membrane Extract Cell Invasion Assay (96-well, R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s instructions. PC-3 or LNCaP
cells were seeded in 1x Spheroid Formation ECM 24 h after siRNA-mediated knockdown
and incubated 72 h at 37 ◦C before the start of the assay to allow for spheroid formation.
Afterward, an invasion matrix was added and, after gel formation, overlaid with cell
culture media containing FBS. Spheroids were incubated at 37 ◦C, and images were taken
every 24 h with a Leica (Wetzlar, Germany) EC3 camera.

2.3. Fluorescence Microscopy and Cell Circularity Measurement

LNCaP or PC-3 cells were seeded onto cover slips and incubated overnight. They
were then fixed with 1% PFA (Sigma-Aldrich) and permeabilized with 0.1% Triton™ X-
100 (Sigma-Aldrich). To visualize cytoskeletal structures, Alexa-Fluor™ 488 Phalloidin
(Life Technologies) was added to the cells. Afterward, the cover slips were mounted
in Vectashield® containing DAPI (Biozol, Eching, Germany) and photographed with a
Leica DFC425C camera under a Leica DM5000B epifluorescence microscope. At least
30 cells per sample were photographed from two cover slips. To determine cell circularity,
circumference and cell area were evaluated using ImageJ (version 1.52p) (https://imagej.
nih.gov/ij/ (accessed on 20 August 2019)) and the circularity index K was determined,
defined as K = 4π A

C² [28], where A is the area and C is the circumference of the cell. K is 1
for a perfectly round cell, and 0 is for an infinitely elongated polygon.

2.4. Measurement of Reactive Oxygen Species (ROS)

ATM or BRCA2 were knocked down by siRNA in LNCaP or PC-3 cells. After 72 h, cell
culture medium was harvested and ROS were detected with the ROS-GloTM H2O2 Assay
(Promega, Mannheim, Germany) according to the manufacturer’s instructions. Luminescence
was recorded using a GloMax®-Multi+ Detection System (Promega, Mannheim, Germany).

2.5. Immunohistochemistry

Formalin-fixed, paraffin-embedded tumor specimens from a total of 15 patients with
known BRCA1/2 status were obtained through the tissue bank of the National Center for
Tumor Diseases (NCT) Heidelberg in accordance with the regulations of the tissue bank

https://github.com/cselab/TScratch
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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and the approval of the Ethics Committee of the Medical Faculty of the University of
Heidelberg (206/2005, 207/2005, S-864/2019). Written informed consent was provided
by all patients for the use of their tissue for research and publication. Targeted next-
generation sequencing to detect BRCA1/2 alterations was performed as part of a prospective
biomarker study, as previously reported [29]. Experimental protocols and methods of this
study were approved by the Ethics Committee of the University of Heidelberg School
of Medicine (vote S-051/2017). All experiments were carried out in accordance with the
Declaration of Helsinki in its latest revised version. The biomarker study is registered
under registration number DRKS00015159 in the German Clinical Trials Register (DRKS),
an approved primary register of the WHO fulfilling the requirements of the International
Committee of Medical Journal Editors (ICMJE). Immunohistochemistry for methylglyoxal
(MG)-modified proteins was performed as described previously [26] using a monoclonal
antibody (9E7, BioTechne, Wiesbaden, Germany) at a 1:100 dilution. Staining results were
quantified using an immunoreactivity score (IRS; staining intensity multiplied by quantity).
The staining intensity was scored as follows: 0 = negative, 1 = low, 1.5 = low–moderate,
2 = moderate, 2.5 = moderate–strong, and 3 = strong. The quantity of positive cells was
scored as follows: 0 = negative staining, 1 = 1–9%, 2 = 10–49%, 3 = 50–89%, and 4 = 90–100%.

2.6. Statistical Analysis

Statistical significance was ascertained using the Mann–Whitney-U test or Student’s
t-test, two-tailed. A p-value of ≤0.05 was considered significant. The statistical analyses
were performed using Microsoft Excel, VassarStats (http://vassarstats.net/ (accessed on
29 March 2019)) and IBM® SPSS® (version 27).

3. Results
3.1. DNA Damage Repair Protein Deficiency Promotes Prostate Cancer Cell Migration

In a previous study from our group, BRCA2, ATM, RECQL4, and MSH6 were identified
among the most frequently mutated DNA damage repair genes in a cohort of 64 patients
with treatment-naïve prostate cancer [29].

To analyze the effects of deficiency in these genes, including BRCA1, on tumor cell
migration, LNCaP or PC-3 prostate cancer cells were transiently transfected with siRNA
oligonucleotides to knock down gene expression. Protein knockdown was confirmed via
immunoblot analysis (Supplementary Figure S1).

Using a transwell migration assay (Figure 1), we observed a significant increase in
tumor cell migration in LNCaP cells following the siRNA-mediated knockdown of BRCA2
(2.2-fold, p ≤ 0.0005), ATM (1.7-fold, p ≤ 0.005), or MSH6 (2.3-fold, p ≤ 0.05; Figure 1A). In
PC-3 cells, a significant increase in tumor cell migration was detected after the knockdown
of BRCA2 (2.4-fold, p ≤ 0.05), ATM (2.0-fold, p ≤ 0.005), or RECQL4 (1.4-fold, p ≤ 0.05;
Figure 1B).

Since only BRCA2 and ATM knockdown led to an increased migration in both cell
lines, we focused on these two proteins in subsequent experiments.

The results were corroborated using a wound-healing assay (Figure 2). In LNCaP
cells, the cell-free area after 96 h was significantly reduced following the siRNA-mediated
knockdown of ATM (33%) or BRCA2 (25%) in comparison to controls (57%; p ≤ 0.05;
Figure 2A). In PC-3 cells, siRNA-mediated knockdown, likewise, led to an accelerated
wound closure after 12 h with a 38% cell-free area in the controls, 12% after the knockdown
of ATM, and 16% after the knockdown of BRCA2 (p ≤ 0.05; Figure 2B).

http://vassarstats.net/
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Figure 1. Increased prostate cancer cell migration after the knockdown of DNA damage repair
gene expression. Transwell migration assay using LNCaP (A) or PC-3 (B) cells following siRNA-
mediated knockdown (KD) of the DNA damage repair proteins indicated. Each bar represents mean
and standard error of the fold-change absorbance normalized to control from three independent
experiments. * p ≤ 0.05; ** p ≤ 0.005; *** p ≤ 0.0005.
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Figure 2. Enhanced wound closure in BRCA2- or ATM-deficient prostate cancer cells. Scratch assay
using LNCaP (A) or PC-3 (B) cells after siRNA-mediated knockdown (KD) of BRCA2 or ATM. Images
of scratches at the time points indicated (left panels) and quantification of the percentage of cell-free
area (right panels) are shown. Each bar represents mean and standard error from three independent
experiments. Scale bar = 10 µm. * p ≤ 0.05.

In order to test whether BRCA2 or ATM deficiency also affects cell invasion, a 3D
spheroid invasion assay was performed (Figure 3). Whereas an enhanced invasion was
found following the siRNA-mediated knockdown of BRCA2 in PC-3 cells (Figure 3), no
such effect was detected after the knockdown of ATM in PC-3 cells. As expected, the
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downregulation of BRCA2 or ATM expression in LNCaP cells did not result in changes in
tumor cell invasion [30].
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Figure 3. Enhanced invasion after knockdown of BRCA2 in PC-3 prostate cancer cells. 3D spheroid
invasion assays following knockdown (KD) of BRCA2 by siRNA. Light microscopic images were
taken at the time indicated. Scale bar = 500 µm.

We next determined the cellular circularity as a surrogate marker for cytoskeletal
remodeling during cell migration (Figure 4). Following the knockdown of BRCA2 or ATM
by siRNA in PC-3 cells, the cytoskeletal protein F-actin was visualized using fluorescent
phalloidin (Figure 4A). The circularity index was 0.81 in controls, 0.45 in BRCA2-deficient
cells, and 0.54 in ATM-deficient cells (p ≤ 0.05; Figure 4B).
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Figure 4. Decreased cell circularity in BRCA2- or ATM-deficient prostate cancer cells. Fluorescent
phalloidin staining of PC-3 cells after siRNA-mediated knockdown (KD) of BRCA2 or ATM to visual-
ize F-actin (A) and quantification of the cellular circularity (B) from two independent experiments
with at least 2 × 30 cells measured per experiment. Each bar represents mean and standard error.
Scale bar = 10 µm. * p ≤ 0.05.

Collectively, these results indicate that deficiency in DNA damage repair protein
expression, namely BRCA2 and ATM, promotes cytoskeletal remodeling, as well as the
migration and invasion (BRCA2 deficiency in PC-3 cells) of prostate cancer cells.

3.2. ATM or BRCA2 Deficiency Promotes Prostate Cancer Cell Migration through the Induction of
Oxidative Stress

We next sought to investigate the underlying mechanisms of the enhanced migratory
activity of prostate cancer cells following the induction of DNA damage repair gene
deficiency, with a focus on oxidative stress.

LNCaP or PC-3 cells transiently transfected with siRNA to knock down ATM or
BRCA2 expression showed a significant increase in the level of reactive oxygen species
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(ROS; Figure 5). In LNCaP cells, a 1.2-fold increase in ROS was detected following BRCA2
knockdown (p ≤ 0.05; Figure 5A). In PC-3 cells, a 1.1-fold increase in ROS was detected
after ATM knockdown and a 1.2-fold increase was measured after BRCA2 knockdown
(p ≤ 0.05; Figure 5B).
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Figure 5. ATM or BRCA2 deficiency increases ROS levels in prostate cancer cells. Quantification
of reactive oxygen species (ROS) in LNCaP (A) or PC-3 (B) cells after knockdown (KD) of ATM
or BRCA2 using a luminescence-based assay. Each bar represents mean and standard error of the
fold-change in luminescence from four independent experiments. * p ≤ 0.05.

To further analyze the role of oxidative stress in the enhanced migratory properties
of prostate cancer cells, we repeated the transwell migration assays in the presence of
N-acetylcysteine (NAC), an ROS scavenger. Remarkably, NAC abolished the increased
migration of LNCaP and PC-3 cells after the knockdown of ATM or BRCA2 (Figure 6).
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Figure 6. ROS inhibition abolishes increased prostate cancer cell migration after ATM or BRCA2
knockdown. Transwell migration assay using LNCaP (A) or PC-3 (B) cells after knockdown (KD)
of BRCA2 or ATM and with or without treatment with the ROS scavenger N-acetylcysteine (NAC).
Each bar represents mean and standard error of the fold-change absorbance normalized to control
from three independent experiments. * p ≤ 0.05.

These results underscore that oxidative stress plays a crucial role in the increased
migration of prostate cancer cells with impaired DNA damage repair gene expression.

3.3. Increased Oxidative Stress in Prostate Cancer with BRCA2 Inactivation

We next sought to determine whether primary prostate cancers with DNA damage
repair gene alterations showed signs of increased oxidative stress (Figure 7). To this
end, tissue specimens from seven patients with known BRCA2 alterations (pathogenic
frameshift mutations, n = 5; pathogenic point mutation, n = 1; BRCA2 whole-gene deletion,
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n = 1) were compared to eight patients that were BRCA1/2 wildtype, as previously deter-
mined via targeted next-generation sequencing [29]. Tissue specimens were stained via
immunohistochemistry for MG-modified proteins as a marker for oxidative stress, and an
immunoreactivity score (IRS) was calculated (Figure 7A). There was a significant increase
in MG-modified proteins in tumors with BRCA2 inactivation (median IRS was 8; range was
6–10) when compared to BRCA1/2 wild-type prostate cancers (median IRS was 4.25; range
was 0–8; p = 0.021; Figure 7B).
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Figure 7. Increased signs of oxidative stress in BRCA2-deficient primary prostate cancer. Immuno-
histochemistry for methylglyoxal-modified proteins to visualize oxidative stress in wild-type and
BRCA2-mutated prostate cancer (A). Box plot of the immunoreactivity scores (IRSs) of methylglyoxal-
modified proteins in wildtype (n = 8) and BRCA2-mutated (n = 6) or BRCA2-deleted (n = 1) primary
prostate cancers (B). Scale bar = 50 µm.

These results indicate enhanced oxidative stress in BRCA2-deficient primary prostate
cancer.

4. Discussion

Defects in DNA damage repair genes, most notably genes involved in the HRR of
DNA double-strand breaks, define a subgroup of men with prostate cancer. These patients
have a therapeutic vulnerability to PARP inhibitors and platinum compounds but are
also prone to earlier metastatic dissemination and castration resistance [7–10,31,32]. In
the present study, we provide evidence that deficiency in the expression of DNA damage
repair and checkpoint genes including BRCA2 or ATM can enhance the migratory activity
of prostate cancer cells through increased oxidative stress. Signs of enhanced oxidative
stress were also found in primary prostate cancers harboring a deleterious BRCA2 mutation
or whole-gene deletion.

There are a number of studies suggesting that the loss of DNA damage repair proteins
can play a direct role in cell migration. For example, Gau and colleagues were able to
show that BRCA1 deficiency promoted the motility of ovarian cancer cells through a
downregulation of the cytoskeletal protein profilin1 [33]. The loss of ATM has been shown
to induce enhanced cell migration through an ROS-mediated increase in the activity of
Rac1 GTPase [34]. The knockdown of BRCA2 in PC-3 prostate cancer cells has been shown
to induce both an increased tumor cell motility and invasiveness. The latter was found
to involve an upregulation of MMP9 and the activation of PI3K/AKT [35]. Renaudin
et al. were able to show that BRCA2 deficiency led to ROS accumulation and impaired
mitochondrial DNA maintenance through increased R-loop formation [36]. An increase
in ROS formation has also been shown in cells deficient in PALB2, a direct interaction
partner of BRCA2 [37]. Our results confirm an increase in prostate cancer cell motility
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and invasiveness following BRCA2 knockdown. However, we also observed increased
tumor cell motility following the knockdown of MSH6 or REQL4, which may point to a
more general role of DNA damage repair defects in tumor cell migration. A causative
relationship between DNA damage and ROS production has been reported for a number
of defective DNA damage repair and checkpoint genes and may involve a leakage of
DNA fragments into the cytoplasm, thereby triggering an ROS-producing innate immune
response [38]. However, other mechanisms are very likely to contribute, as well, since it
has been shown that MSH6 knockdown does not lead to an immediate increase in genomic
instability [39]. MSH6, together with MSH2, plays a role in transcriptional silencing after
DNA damage [40]. This process is critical to avoiding transcription-replication conflicts
and can lead to replication stress when undermined [41]. Replication stress has been
shown to stimulate enhanced ROS levels [42]. More experiments are needed, of course,
to prove this notion experimentally in prostate cancer. It needs to be emphasized that
enhanced migratory activity is only one factor contributing to metastatic dissemination
among many others [43]. Therefore, the role of oxidative stress in metastatic progression
may be multifaceted; i.e., it may promote or impair this process in a context-dependent
manner [38,43].

The results of the present study confirm and extend these findings by showing signs
of oxidative stress in primary prostate cancer with BRCA2 inactivation. Remarkably, our
study shows that the ROS scavenger NAC can abolish the enhanced migration of prostate
cancer cells following BRCA2 or ATM knockdown.

Most clinical trials do not support the use of antioxidants for the prevention or treat-
ment of cancer [38]. There are, in fact, results suggesting that in individuals with a high
cancer risk, antioxidants may even increase cancer incidence [38]. The translational rel-
evance of our finding that NAC can abolish enhanced prostate cancer cell migration
following BRCA2 knockdown is, therefore, difficult to fathom. It has been suggested that
approaches to exacerbate oxidative stress may be more suitable for cancer treatment [38],
a notion that remains to be tested. In the context of prostate cancer, oxidative stress has
been shown to upregulate the androgen receptor, and ROS were found to be increased after
androgen deprivation [12]. Thus, oxidative stress may contribute to the development of
castration resistance. Our finding that prostate cancers with genetic alterations in BRCA2
show signs of enhanced oxidative stress may, hence, lend further support to the notion that
BRCA2 deficiency promotes the development of castration resistance [11].

The identification of oxidative stress in tissue relies primarily on the antibody-based
detection of modified DNA or protein. Oxidative stress not only induces modified DNA
but also leads to protein oxidation or lipid peroxidation. The latter results in the formation
of MG, among other reactive carbonyl species, which modify biomacromolecules, including
proteins [44]. A number of antigens have been proposed for the detection of ROS exposure
using immunohistochemistry [45]. We have tested several of these and found the best
signal-to-noise ration with an antibody against MG-modified proteins. The increase in
MG-modified proteins in BRCA2-deficient tumors not only indicates enhanced oxidative
stress but also an increased rate of aerobic glycolysis [46,47]. Enhanced glycolysis in DNA-
damage-repair-deficient tumor cells has been reported for BRCA1 [48] but not for BRCA2.
MG stress has been linked to increased tumor cell migration, invasion, and metastasis in
breast cancer [49]. Whether MG stress also contributes to the metastatic dissemination in
BRCA2-mutated prostate cancer remains to be determined.

5. Conclusions

Collectively, our results underscore that deficiency in genes that are commonly mu-
tated in prostate cancer can promote tumor cell migration through enhanced oxidative
stress. Moreover, prostate cancers that harbor alterations in BRCA2 show signs of oxidative
stress, specifically MG stress, which may potentially promote metastatic progression and
castration resistance. Our findings underscore the need for the individualized management
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of men with prostate cancer and DNA damage repair gene defects that may include a more
intensified and/or (neo)adjuvant therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/onco4020005/s1, Figure S1: Immunoblot analyses of siRNA-
mediated knockdown of DNA damage repair proteins.
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