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Abstract: The determination of optimum nitrogen (N) fertilisation rates, which maximise yields and
minimise N losses, remains problematic due to unknown upcoming crop requirements and near-
future supply by the soil. Remote sensing can be used for determining the crop N status and to assess
the spatial variability within a field or between fields. This can be used to improve N fertilisation,
provided that the optimal fertilisation rate at the time of fertiliser application for an expected yield is
known. Using the APSIM-wheat model, we developed an algorithm that relates the N status of the
plants at early development stages to the yield response to N. Simulations were performed for winter
wheat under growth conditions in Denmark. To obtain a range of different N status in the biomass
at early growth stages, the soil N in autumn was varied from 20 to 180 kg N ha−1, and at BBCH23,
fertiliser was applied at a rate of 50 kg N ha−1. In a full factorial setup, additional N fertiliser was
applied ranging from 0 to 150 kg N ha−1 during three different development stages (BBCH30, 32,
and 37). The algorithm was evaluated by comparing model outputs with a standard N application of
50 kg N ha−1 at BBCH23 and 150 kg N ha−1 at BBCH30. The evaluation showed that, depending on
the N status of the soil, the algorithm either provided higher or lower optimal N fertilisation rates
when targeting 95% of the maximum yield, and these affected the grain yield and the grain N, as
well as the amount of N leaching. Split application of fertiliser into three applications was generally
beneficial, with decreased product-related N leaching of up to nearly 30%. Further testing of the
model under different environmental conditions is needed before such an algorithm can be used to
guide N fertilisation.

Keywords: APSIM; optimum N fertilisation; yield; N leaching

1. Introduction

Nitrogen fertilisation rates for grain crops are typically based on expected yields and
respective N demands, as anticipated from average environmental conditions on a given
site. Recommendations either provide a single value for a crop or vary depending on
climatic conditions, soil type and N credits from preceding crops (e.g., grain legumes or
service crops), and manure applications [1]. However, such blanket fertiliser rates over
areas with similar soils and climates do not account for differences in soil N supply, which
generally varies across years and different fields, and even within fields. This variability
is due to variations in soil properties and differences in mineralisation potential from soil
organic matter, manure and crop residues, leftover N from previous crops, and uneven
application of fertilisers [2–6]. The recommendations of fertiliser applications without
considering the potential supply of N from the soil can pose an environmental risk, as well
as economic [7] and societal costs [8].
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Nitrate leaching from agricultural soils is of considerable global environmental con-
cern [9,10]. In Denmark, strict fertiliser regulations and various mitigation measures have
been implemented to improve N use efficiency and reduce N losses to aquatic environments.
Despite this, N loads still exceed the Water Framework Directive thresholds, especially
in coastal areas and vulnerable groundwater bodies [11]. Estimated N leaching across
Denmark varies widely, depending on crop sequence, soil characteristics, annual perco-
lation, the residual N left after harvest, and the soil mineralisation rate. Zhao et al. [12]
reported variations in N leaching from 3 to 92 kg N ha−1 based on field experiments from
44 site x years under optimal N fertilisation rates. Similarly, using the Daisy model with
20 different crop rotations, Rashid et al. [11] found substantial differences in simulated
N leaching under Danish conditions, varying from 16 to 85 kg N ha−1. Winter wheat
in Denmark is mostly grown on the more fertile soils [13], with common N fertilisation
rates around 200 kg N ha−1; a applied in two split applications in the middle of March and
April. Average grain yields and harvested N in grain of 8.74 t ha−1 and 154 kg N ha−1

have been reported based on measurements on farmers’ fields across Denmark between
2010 and 2015 [13]. In a two-year fertiliser study with winter wheat, Rasmussen et al. [14]
measured around 40 kg residual N before sowing (with pre-crops of oats and winter barley),
and similar amounts after the harvest of the winter wheat fertilised with 150 kg N ha−1.
Increasing the N rate to 250 kg N ha−1 substantially increased the amount of soil N at
harvest. Thus, accounting for the previous fertilisation practice and cropping sequence
is important for reducing N losses to the environment, especially after the breakup of
grasslands substantial N is released during mineralization of crop residues [9,15].

The synchronisation of crop N demand and supply by soil in both time and space is
the most effective way to increase N fertilisation responses and reduce N losses. Various
approaches have been tested for refining N fertilisation, including measurements of soil
mineral N or potential mineralisation rates and N budgets [16,17]. The critical N concentra-
tion curve approach has also been used for refining in-season N fertilisation rates, which
is based on critical crop N content as a function of crop biomass, which results in optimal
growth [18].

Remote sensing is increasingly being used as a timely and nondestructive tool for
mapping the N nutrition status of plants and to rapidly assess the spatial variability within
a field based on the canopy reflectance. In-season measurements of the crop N status,
linked with local production information, offer promise for fine-tuning N fertilisation rates
and are increasingly being used for maize and wheat [19]. A drawback of these approaches
is the need for an expected yield. When considering spatial, in-field variability, expected
yield differences can be obtained from historical crop maps [20]. To include year-to-year
variability, Raun et al. [21] developed an approach for an in-season estimation of yield
based on the normalised difference vegetation index NDVI and growing degree days.
By using this approach, the N use efficiency of winter wheat could be increased by 15%.
Various sensor-based algorithms have been developed to estimate the N requirements
based on the in-season crop N status. A detailed review of these has been performed by
Franzen et al. [22], who showed that these algorithms depend on user-specified optimum
N rates, and either require a high-N reference strip or a virtual reference, as in the Holland–
Schepers algorithm. The virtual reference is based on a statistical approach, with a frequency
distribution to identify crops in more fertile parts of a field with adequate N.

The use of dynamic simulation models, which simulate soil and crop processes, for
adjusting the N fertiliser rates based on simulated soil or plant N has also been shown to
be promising [23,24]. Such dynamic simulation models have also been used in conjunction
with sensor technology [25], but they are not designed as decision-support tools for sup-
porting in-season fertilisation management. Specific simulation models for in-season N
management have been developed [26], and Cichota et al. [27] used the APSIM model to
develop an algorithm for fine-tuning the N requirements for grasslands based on plant N
status and potential growth. A similar approach would also be relevant for winter wheat
and other cereals, and such an algorithm could then be coupled with remote sensing and
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potentially be developed into a decision support tool to optimise fertiliser management
and to reduce production cost and environmental risk.

The objective of this simulation study is to develop an algorithm that can guide N
fertilisation in winter wheat depending on the plant N status in spring and evaluate the
algorithm regarding grain yield and area- and product-based N leaching. The algorithm
was developed with the APSIM model, which has previously been calibrated for the
environmental conditions in Denmark regarding phenology, grain yield, N uptake and
biomass development under 13 different fertiliser management strategies.

2. Materials and Methods

The simulations were conducted using the APSIM modelling framework (version
7.10). APSIM is a process-based deterministic crop model that simulates crop phenology,
crop growth and development, and carbon (C) and N dynamics in the soil and plants at
a daily time step as a function of climatic, agronomic, and soil characteristics inputs. The
key APSIM modules used in this study were SoilWat for simulating water movement and
SurfaceOM and SoilN, which simulate the dynamics of N and C, with manager scripts
accounting for management such as sowing, harvesting and fertiliser application. For
simulating winter wheat, the cultivar ‘Dan_winter’ was used, which has been calibrated
and evaluated by Kumar et al. [28] based on field data from seven locations across Denmark,
five years, two sowing dates, and with 7 to 13 fertiliser treatments. Field data included the
phenology, N status of the biomass during early phenological stages, and grain yield and
grain N at harvest maturity. A detailed description of the plant process and parameters
involved in the simulation of C and N dynamics in the APSIM wheat model is available
online (https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.
pdf; accessed on 24 July 2023).

APSIM simulations were set up for climate and growth conditions at the Flakkebjerg
location, Denmark, for 2018/2019. The soil at the site is a sandy loam, with the setup of the
soil profile characteristics as provided by Kumar et al. [28]. The simulations were initialised
in March 2018, and a generic crop (Canola) was sown to adjust to environmental conditions,
thus reducing the effects of the initial conditions. No N fertiliser was applied to the canola
crop, which was harvested at the end of August. The winter wheat was sown according to
common practice at the end of September (20 September 2018). Under common agricultural
practices, the N fertilisation rate to winter wheat is around 200 kg ha−1, with mineral N
fertiliser surface-applied in two split applications in the middle of March (50 kg N ha−1)
and April (150 kg N ha−1). Recently, a split application with three application timings has
also been promoted to reduce environmental impacts due to overfertilization with N. Thus,
different fertilisation schemes were set up within APSIM.

For the development of the algorithm, fertilizer rates ranged from 0 to 250 kg N ha−1

(interval of 50 kg ha−1), and these were applied at the BBCH (a phenological stage, see [22]
scales of 30, 32, and 37. Five different algorithms (Algorithm 1 to 5) were developed,
which differed in the timing (BBCH stage) of fertiliser application (Table 1). Additionally,
each simulation received a single dose of 50 kg N ha−1 at BBCH23. To obtain a range of
plant N status during the early growth stages (at the time when decisions regarding N
fertilisation rates are made), the mineral soil N at the time of sowing in autumn was varied
between 20 and 180 kg N ha−1 (with an interval of 20 kg N ha−1). This range in mineral
soil N has been chosen to obtain realistic N uptake rates, which align with plant N uptake
amounts measured spring across various locations in Denmark [29]. The soil organic carbon
and nitrogen were constant (at 1.5% organic carbon) across all simulations and did not
change with the initial soil mineral N. This implies that the difference in mineral soil is
only due to leftover fertiliser from the previous year and not due to differences in organic
matter mineralisation. Within a full factorial setup, these initial soil N were simulated
with the various fertiliser schemes at the three BBCH stages, resulting in a combination of
3087 simulations.

https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdf
https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdf
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Table 1. Fertiliser scenarios for developing the fertiliser algorithm, with Nr = N fertilisation rate
(kg N ha−1) and BBCH = phenological stage of the wheat according to Lancashire et al. [30]. Nmin
are the initial values of soil mineral N.

Fertilisation Scheme Nr BBCH23 Nr BBCH30 Nr BBCH32 Nr BBCH37

Algorithm 1 50 0–250 - -
Algorithm 2 50 - 0–250 -
Algorithm 3 50 - - 0–250
Algorithm 4 50 50 0–250 -
Algorithm 5 50 100 - 0–250

The algorithm, a three-dimensional surface response function, is based on the Mitscher-
lich yield response function:

Y = Ymax − (Ymax − Y0)exp−βNr (1)

where Y is the grain yield (kg DM ha−1), Ymax is the maximum yield under the climatic
and edaphic conditions (kg DM ha−1), Nr is the rate of N applied (kg N ha−1), Y0 is the
yield when no external N is applied (Nr = 0), and β is an ‘activity’ coefficient, which is a
measure of the availability of the applied nutrient to the crop. Following Vogeler et al. [31],
it is assumed that both Y0 and β are dependent on the N uptake during early development:

Y0 = a + b Nuptake (2)

β = c + d Nuptake (3)

Simulated grain yield responses (to soil mineral N and fertilisation rates) were fitted
to the developed 3D model (Equations (1)–(3)) for the different BBCH stages using Table
Curve 3D (v. 4.0; SYSTAT Software Inc., Richmond, CA, USA) and using a Ymax range
between 9300 and 9400 kg DM ha−1, as the maximum obtained in the simulations for the
algorithm development.

APSIM simulations with different fertilisation management were set up to evaluate the
performance of the fertiliser algorithm. The simulations were derived from the simulation
described above and comprised five different soil mineral N contents (25, 50, 75, 100, and
140 kg N ha−1) and either used the standard site and crop fertilisation rates or were based
on one of the algorithms (Table 2). The algorithm was used at different BBCH stages to
apply the required fertilisation rate while targeting a maximum yield of 95% of Ymax. To
avoid excessive N application, the maximum N fertilisation rate at any BBCH stage was
limited to 200 kg ha−1.

Table 2. Fertilisation rates (Nr; kg ha−1) scenarios for testing the performance of the fertiliser
algorithm. For each of the fertilisation schemes, the soil mineral N in autumn at sowing of the winter
wheat was either 25, 50, 75, 100 or 140 kg N ha−1.

Fertilisation Scheme Nr BBCH23 Nr BBCH30 Nr BBCH32 Nr BBCH37

Standard 50 150
Algorithm 1 50 Algorithm 1 - -
Algorithm 2 50 - Algorithm 2 -
Algorithm 3 50 - - Algorithm 3
Algorithm 4 50 50 Algorithm 4 -
Algorithm 5 50 100 - Algorithm 5

3. Results
3.1. Yield Response Curves

To obtain yield estimates depending on the N uptake of the wheat during the early
development and the fertilisation rate, Equation (1) (with 2 and 3) was fitted to the three-
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dimensional yield data (yield, N uptake, and fertiliser rate), providing a response surface
that can be used to guide N fertilisation, as shown below. The fitting was performed
separately for the three different BBCH stages and the five different algorithms, which
included single and split applications of N. For each of the BBCH stages, only simulations
were used in which the fertilisation rates at the other BBCH stages were the same (e.g.,
for BBCH32, only simulations with N fertilisation of 0 kg N ha−1 at BBCH30 and BBCH
37 were used). The developed equation describes the response curve reasonably well
for both the algorithms with a single N application (Figure 1) and the algorithms with
split N fertilisation (Figure 2). Fitted standard errors for the yield range between 167
and 451 kg DM ha−1. The values for the response surface parameters for the different
Algorithms and BBCH stages are given in Table 3.
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Table 3. Parameter values for the response surface function algorithms for different BBCH stages and
fertilisation rates (Nr; kg ha−1) used in the simulations for the respective fertiliser schemes, Ymax is
the maximum yield under the climatic and edaphic conditions (kg DM ha−1).

Fertilisation
Scheme BBCH Nr

BBCH30
Nr

BBCH32
Nr

BBCH37 Ymax a b c d

Algorithm 1 30 0–250 - - 9400 3849 49.6 −1.0 × 10−3 −1.9 × 10−4

Algorithm 2 32 - 0–250 - 9400 3367 48.1 −1.6 × 10−3 −1.9 × 10−4

Algorithm 3 37 - - 0–250 9397 3000 44.1 −2.2 × 10−3 −1.8 × 10−4

Algorithm 4 32 50 0–250 - 9402 3000 55.7 −1.5 × 10−3 −2.2 × 10−4

Algorithm 5 37 100 - 0–250 9330 3031 42.4 −1.2 × 10−2 −2.7 × 10−4



Crops 2024, 4 139

By substitution of Equations (2) and (3) into Equation (1) and rearranging, the amount
of fertiliser required for a targeted yield (YT) at or below Ymax can then be calculated, and
for any N uptake and for the different BBCH stages:

Nr,NuptakeBBCH = ln

 (Ymax − YT)(
Ymax −

(
a + b Nuptake

))
/

(
c − d Nuptake

)
(4)

The fertiliser requirement for 95% of the maximum yield based on the various algo-
rithms for the different BBCH stages is shown in Figure 3, which shows an exponential
decrease in N fertiliser requirement with increased N uptake at any BBCH stage. For exam-
ple, at BBCH30, an N uptake of 60 kg ha−1 requires a N fertilisation of 103 kg N ha−1, while
at an uptake of 80 kg N/ha−1, only 38 N ha−1 needs to be applied for achieving 95% of the
maximum yield. At any N uptake, the required N fertilisation rate increases with increasing
phenological development. For example, at an N uptake of 60 kg ha−1, the required N
fertilisation rate at BBCH30, BBCH32, and BBCH37 are 103, 123, and 161 kg ha−1. Split
application, as in Algorithm 4 and Algorithm 5, reduces the required N fertilisation rate, as
the future supply would be increased, as not all the applied N fertiliser would have been
taken up by the crop.
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Figure 3. Nitrogen fertilisation requirement for winter wheat depending on N uptake at different
BBCH development stages and targeting 95% of the maximum yield. In all algorithms (Alg1 to Alg5),
N fertiliser was applied at BBCH23 at a rate of 50 kg N ha−1, and for Alg4 and Alg5, also at BBCH30
at a rate of 50 and 100 kg N ha−1.

3.2. Algorithm Evaluation

The comparison between simulation results, when N fertilisation at BBCH30 was either
based on the standard application (50 kg N ha−1 at BBCH23 and 150 kg N ha−1 at BBCH30)
or the N status and using the algorithm (Equation (4), with the values for Algorithm 1
provided in Table 3), shows that at most N status in spring, the algorithm would apply more
N (Table 4). This higher application results in a higher total N uptake at maturity and an
increase in both grain yield and grain N. Leaching is, however, also substantially increased,
by 17 to 32% when area-based and by 15 to 27% when product-based (N leaching/kg grain
DM). This shows that increased N fertilisation above the standard of 200 kg N ha−1 at stage
BBCH30 can increase grain yields, at least in the year simulated. This would, however,
come at a high cost regarding N leaching. As in these simulation setups, only the soil
mineral N was altered; additional N from increased N mineralisation in areas with higher
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soil organic C is not accounted for. This would likely increase the N uptake in spring and
thus reduce the required N fertilisation rates in such areas further.

Table 4. Comparison of using standard fertilisation schedule with fertilisation based on Alg1, in
which the fertilisation rate is based on the plant N status at BBCH30. The colour scaling indicates the
ranking of each variable, with green and red being the lowest or highest depending on the parameter.
Nmin is the soil mineral nitrogen (kg N ha−1) in autumn at the sowing of the winter wheat. N uptake
(grain and straw), Nr (fertilisation rate), grain N, and N leaching in kg N ha−1, grain yield in kg ha−1.

Fertilisation
Scheme Nmin

Nuptake
BBCH30 Nr N Uptake Yield Grain N N Leaching Nleach/

kg DM
Standard 25 47 200 165 8389 135 28 0.0033

Algorithm 1 25 47 250 202 9345 163 37 0.0039
Standard 50 52 200 173 8645 141 32 0.0037

Algorithm 1 50 52 250 210 9311 162 42 0.0045
Standard 75 57 200 181 8852 149 36 0.0040

Algorithm 1 75 57 249 216 9265 161 47 0.0051
Standard 100 62 200 189 9072 156 39 0.0043

Algorithm 1 100 62 225 205 9241 161 46 0.0050
Standard 140 70 200 202 9237 161 47 0.0051

Algorithm 1 140 70 189 195 9199 160 43 0.0047

Delaying fertilisation until BBCH32 or BBCH37 and using Alg2 or Alg3 similarly
resulted in higher N fertilization rates compared to the standard application with higher
grain yield, grain N and N leaching (Table 5). The product-related N leaching was also
increased with the use of Algorithms 1, 2 and 3. Targeting a lower maximum yield would
obviously reduce the amount of fertiliser applied via these algorithms and consequently
yield N leaching. Only at high soil, Nmin was the N rate reduced, and this was at the
cost of reduced yield and grain N but also reduced N leaching. The use of a more split
application of N fertiliser at BBCH30 and BBCH32 based on the N status, as performed
using Algorithms 4 and 5, can be beneficial with similar yields with reduced N leaching,
especially at high soil Nmin, where product-related reductions in N leaching were up
to 29%.

Table 5. Model outputs for using fertiliser algorithms, in which the fertilisation rate (Nr) is based on
the plant N status at different BBCH stages. Nmin is the soil mineral N in autumn (kg N ha−1). N
uptake (BBCH), Nr, N uptake (grain and straw), grain N, and N leaching are in kg N ha−1; yield is in
kg DM ha−1. The number in brackets indicates the BBCH stage for the N uptake. The N fertilisation
rate includes the total amount applied at the various BBCH stages.

Nmin
Fert

Scheme
Nuptake
(BBCH) Nr

N
Uptake Yield Grain N N Leach N Leach/kg

DM
Diff N

Leach/kg DM

25 standard 47 (30) 200 165 8389 135 28 0.0033
25 Alg 1 47 (30) 250 202 9345 163 37 0.0039 17%
25 Alg 2 49 (32) 250 203 9177 166 40 0.0044 32%
25 Alg 3 52 (37) 250 215 8264 141 40 0.0048 45%
25 Alg 4 66 (32) 234 190 9214 159 34 0.0037 11%
25 Alg 5 113 (37) 218 178 8831 148 30 0.0034 3%
50 standard 52 (30) 200 173 8645 141 32 0.0037
50 Alg 1 52 (30) 250 210 9312 162 42 0.0045 22%
50 Alg 2 55 (32) 250 209 9243 164 46 0.0050 36%
50 Alg 3 60 (37) 250 219 8907 155 46 0.0051 39%
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Table 5. Cont.

Nmin
Fert

Scheme
Nuptake
(BBCH) Nr

N
Uptake Yield Grain N N Leach N Leach/kg

DM
Diff N

Leach/kg DM

50 Alg 4 74 (32) 207 179 8825 147 33 0.0037 1%
50 Alg 5 122 (37) 198 172 8615 141 31 0.0036 −2%
75 standard 57 (30) 200 181 8852 149 36 0.0040
75 Alg 1 57 (30) 249 216 9265 161 47 0.0051 27%
75 Alg 2 62 (32) 235 206 9289 162 47 0.0050 25%
75 Alg 3 68 (37) 247 219 9255 161 51 0.0055 37%
75 Alg 4 80 (32) 189 176 8675 144 32 0.0037 −8%
75 Alg 5 128 (37) 183 174 8615 142 30 0.0034 −14%

100 standard 62 (30) 200 189 9072 156 39 0.0043
100 Alg 1 62 (30) 225 205 9241 161 46 0.0050 15%
100 Alg 2 68 (32) 206 192 9244 159 43 0.0047 9%
100 Alg 3 77 (37) 212 202 9309 161 44 0.0048 11%
100 Alg 4 85 (32) 174 176 8661 144 30 0.0035 −18%
100 Alg 5 133 (37) 170 174 8587 141 29 0.0034 −21%
140 standard 70 (30) 200 202 9237 161 47 0.0051
140 Alg 1 70 (30) 189 195 9199 160 43 0.0047 −7%
140 Alg 2 80 (32) 163 180 8758 147 35 0.0041 −20%
140 Alg 3 92 (37) 165 183 8913 150 36 0.0041 −20%
140 Alg 4 93 (32) 149 174 8574 141 31 0.0036 −29%
140 Alg 5 136 (37) 160 179 8736 146 34 0.0039 −23%

4. Discussion

This simulation study was set up to develop algorithms for guiding N fertilisation rates
for winter wheat based on the N uptake at different early development stages in spring. The
algorithms were then tested and compared to a standard blanket fertilisation rate. Results
indicated that when targeting 95% of the maximum yield, the use of the algorithms resulted
in higher N application rates, with higher yields, but also increased N leaching. Using a
lower yield target would obviously decrease the N fertilisation rate and also N leaching
but decrease the yield. The use of a split application with three applications resulted in
a substantial decrease in product-related N leaching at medium to high soil mineral N.
This shows that the developed algorithms is promising for improving N fertilisation and
controlling N losses in cereal production systems. So far, the algorithms have only been
developed for one year and one location, and it needs to be tested and parameterised for
other environments as well as tested in the field. It should also be noted that the variation in
crop growth here was limited to N supply, while in-field variation can also be due to other
constraints, such as water availability and other macro- and micro-nutrients—although
various studies have shown the latter to be of minor importance for the often observed
large in-field yield variation [32].

The developed algorithms can be combined with remote sensing of the N status and
developed into a decision support system. A dataset, including various winter wheat trials
conducted in different locations in Denmark [29] and with a range of N fertilisation, shows
a good correlation between the drone-estimated NDRE (Normalised Difference Red Edge)
index at growth stages 28–57 and N uptake (Figure 4), with an R2 of 0.62. As the NDRE
saturates at about 0.6, this relationship should only be used up to a N uptake of about
75 kg N ha−1. Such information obtained from remote sensing can then be used to calculate
the amount of fertiliser required for a targeted yield (YT) using the developed algorithm
(Equation (4)), with the parameter values for the corresponding BBCH stage (Table 3).
The targeted yield can be the maximum, but also the one corresponding to the economic
optimum, the fertilisation rate at which the marginal cost of the fertilisation corresponds
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to the marginal revenue [33]. This would also comply with the maximum allowable N
fertilisation rates in Denmark [34]. So, for example, an NDRE value of 0.4 equates to a N
uptake of 34.5 kg ha−1 (Figure 4).
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