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Abstract: Background: Skin substitutes play a crucial role in wound care by actively modulating
the wound healing process, promoting angiogenesis, and protecting the integrity of the native
extracellular matrix. Consequently, surgeons have increasingly recognized these resources as excellent
complements to improve reconstructive outcomes. This review focuses on the author’s experience
using these biomaterials in complex cases, highlighting the benefits they bring to patient care.
Methods: A literature review was conducted to evaluate the regenerative properties of skin substitutes
and their applicability in head and neck, upper and lower extremities, and trunk reconstruction.
Results: The reviewed literature, along with the authors’ experience, supports the adjunct use of skin
substitutes in various reconstructive situations. Combining them with skin grafts improves resulting
skin quality and may also enhance donor site healing. They have proven to be effective in addressing
chronic venous ulcers, traumatic wounds with limited donor tissues for coverage, extensive burns,
diabetic foot ulcers, and oncological resections in the face and scalp. Furthermore, combining
them with autologous tissue shows promising results in achieving stable closure. Conclusions:
Incorporating skin substitutes in complex reconstructive scenarios offers multiple benefits. Their
regenerative properties and ability to modulate the healing process contribute to enhanced outcomes
and reduced overall costs.
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1. Introduction

Historically, plastic surgeons rely on a step-like approach known as the “Recon-
structive Ladder” when planning reconstruction procedures. Starting with the simplest
technique available, this would then progressively escalate to more complex interventions
when appropriate [1,2]. In 1994, Gotlieb and Krieger proposed the “Reconstructive Eleva-
tor”, which allowed surgeons to select the most suitable primary reconstructive technique,
regardless of complexity [3]. Then, in a more recent development, came the “Reconstructive
Grid”, which considered factors such as wound complexity, surgeon expertise, available
resources, and patient preferences when deciding on a method for wound closure [4–6].

Over the last twenty years, there has been a remarkable advancement in the devel-
opment of skin substitutes, leading to their gradual integration into clinical practice. This
evolution has significantly transformed the approach to managing soft tissue deficits in
contemporary medical settings [7]. Several studies have indicated that the use of skin
substitutes is associated with a reduction in the time required for wound closure [8], and
their inherent biological properties have been shown to effectively address a range of
complexities in the wound care process, including inflammation, re-epithelialization, an-
giogenesis, wound contraction, and extracellular matrix remodeling [9]. In our experience,
skin substitutes can provide temporal coverage when there is limited native tissue available
and can also offer a simpler alternative to complex reconstructive procedures in situations
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when they are contraindicated or unsafe, particularly in frail or unstable patients [10,11].
This review emphasizes the benefits of integrating skin substitutes as adjunctive com-
ponents in complex reconstructive scenarios without proposing specific standards for
locoregional reconstruction.

2. Skin Substitutes for Reconstruction and Wound Care: Properties and Types
2.1. Properties

Skin substitutes have become essential for tissue reinforcement in reconstruction and
wound care because of their regenerative properties, active modulation of the wound
healing process, and remodeling of the extracellular matrix (ECM) [12]. When applied to
the wound, these tridimensional scaffolds are quickly infiltrated by cellular components
and growth factors that stimulate angiogenesis and help promote wound healing [13,14].
Studies have shown that wounds treated with dermal matrices exhibit increased expression
of various growth factors such as EGF, FGF, PDGF, and TGF-β [7,9,15]. This increase in
expression is due to natural cytokines stored within the scaffold and their cumulative effect
on the local production of molecules by native cells in the recipient tissue [11]. Addition-
ally, these matrices offer immediate protection of the native ECM against dehydration,
microorganism colonization, exposure to toxins, and external environmental factors that
can disrupt the healing process [15].

2.2. Types

According to their composition, currently, there are two main families of skin substi-
tutes, biologicals, and biosynthetics (Figure 1). Biologicals contain dermal components and
can be subcategorized based on their donor origin into autografts, allografts, and xenografts.
Allografts are derived from cadaveric and neonatal donors, whereas xenografts are typ-
ically sourced from bovine and porcine sources. Although xenografts could be derived
from a variety of species, they are invariably acellular. This feature ensures that they are
immunologically inert, thus avoiding any allergic reactions in the host [16]. Biologicals can
be composed of a single layer or multiple layers to incorporate an epidermal element that
mimics the native epidermis. This can be of cellular origin, such as living keratinocytes, or
a synthetic temporary outer layer composed of a thin silicone film to protect the underlying
dermal scaffold. In contrast, biosynthetic skin substitutes, also known as hybrids, include
absorbable or non-absorbable materials, such as polyglycolic acid and others, to reinforce
the biological matrix, providing additional support and structure.
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Acellular Dermal Matrices (ADMs) are obtained from allogeneic and xenogeneic
donors and retain numerous ECM components, including collagen, elastin, laminin,
hyaluronic acid, and glycosaminoglycans [16]. Allogenic ADMs are classified as banked
human tissue by the Food and Drug Administration (FDA) because they are produced from
cadaveric donor skin. Xenogeneic ADMs are classified as medical devices. Certain alterna-
tive products involve additional processing, such as collagen cross-linking, which aids in
minimizing degradation by native collagenases [17]. A recently developed scaffold derived
from porcine urinary bladder extracellular matrix has been found to be advantageous in
various respects. Studies have shown that they enhance progenitor cell migration, prolifera-
tion, and differentiation while promoting angiogenesis, reinnervation, and minimal foreign
body reaction [18]. Particulate and paste presentations are currently available and can be
used to treat tunneled or irregular wounds, although they have comparatively shorter
absorption times. Cellular dermal matrices are composed primarily of human neonatal
fibroblasts and keratinocytes cultured on a bovine collagen matrix or a biodegradable
polyglactin mesh. They are mainly used in non-infected venous leg ulcers and neuropathic
diabetic foot ulcers without tendon, muscle, capsule, or bone exposure.

3. Current Uses of Skin Substitutes
3.1. Scalp, Face, and Neck Reconstruction after Oncological Resection, Trauma, and Burns

Scalp reconstruction is a challenging task, especially following wide excisions for cancer
treatment, which can result in defects that disrupt the blood supply of potential local flaps.
Several articles in the literature discuss comprehensive algorithms for scalp reconstruction;
however, such detailed approaches are beyond the scope of this review [19–21]. Local and
regional flaps typically provide stable coverage of scalp defects, but their availability may
be limited due to prior surgery, radiotherapy, or scarring (Figure 2) [22,23]. Free tissue flaps
have high survival rates and may be necessary for large scalp defects, which can result
in donor-site morbidity, increased hospitalization length, and higher overall cost [24,25].
However, when temporary coverage is indicated or a previous reconstruction attempt has
failed, skin substitutes become viable alternatives [26–28]. In full-thickness defects with
an exposed skull, skin substitutes can be considered an initial step in the reconstructive
strategy. A single-stage reconstruction can be achieved by placing a dermal matrix and a
thin split-thickness skin graft (STSG) over the burred external table, while some authors
recommend holding skin grafting for about six weeks until granulation tissue is optimal
for graft take [29]. When possible, vascularized pericranial flaps can be mobilized to
cover the exposed skull before skin substitute placement [28–31]. Cost-analysis studies
have demonstrated that treating scalp defects larger than 100 cm2 with the use of dermal
matrices is more cost-effective than free and local flaps [32]. Furthermore, the use of
temporal synthetic biodegradable matrices has proven beneficial in facilitating the closure
of large and infected scalp defects (Figure 3) [33].

The many aesthetic subunits of the face require complex reconstructions after cancer
resection defects or trauma or as a result of burns. Defects over the lower eyelids, inner
cantus, cheek, and neck can potentially benefit from incorporating skin substitutes as an
adjunct to reconstructive procedures to assist in covering the defect. For example, the
application of dehydrated human amniotic membrane over defects in the lower eyelids
or a bilayer dermal matrix over defects on the inner cantus has shown promising results,
providing stable closure of the wounds and improving overall scar healing pain scores [34].
Similarly, in reconstructions of large neck defects with complex regional flaps, the use of
skin substitutes such as bilayer dermal matrices and others can facilitate and reinforce
the closure and temporalize the wound bed in preparation for subsequent skin grafting
(Figure 4).
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Figure 2. Use of bilayer dermal regeneration template in the face. (a). A 50-year-old female with a 
preauricular benign histiocytoma from a facelift scar. (b). Resection of the lesion resulted in a full-
thickness defect of 6 × 4 cm. (c). The absence of facial skin laxity due to the previous facelift did not 
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Figure 2. Use of bilayer dermal regeneration template in the face. (a). A 50-year-old female with
a preauricular benign histiocytoma from a facelift scar. (b). Resection of the lesion resulted in a
full-thickness defect of 6 × 4 cm. (c). The absence of facial skin laxity due to the previous facelift
did not allow the advancement of a flap over the defect, which was covered with a bilayer dermal
regeneration template (d). Successful wound healing with acceptable aesthetic results.

Trauma Care 2024, 4, FOR PEER REVIEW 4 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Use of bilayer dermal regeneration template in the face. (a). A 50-year-old female with a 
preauricular benign histiocytoma from a facelift scar. (b). Resection of the lesion resulted in a full-
thickness defect of 6 × 4 cm. (c). The absence of facial skin laxity due to the previous facelift did not 
. 

  
(a) (b) 

Figure 3. Cont.



Trauma Care 2024, 4 152Trauma Care 2024, 4, FOR PEER REVIEW 5 
 

 

 
(c) 

Figure 3. Scalp Reconstruction After Large Squamous Cell Carcinoma Resection with Local Trans-
position Flap. (a). A hyaluronic acid-based matrix was used to cover the donor defect over a previ-
ously burred skull. (b). After full integration of the dermal matrix, it was covered with a split-thick-
ness skin graft (not shown). (c). The wound remained stable after 6 months. 

The many aesthetic subunits of the face require complex reconstructions after cancer 
resection defects or trauma or as a result of burns. Defects over the lower eyelids, inner 
cantus, cheek, and neck can potentially benefit from incorporating skin substitutes as an 
adjunct to reconstructive procedures to assist in covering the defect. For example, the ap-
plication of dehydrated human amniotic membrane over defects in the lower eyelids or a 
bilayer dermal matrix over defects on the inner cantus has shown promising results, 
providing stable closure of the wounds and improving overall scar healing pain scores 
[34]. Similarly, in reconstructions of large neck defects with complex regional flaps, the 
use of skin substitutes such as bilayer dermal matrices and others can facilitate and rein-
force the closure and temporalize the wound bed in preparation for subsequent skin graft-
ing (Figure 4).  

  
(a) (b) 

Figure 3. Scalp Reconstruction After Large Squamous Cell Carcinoma Resection with Local Transpo-
sition Flap. (a). A hyaluronic acid-based matrix was used to cover the donor defect over a previously
burred skull. (b). After full integration of the dermal matrix, it was covered with a split-thickness
skin graft (not shown). (c). The wound remained stable after 6 months.

Facial burns, especially in infants and children, benefit from the application of certain
skin substitutes such as human amniotic membranes. Studies have shown that the regener-
ative characteristics of these biomaterials are safe and enhance the wound healing process
in this vulnerable population where donor skin is limited or not available [35].
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Figure 4. Utilization of bilayer dermal regeneration template, negative pressure wound therapy, and
split-thickness skin graft in the neck. (a). A 60-year-old female with an oropharyngeal squamous
cell carcinoma extending to the neck. (b) Extensive mandibular resection defect covered with a
pediculated pectoralis major muscle flap. (c) Bilayer dermal regeneration template applied to the
exposed muscle flap. (d) Skin graft performed three weeks later provided stable coverage for
adjuvant radiotherapy.

3.2. Upper Extremities Reconstruction after Burns, Trauma, and Chronic Wounds

Traumatic and burn injuries to the upper extremity, particularly the hand, pose sig-
nificant challenges as they are often associated with high rates of disability and morbidity,
often necessitating multiple and complex reconstructive procedures [36–38]. In the context
of hand burns, digit scar contractures are a common occurrence, and the standard of care
often involves the utilization of local flaps and full-thickness skin grafts for scar release
and the return of range of motion. The incorporation of skin substitutes, specifically bilayer
dermal matrices, can serve as a valuable adjunct to these procedures, providing temporary
and definitive coverage for secondary defects and prior to the application of skin grafts [39].
For extensive upper extremity burn wounds, an increasingly popular strategy involves
the combination of skin grafts with dermal matrices. This approach has shown promising
results in enhancing the quality and elasticity of the skin and ultimately improving the
resultant range of motion of the affected joints. The key to this improvement lies in the
introduction of a regenerative scaffold of elastin and collagen into the wound bed that
serves as a template for new tissue growth [12,40–42]. Furthermore, when this approach
is used in conjunction with negative pressure wound therapy (NPWT), the outcomes are
even more promising, resulting in a superior scar appearance compared to the use of skin
grafts alone [43].

Traumatic fingertip injuries are common. The decision between nonoperative and op-
erative management depends on specific criteria. Secondary intention healing is indicated
in patients without exposed bone or tendon and less than 2 cm of skin loss or in children
with exposed bone [44]. Operative interventions, including primary closure, full-thickness
skin grafting, and flap reconstruction, are tailored based on the extent of tissue loss and
exposure of bone or tendon. The goal of fingertip reconstruction lies in the restoration
of sensate and durable fingertips with adequate bone support for nail growth. Improper
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treatment may lead to stiffness, long-term functional loss, and hook nail deformity [44].
The adjunct use of skin substitutes for second-intention healing of fingertip injuries is a
feasible option (Figure 5). In a recent retrospective cohort study, the use of a collagen–elastin
template scaffold treated with autologous adipose-derived stromal vascular fraction cells
led to promising results, including better scar quality, higher tactile recovery, improved
range of motion, higher patient satisfaction, shorter surgical times and hospital stays, and
lower surgical costs compared to the reverse digital artery island flap [45]. Cell therapy
using autologous cells accelerates wound healing by reducing the invasion time of host
cells and early skin synthesis, and while cell-only treatment quickens healing, it does not
affect wound contraction; hence, cells are often used with artificial dermal scaffolds to
optimize healing and minimize wound contraction without delay in healing for skin and
soft tissue defects [46]. Limited case series have indicated that complex cases with exposed
tendons and joints following burns, traumatic injuries, and oncological resections have
been successfully treated with either single or staged composite applications of dermal
substitutes and split-thickness skin grafts [37,47–49]. Some of these injuries necessitate
that the dermal substitutes be piled or stacked to increase the thickness and sturdiness of
coverage when applied over exposed bone and tendon [50]. Some of the matrices reported
for this use include collagen–elastin templates, esterified hyaluronic acid matrices, and
dermal regeneration templates.

Chronic and infected upper extremity wounds are difficult. Treatment involves re-
construction after a full course of antibiotics and serial debridement. Under these circum-
stances, the resulting defects are often extensive and complex. The use of temporary skin
substitutes, such as synthetic biodegradable polyurethane matrices, has proven to be bene-
ficial. It increases the success rates of reconstruction and reduces morbidity in patients with
chronic wounds, including those complicated by osteomyelitis [51–53]. Another example
noteworthy to highlight is the management of severe axillary hidradenitis suppurativa,
which necessitates extensive full-thickness skin resection of the axillary region, resulting in
undesirable scarring and contracture despite local flaps and the application of full-thickness
skin grafts [54]. Studies have shown that applying a bilayer dermal matrix followed by skin
grafts has positive outcomes, including a low recurrence rate, improved range of motion
at the shoulder, better aesthetic results, and lower pain scores compared to skin grafts
alone [55–58].
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Figure 5. Utilization of a Hyaluronic Acid-Based Biological Bilaminar Matrix for Secondary Wound
Healing of the Fingertip After a Necrotizing Infection. (a). A 58-year-old male patient, who is diabetic,
presented with a necrotizing infection in his left thumb. (b). Debridement and wet-to-dry dressing
changes were performed until an appropriate wound bed was obtained. (c). A bilaminar hyaluronic
acid matrix was applied to the wound and left in place for 3 weeks. (d). A month after the initial
presentation, patients display full healing of the wound and initial return of protective sensation.
Although a volume deficiency is still evident, the patient can now start hand occupational therapy
and return to work.

3.3. Applications on Lower Extremities Reconstruction

Most chronic non-healing wounds in the lower extremities are the consequence of
multiple conditions, including venous insufficiency, diabetic foot ulcers, osteomyelitis,
peripheral artery disease, deep burns, necrotizing infections, tumor resection defects, and
severe trauma. Providing care for these wounds is particularly challenging, as patients
are subject to significant disability and recurrence [59]. Reconstruction involves the use of
local or free flaps, with favorable outcomes and high rates of limb salvage. Nevertheless,
difficulties can arise due to the limited availability of donor tissues, particularly in complex
cases involving significant soft tissue loss [60,61]. Most skin substitutes are available off
the shelf, making their use especially convenient in urgent situations. They can be used as
temporary biological coverage, for wound bed preparation for future skin grafting, or in
conjunction with flaps in complex wounds, often with satisfactory results [62] (Figure 6).
The retrospective study by Kozac et al. [63] analyzed the success of three reconstructive
procedures, namely bilayer wound matrix, local tissue rearrangement, and free flap recon-
struction, in over 300 adult patients with lower extremity wounds. Success was defined
differently for each procedure, with the primary outcome being graft success at 180 days.
Secondary outcomes included amputation rates, readmissions, reoperations, and costs. The
study found varying success rates: 69.2% for bilayer wound matrix, 91.3% for local tissue
rearrangement, and 93.3% for free flaps. Despite longer hospital stays and higher costs,
free flap reconstructions had the lowest amputation rates. However, the study acknowl-
edged significant data heterogeneity, including comparability of injuries and patient factors
between groups, suggesting the need for further studies for a more comprehensive un-
derstanding. Reconstructive success is associated with avoiding amputation and includes
other factors such as graft success, readmissions, reoperations, and costs. While this study
is retrospective, other study designs could also provide valuable insights into this field.
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higher costs, free flap reconstructions had the lowest amputation rates. However, the 
study acknowledged significant data heterogeneity, including comparability of injuries 
and patient factors between groups, suggesting the need for further studies for a more 
comprehensive understanding. Reconstructive success is associated with avoiding ampu-
tation and includes other factors such as graft success, readmissions, reoperations, and 
costs. While this study is retrospective, other study designs could also provide valuable 
insights into this field.  
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Figure 6. Bilayer dermal regeneration template, particulate urinary bladder matrix, and split-
thickness skin grafts for coverage of a complex lower extremity injury. (a). A mid-60s male with
a propeller injury. Vascular and orthopedic intervention was required due to Gustilo IIIC tibial
fracture. (b). The patient underwent multiple debridement, application of wound antibiotic beads,
and negative pressure wound dressing. (c). A large knee defect was covered with a reverse gracilis
muscle flap and skin graft, while two large defects over the leg were temporarily covered with the
bilayer dermal matrix. (d). Wound bed optimized for skin graft take. (e). Patient required total
knee arthroplasty 12 months later due to the severity of the injury. (f). Patient ultimately had a full
restoration of function.
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Pontell et al. [64] conducted a study comparing two groups of patients with foot
and ankle wounds. The first group, consisting of four patients, received a reverse sural
adipofascial flap (RSAF) with immediate split-thickness skin grafting, taking an average
of 141.2 days to heal. The second group, also of four patients, was treated with RSAF
in combination with an acellular dermal matrix and negative-pressure wound therapy,
followed by STSG at a later date, with an average healing time of 104.5 days. This latter
approach resulted in a healing time reduction of 36.7 days on average, a 25% decrease
compared to the first group. The study suggests that the use of ADM and NPWT, along
with RSAF, could potentially reduce the overall healing time compared to RSAF with
immediate STSG. However, further comprehensive studies are required to validate these
results [64]. Similarly, in chronic venous ulcers, bilayer dermal matrices have shown
advantageous results, decreasing healing time compared to controls treated with standard
wound care [65] (Figure 7).
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Figure 7. Particulate and laminated urinary bladder matrix under negative pressure wound therapy
to treat lower extremity venous ulcer. (a). A mid-40s morbidly obese female with a large infected
venous ulcer that failed to improve after months of wound care and pressure dressing. (b). IV
antibiotics, surgical debridement, and wound preparation were performed before skin substitute
application. (c). A split-thickness skin graft provided final coverage, improving the patient’s quality
of life.

Likewise, in a study by Kavros et al. [66], a fetal bovine acellular dermal matrix was
used to treat 46 patients with chronic diabetic foot ulcers. The study found that 76% of the
patients healed within 12 weeks, with an average healing time of 53.1 days, a relatively
brief period considering that these chronic ulcers had persisted for an average of 286 days.
Most healed wounds required only one or two applications of the ADM. Even for ulcers
not fully healed within 12 weeks, the wound area was reduced by 71.4% on average. The
study suggests that this ADM, combined with standard care, can effectively treat diabetic
foot ulcers, although results may vary and further research is needed. Furthermore, studies
indicate that skin substitutes can boost tissue oxygen pressure in these poorly vascularized
wound beds [67] (Figure 8).

3.4. Applications on Trunk and Spinal Reconstruction

The use of dermal matrices in abdominal reconstruction has become increasingly com-
mon as local and free flaps are utilized for the repair of large and complex abdominal wall
defects following oncologic resections and catastrophic abdominal complications [68,69].
Strategies for the reconstruction of partial and complete defects of the abdominal wall en-
compass the utilization of autologous tissue for local and free flaps [70]. These strategies can
include the addition of synthetic and biological materials for reinforcement. Promising re-
sults have been observed when full-thickness abdominal wall defects were addressed with
component separation in a multilayer fashion using an acellular dermal allograft [71,72].
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This approach suggests a safe profile and good integration with the surrounding tissues,
as well as a low rate of infection, erosion, extrusion, and rejection compared to synthetic
materials [73]. However, it can be associated with hernia recurrence rates of 11.5% and
14.6% at 3- and 5-year follow-ups, respectively, according to a single-center prospective
series of 191 patients [74].
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Figure 8. Application of porcine urinary bladder matrix and split-thickness skin graft in a diabetic 
foot ulcer. (a). A 28-year-old male, with type I diabetes, presented with a necrotizing infection. (b). 
Multiple debridements were performed for local infection control, which exposed the extensor 

Figure 8. Application of porcine urinary bladder matrix and split-thickness skin graft in a diabetic
foot ulcer. (a). A 28-year-old male, with type I diabetes, presented with a necrotizing infection.
(b). Multiple debridements were performed for local infection control, which exposed the extensor
tendons. (c). Urinary bladder ECM was applied over the wound 10 days after the initial presentation.
STSG was applied 6 weeks later over a healthy granulated wound bed as an outpatient procedure
(not shown). (d). Eight months after the initial presentation, the patient achieved complete healing
and foot salvage, despite an initially poor prognosis.

Indications for employing dermal matrices or other biomaterials as surgical meshes or
regeneration scaffolds include previously failed reconstructions and contaminated surgical
fields [75–77] (Figure 9). Biological dermal matrices promote revascularization and integrate
into native tissues more quickly than synthetic materials [76,77]. This allows for the
formation of a robust tissue layer that supports lower rates of visceral erosion, intra-
abdominal adhesion formation, and infections when compared to synthetic meshes [78,79].
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Figure 9. Urinary bladder matrix reinforcement of pediculated gracilis muscle flap. (a). A 43-year-
old female with recurrent melanoma and previous radiation to the left groin. Presented with a non-
healing, infected, and painful wound, with failed previous reconstruction attempts. (b). A gracilis 
muscle flap was used to fill the volume defect. (c). UBM temporarily covering an irregular wound 
bed. (d). Wound ultimately covered with a skin graft. Despite successful wound management, the 
patient’s unfortunate passing was attributed to disease progression. 
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Figure 9. Urinary bladder matrix reinforcement of pediculated gracilis muscle flap. (a). A 43-year-old
female with recurrent melanoma and previous radiation to the left groin. Presented with a non-
healing, infected, and painful wound, with failed previous reconstruction attempts. (b). A gracilis
muscle flap was used to fill the volume defect. (c). UBM temporarily covering an irregular wound
bed. (d). Wound ultimately covered with a skin graft. Despite successful wound management, the
patient’s unfortunate passing was attributed to disease progression.

The current research on abdominal wall hernia repair indicates that the location of
mesh placement significantly impacts the recurrence rates of hernias. Sosin et al. have
shown that retromuscular (5.8%) and underlay (10.9%) mesh placements have lower re-
currence rates compared to onlay (12.9%) and interposition (21.6%) placements [80]. Fur-
thermore, a systematic review from John Hopkins University concluded that underlay or
retrorectus mesh placements are associated with lower recurrence rates, with the lowest
seroma rates observed following a retrorectus repair [81]. Additionally, a study on robotic
ventral/incisional hernia repair with hernia defect closure and intraperitoneal onlay mesh
showed a hernia recurrence rate of 14.81% [82]. Therefore, while the choice of technique
depends on various factors, including patient-specific circumstances and the surgeon’s
expertise, retromuscular or underlay mesh placements are generally associated with lower
hernia recurrence rates [82].

Hybrid meshes, which have been recently developed, combine biological materials
with a permanent synthetic component to create a durable mesh that facilitates tissue in-
growth and reduces foreign-body reaction [83]. The addition of biosynthetic or biological
materials could potentially decrease the need for permanent materials in abdominal wall
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repairs, thereby providing better tissue integration and infection protection [84]. Moreover,
the use of biosynthetic meshes in certain scenarios, including component separation, has
resulted in improved outcomes and reduced costs compared to using biologicals alone [85].
This is due to their ability to counteract certain downsides of biologicals, such as resorption
and high hernia recurrence rates, especially in contaminated wounds or when patient
conditions are suboptimal for healing (e.g., uncontrolled diabetes, steroids use, malnutrition,
etc.) [85–87]. The advantageous properties of hybrid meshes include serving as a scaffold
for fibroblast migration and cellular ingrowth into the pores, followed by a controlled local
inflammatory cascade to optimize vascularization and collagen production. They also
provide protection to the permanent mesh component from triggering negative effects on
surrounding tissue [85]. Despite the limited long-term data available, some authors suggest
that the use of these hybrid meshes may lead to increased patient satisfaction through better
integrative processes and the potential for lower rates of complications, reintervention, and
recurrence [85].

In the same way, immediate reconstruction following complex spinal surgery and
oncological spinal wounds can benefit from the adjunct use of particulate extracellular
matrices along with local muscular flaps. These presentations are morcellated forms of
extracellular matrices from different sources and can assist in obliterating the resultant
dead space between the dura and paravertebral muscle flaps [88]. Additionally, other local
flaps used for spine reconstruction, such as the trapezium and latissimus, can be reinforced
with the application of extracellular matrices with favorable results (Figure 10).
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Figure 10. Particulate extracellular matrix with paravertebral and trapezium muscle flaps. (a). A 66-
year-old female with multiple cervical spine surgeries, complicated with hardware infection. (b–d). 
Following hardware removal and debridement, reconstruction was completed with paravertebral 
and trapezium muscle flaps, reinforced with morselized and laminated ECM allograft. (e). Wound 
healing after 12 days. 
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4. The Future of Skin Substitutes

The reconstructive ladder and subsequent models have provided valuable guidance in
making optimal choices to expedite patient healing and achieve a balance between function
and aesthetics [1,7]. Current scientific and technological advances have facilitated the
development of numerous skin substitutes that enhance and modulate the wound healing
process through biomodulation effects [89,90]. This includes immune cell recruitment,
increased essential cytokines and growth factors, and modified molecular interactions
within the wound [7,91,92]. More recently, tridimensional bioprinting has enabled the
production of synthetic skin embedded with cells and bioactive molecules, resulting in
increased cytokine production at the wound site. This accelerates healing by stimulating cell
proliferation, promoting macrophage differentiation, and enhancing neovascularization [93,
94]. Additionally, gene editing technology applied to novel skin substitutes has shown
potential for accelerated skin regeneration by targeting growth factors and pluripotent
cells [95,96]. Despite these advancements, the challenges surrounding skin substitutes in
clinical practice are multifaceted. One hurdle is the incomplete integration with the host
tissue as achieving proper vascularization and cellular interactions is crucial for successful
wound healing. Another is the uncertain long-term stability of these substitutes, as well as
the absence of native skin elements such as epidermal appendages, intrinsic vasculature,
innervation, and the lack of capacity to produce melanin [9]. Additionally, the prohibitive
cost of skin substitutes presents challenges for generalized availability in low-income
and uninsured patients. In contrast, cost analysis studies comparing skin substitutes to
traditional wound care strategies have demonstrated a beneficial economic impact, owing
to fewer emergency visits and readmissions, shorter hospitalizations, and improved limb
salvage rates [97]. Moreover, regulatory considerations associated with the development
and commercialization of these products add to their complexity. Overcoming these
challenges will require continuous collaboration between scientists, clinicians, industry,
and regulatory authorities.

In conclusion, recent technological advancements in skin substitutes have been pivotal
in filling the gaps within reconstructive algorithms. These biomaterials offer solutions
for reconstructive surgery and wound care while reducing overall treatment costs. Fur-
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ther research and development in this field will likely lead to additional advances in the
effectiveness and accessibility of skin substitutes for patients.
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