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Abstract: Repetitive DNA sequences are abundant in the human genome and can adopt alternative
(i.e., non-B) DNA structures. These sequences contribute to diverse biological functions, including
genomic instability. Previously, we found that Z-DNA-, H-DNA- and cruciform DNA-forming
sequences are mutagenic, implicating them in cancer etiology. These sequences can stimulate the
formation of DNA double-strand breaks (DSBs), causing deletions via cleavage by the endonuclease
ERCC1-XPF. Interestingly, the activity of ERCC1-XPF in H-DNA-induced mutagenesis is nucleotide
excision repair (NER)-dependent, but its role in Z-DNA-induced mutagenesis is NER-independent.
Instead, Z-DNA is processed by ERCC1-XPF in a mechanism dependent on the mismatch repair
(MMR) complex, MSH2-MSH3. These observations indicate distinct mechanisms of non-B-induced
genomic instability. However, the roles of NER and MMR proteins, as well as additional nucleases
(CtIP and MRE11), in the processing of cruciform DNA remain unknown. Here, we present data
on the processing of cruciform-forming short inverted repeats (IRs) by DNA repair proteins using
mammalian cell-based systems. From this pilot study, we show that, in contrast to H-DNA and
Z-DNA, short IRs are processed in a NER- and MMR-independent manner, and the nucleases CtIP
and MRE11 suppress short IR-induced genomic instability in mammalian cells.
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1. Introduction

Over a dozen alternative or non-B DNA structures have been identified since the
1950s [1–4]. These structure-forming sequences have documented roles in physiological
processes, such as transcription, translation, replication, chromatin structure and evolution;
however, they also play roles in pathophysiological processes such as genomic instability,
which can contribute to disease etiology [2,5–11]. Non-B DNA-forming sequences are abun-
dant in the human genome, enriched at ‘hotspots’ of genomic instability in human cancer,
and have been shown to be associated with human disease [12–16]. An overrepresentation
of such sequences in frequently mutated loci also suggests that they are determinants
of mutagenesis [10]. Hence, the abundance of repetitive DNA sequences that can adopt
non-B DNA structures and their roles in normal physiological and pathophysiological
conditions warrants further study, particularly in regard to the mechanisms underlying
their function and mutagenic processing. In this pilot study, we focus on determining the
proteins involved in the mutagenic processing of cruciform DNA relative to our published
mechanisms on the mutagenic processing of Z-DNA and H-DNA (Figure 1).

We have previously shown that Z-DNA-forming sequences induce large deletions
and complex rearrangements in yeast, mammalian cells and mouse chromosomes via the
stimulation of DNA double-strand break (DSB) formation. This Z-DNA-induced genomic
instability is facilitated by the endonuclease ERCC1-XPF, the recruitment of which is
dependent on the mismatch repair (MMR) protein complex, MSH2-MSH3.
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instability is facilitated by the endonuclease ERCC1-XPF, the recruitment of which is de-
pendent on the mismatch repair (MMR) protein complex, MSH2-MSH3. 

 
Figure 1. Schematic of non-B DNA structures. Left panel: canonical B-DNA duplex. Right panel: 
non-B DNA structures with the characteristic repetitive motifs at which they form. Listed here are 
cruciform DNA (inverted repeats), Z-DNA [alternating purines and pyrimidines; (YR-YR)n], triplex 
or H-DNA [mirror repeats; (R.Y)n]. The blue and yellow color indicate the complementary strands 
of DNA (Adapted from [5]). 

In addition, we have previously shown that H-DNA-forming sequences from the hu-
man c-MYC promoter can also stimulate the formation of DSBs, leading to large deletions 
in yeast, mammalian cells, and mouse chromosomes. Microhomologies at the deletion 
breakpoints indicate microhomology-mediated end-joining (MMEJ) mechanisms in the 
formation of the deletions [17–19]. Interestingly, we have identified both replication-de-
pendent and replication-independent mechanisms of H-DNA-induced genomic instabil-
ity. We have shown that ERCC1-XPF and XPG process H-DNA-forming sequences in a 
nucleotide excision repair (NER)-dependent manner, leading to large deletions via the 
formation of DSBs. This endonuclease-based cleavage mechanism could explain the rep-
lication-independent mechanisms of H-DNA-induced genomic instability [17]. In addi-
tion, we found that the absence of the flap endonuclease 1 (FEN1) protein led to an in-
crease in H-DNA-induced mutagenesis, suggesting that FEN1 protects the genome from 
H-DNA obstructions during replication by cleaving this mutagenic structure. 

With regard to inverted repeats (IRs), much of the research has focused on long IRs 
(>100 bp), which can stimulate deletion events in prokaryotes and yeast [20,21]. Similarly, 
long IRs have been studied extensively with regard to their contributions to human dis-
ease. However, a study of ~20,000 translocation breakpoints in human cancer genomes 
revealed IRs with stem lengths between 10–30 bps (short IRs) to be enriched within a 200 
bp region around the breakpoints [15,22], implicating them in cancer etiology. We have 
also shown that a short IR sequence of 29 bp in length can stimulate DSBs, leading to 
deletions containing microhomologies at the breakpoint junctions in yeast and mamma-
lian cells [22]. The DSBs can occur in a replication-independent manner via cleavage of 
the cruciform structures by the enzyme ERCC1-XPF or in a replication-dependent manner 
via fork stalling [22]. 

Z-DNA, H-DNA, and hairpin/cruciform DNA are therefore biologically functional 
motifs and intrinsic sources of genomic instability in different organisms and cell types, 

Figure 1. Schematic of non-B DNA structures. Left panel: canonical B-DNA duplex. Right panel:
non-B DNA structures with the characteristic repetitive motifs at which they form. Listed here are
cruciform DNA (inverted repeats), Z-DNA [alternating purines and pyrimidines; (YR-YR)n], triplex
or H-DNA [mirror repeats; (R.Y)n]. The blue and yellow color indicate the complementary strands of
DNA (Adapted from [5]).

In addition, we have previously shown that H-DNA-forming sequences from the hu-
man c-MYC promoter can also stimulate the formation of DSBs, leading to large deletions in
yeast, mammalian cells, and mouse chromosomes. Microhomologies at the deletion break-
points indicate microhomology-mediated end-joining (MMEJ) mechanisms in the formation
of the deletions [17–19]. Interestingly, we have identified both replication-dependent and
replication-independent mechanisms of H-DNA-induced genomic instability. We have
shown that ERCC1-XPF and XPG process H-DNA-forming sequences in a nucleotide exci-
sion repair (NER)-dependent manner, leading to large deletions via the formation of DSBs.
This endonuclease-based cleavage mechanism could explain the replication-independent
mechanisms of H-DNA-induced genomic instability [17]. In addition, we found that the
absence of the flap endonuclease 1 (FEN1) protein led to an increase in H-DNA-induced
mutagenesis, suggesting that FEN1 protects the genome from H-DNA obstructions during
replication by cleaving this mutagenic structure.

With regard to inverted repeats (IRs), much of the research has focused on long IRs
(>100 bp), which can stimulate deletion events in prokaryotes and yeast [20,21]. Similarly,
long IRs have been studied extensively with regard to their contributions to human disease.
However, a study of ~20,000 translocation breakpoints in human cancer genomes revealed
IRs with stem lengths between 10–30 bps (short IRs) to be enriched within a 200 bp
region around the breakpoints [15,22], implicating them in cancer etiology. We have
also shown that a short IR sequence of 29 bp in length can stimulate DSBs, leading to
deletions containing microhomologies at the breakpoint junctions in yeast and mammalian
cells [22]. The DSBs can occur in a replication-independent manner via cleavage of the
cruciform structures by the enzyme ERCC1-XPF or in a replication-dependent manner via
fork stalling [22].

Z-DNA, H-DNA, and hairpin/cruciform DNA are therefore biologically functional
motifs and intrinsic sources of genomic instability in different organisms and cell types,
and we have found that all these sequences/structures are substrates for the enzyme
complex ERCC1-XPF [17,22–24]. Interestingly, in addition to Z-DNA, H-DNA, and hair-
pin/cruciform DNA, G-quadruplexes, R-loops and D-loops are also substrates for the
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enzyme complex ERCC1-XPF [24]; however, for this study, we focus on the roles of dif-
ferent DNA repair proteins in the mutagenic processing of cruciform DNA, comparing
these preliminary findings with our previously published mechanisms of H-DNA and
Z-DNA processing.

The role of ERCC1-XPF in H-DNA-induced genomic instability is NER dependent,
while the role associated with Z-DNA-induced mutagenesis is NER independent (but
dependent on MSH2-MSH3). However, the roles of NER proteins on hairpins have shown
conflicting results in both bacterial and mammalian cells, as reported by different groups,
where their effects on CAG repeats resulted in either an increase or a decrease in deletion
events [24–27]. Additionally, MMR proteins can also bind/remove mismatch-containing
small cruciform/hairpins, though not those formed by perfect IRs [28,29]. However, the
role of MMR proteins in CAG repeat-mediated instability has shown conflicting results
in mice and human systems, where, in the presence of MMR proteins, contraction events
at CAG repeats were seen in humans [26] and expansion events were seen in mice [30].
Interestingly, experiments in different biological systems indicate that MMR proteins may
play a role in trinucleotide repeat expansions by a mechanism not related to the classical
strand slippage model observed during non-expandable microsatellite replication [31,32].
More recently, using in vitro assays, it was also shown that MMR protein complexes can
decrease the levels of cruciform DNA [33].

We have previously shown that non-B DNA structures induce genomic instability
via the stimulation of DSB formations, resulting in large deletions [17,22,23]. These large
deletions show microhomologies at the breakpoint junctions, suggesting a role of MMEJ in
processing the DSBs induced by non-B DNA structures. An important step involved in the
initiation of this pathway is DNA end resection at the site of a DSB catalyzed by the CtIP
and MRE11 proteins [34]. Interestingly, apart from their roles in homologous recombination
(HR), MRE11 and CtIP have also been shown to mediate MMEJ repair mechanisms [35]. In
addition to its role in resection, MRE11 can also function as an endonuclease and cleave
hairpin loops in vitro [36–38]. Interestingly, other groups have demonstrated endonuclease-
mediated cleavage of single-stranded DNA next to the hairpins by the yeast homolog of
CtIP, i.e., Sae2 [38,39]. While the CtIP protein augments the function of MRE11, studies
on its endonuclease functions are inconsistent [40]. Relevant to non-B DNA processing,
CtIP and MRE11 are required to preserve stability at AT-rich common fragile sites and
Alu-IRs [41], demonstrating that CtIP and MRE11 could have diverse roles in processing
structures formed at IRs. In addition, the small loop within the cruciform structure may
also provide a substrate for CtIP and MRE11. Hence, while CtIP and MRE11 may process
IR-induced DSBs via HR or MMEJ, they could also be involved in cleaving the structures
formed at IRs.

Together, these studies indicate that, while ERCC1-XPF can cleave a variety of non-B
DNA structures, distinct DNA repair mechanisms/proteins are involved in their mutagenic
processing. Since the mechanisms involved in the mutagenic processing of short IRs are
not clear, we performed a preliminary analysis of different DNA repair proteins and their
roles in short IR-induced genomic instability in human cells. Thus, in this pilot study, we
sought to ascertain the involvement of NER and MMR proteins and additional DNA repair
proteins (CtIP and MRE11) on short IR-induced genomic instability.

2. Materials and Methods
2.1. Mutagenesis Assays in Mammalian Cell Lines

We utilized mutation-reporter shuttle vectors to study non-B DNA-induced mutage-
nesis [42], which can replicate in both bacterial and mammalian cells. For this study, we
used the pSP189-based mutation-reporters containing the SV40 origin of replication and T
antigen, which allows for replication in mammalian cells, along with the pBR327 origin
of replication, which allows for replication in bacterial cells. This reporter also contains
the supF mutation-reporter gene, which facilitates the use of bacterial strains carrying
amber mutations as indicators of the functional activity of the supF gene via blue−white
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screening [42–44]. In this study we have cloned a 29-bp IR sequence capable of forming
cruciform DNA structures (IR) into the supF-containing reporter vector, pSP189, using
standard cloning protocols. The supF-containing pSupFG1 vector was used as a control
(B-DNA) reporter (Figure 2a).
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Figure 2. Short IR-induced mutagenesis decreases in the absence of ERCC1-XPF and remains
unchanged in the presence or absence of XPA. (a) Schematic of the control (B-DNA) and 29-bp GC-rich
(IR) plasmids used in this study. The supF-containing pSupFG1 vector was used as a control reporter
((B-DNA) and a 29-bp IR sequence capable of forming a cruciform DNA structure (IR) was cloned
into the supF-containing reporter vector, pSP189, using standard cloning protocols. There are two
stretches of IRs (14-bp long) that form the stem of the cruciform structure (regions in blue and yellow)
and a loop that consists of a single nucleotide (highlighted in black). (b) Mutation frequencies were
measured in human XPF-proficient fibroblast cell lines in the presence of control siRNA. Mutation
reporters containing control (B-DNA) sequences or short, perfect inverted repeat (IR) sequences
were transfected into the human XPF-proficient cells at T48 and collected 48 h later at T96. Mutation
frequencies were calculated as the ratio of white colonies to the total number of colonies. Experiments
were performed in triplicate, data are expressed as mean ± SD, and a 2-way ANOVA with Šidák
post hoc test, * p < 0.05, ** p < 0.01, **** p < 0.0001 was used for statistical analysis. (c) Mutation
frequencies were measured in human XPA-proficient and deficient cell lines. Mutation reporters
containing control (B-DNA) sequences or short inverted repeat (IR) sequences were transfected
into the cells and isolated 48 h post-transfection. Mutation frequencies were calculated as the ratio
of white (mutant) colonies to the total number of colonies (blue plus white). Experiments were
performed in triplicate. Data are expressed as mean ± SD, and a 2-way ANOVA with Šidák posthoc
test, * p < 0.05, was used for statistical analysis. (d) Percentage distribution of different types of
mutants. Mutants are characterized as point mutations and deletions. Gray solid bars represent
samples from XPA-proficient cells, and gray patterned bars represent samples from XPA-proficient
cells. (Adapted from [45]).
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2.2. Cell Lines

Human XPA-deficient (XPA2OSSV) and XPA-proficient (SV40-immortalized human
fibroblasts complemented with the XPA gene) [46,47] were maintained in Dulbecco’s Modi-
fied Eagle’s Medium with supplements [DMEM + 10% heat-inactivated fetal bovine serum
(HI-FBS) + 1% Penicillin-Streptomycin]. Human XPF-deficient and XPF-proficient [48] cells
were maintained in Dulbecco’s Modified Eagle’s Medium with supplements [DMEM + 10%
fetal bovine serum (FBS) + 1% Penicillin-Streptomycin].

2.3. siRNA-Mediated Knockdown of DNA Repair Proteins and Mutation Reporter Transfection

We performed siRNA-mediated transient knockdowns to study the effects of different
proteins on short IR-induced mutagenesis. Two transfections were performed with the ON-
TARGET plus siRNA SMARTpool for human (MSH2, CtIP, or MRE11) and non-targeting
control SMARTpool. A reverse transfection was performed using 25–40 nM siRNA in
OptiMEM Reduced-Serum Medium. The 48 h time point was selected because it gave
>80% knockdown of protein levels at the time of mutation reporter transfection into
the human cells. Next, a forward transfection of siRNA was performed with 2.5 µg
of the IR- or B-DNA-containing reporters with the GenePORTER transfection reagent
(Genlantis Inc., now AMSBIO, San Diego, CA, USA). Samples were collected at T48 and
T96 (48 h after the second transfection) to verify protein knockdown by Western blotting
using the following antibodies: anti-MSH2, anti-CtIP, anti-MRE11 and anti-beta actin as
loading control (Table 1). Transfected reporters were collected at T96 by the alkaline lysis
method using a QIAPrep Spin Miniprep kit (Qiagen, Germantown, MD, USA) with slight
modifications to the protocol. The extracted mutation reporters were DpnI digested and
purified, then used for the transformation of electrocompetent MBM7070 cells to determine
mutation frequency via blue−white screening.

Table 1. Antibodies used in this study.

Antibody Concentration Company

MSH2 1:100 Calbiochem (San Diego, CA, USA) (#PC57)

CtIP 1:1000 Cell Signaling Technology (Danvers, MA, USA) (#9201)

MRE11 1:1000 Novus Biologicals (Centennial, CO, USA) (NB100-142)

Beta-actin 1:5000 Abcam (Cambridge, UK) (ab8227)

2.4. Mutation Frequency and Mutation Spectra Analyses

Mutation frequencies were determined by dividing the total number of white (mutant)
colonies by the total number of blue (wild-type), and white (mutant) colonies counted
on X-Gal, IPTG and carbenicillin agar plates. Experiments were performed in triplicate,
with at least 20,000 colonies being counted for each replicate. Statistical significance was
calculated using a two-way ANOVA test.

Mutation spectra were evaluated by sequencing randomly selected white mutant
colonies and a control blue wild-type colony. Mutation reporter isolation was performed
using the QIAPrep Spin Miniprep kit. The isolated reporters were sequenced by Sanger’s
sequencing method using primers specific to a region around the mutation-reporter gene
and the IR or control B-DNA sequence (seqPriim189 CAAAAAAGGGAATAAGGGCG).
The obtained sequences were used to characterize the types of mutations around the IR
sequence and a similar region in the control B-DNA reporter.

3. Results and Discussion

Based on substrate preferences, short IRs may be recognized and processed by NER,
MMR, MMEJ, and/or HR repair proteins/pathways. Studies to determine which proteins
are involved are ongoing, and the initial findings are presented below.
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It is known that NER is required for the repair of helix-distorting bulky adducts [49,50],
thereby validating its potential role in processing non-B DNA structures, as seen with the
mutagenic processing of H-DNA [17]. We have previously shown that ERCC1-XPF (a key
nuclease in the NER pathway) is involved in short IR-induced genomic instability in yeast
and mammalian systems [22]. In line with our previous observation in mammalian cells,
we found that short IRs are mutagenic in human cells, with a 10.2-fold increase in short
IR-induced mutagenesis over that of control B-DNA in wild-type human XPF-proficient
fibroblasts (Figure 2b). Further, we observed a decrease in the fold induction (5.2-fold)
of short IR-induced mutagenesis over that of control B-DNA in the human XPF-deficient
fibroblasts, accompanied by a decrease in mutation frequency in the absence of XPF
(9.2 × 10−4 vs. 6.8 × 10−4, p < 0.1) (Figure 2b, gray bars), indicating a role for ERCC1-XPF
in short IR-induced mutagenesis in human cells. Interestingly, while short IRs induced mu-
tations in both the presence and absence of XPA (a critical NER recognition and verification
protein), the presence (12.3 × 10−4) or absence of XPA (11.3 × 10−4) did not impact the
short IR-induced mutagenesis (Figure 2c, gray bars).

We did not detect any significant differences in the mutation spectra associated with
the short IR-induced genomic instability in human XPA-proficient vs. deficient cells, with
~50% deletions and ~50% point mutations observed in both cell lines (Figure 2d). Thus,
it appears that, unlike H-DNA [17], functional NER is not required for the mutagenic
processing of short IRs in human cells.

Since we have previously shown that the cleavage of Z-DNA by ERCC1-XPF was
dependent on its interaction with MSH2-MSH3, we evaluated the effect of MSH2 (an essential
MMR protein) in the presence or absence of XPF on short IR-induced genomic instability. Upon
knockdown of MSH2 in XPF-proficient cells (Figure S1a,b) we found that the short IR-induced
genomic instability was not different in the presence (9.5 × 10−4) or absence (9.9 × 10−4) of
MSH2 (Figure 3a, gray bars). This is not unexpected, given previous reports indicating that
MMR proteins bind more specifically to mismatch-containing hairpins/cruciforms rather
than to perfect repeats [29]. Thus, it appears that, unlike Z-DNA [23], MSH2 is not required
for the mutagenic processing of short IRs in human cells.

Upon analysis of the mutation spectra, we did not observe any considerable differ-
ences in the distribution of mutation types associated with the short IR-induced genomic
instability in the presence or absence of MSH2, with ~25% point mutations and ~75%
deletions observed in mutants from both the control and MSH2-depleted cells (Figure 3b).
However, a difference was seen in the position of the breakpoint junctions around the IR
sequence in the presence of MSH2 compared to those detected in the absence of MSH2.
In the presence of MSH2, most of the breakpoint junctions were located in the tip of the
loop region within the IR sequence, resulting in partial loss of the IR sequence. In contrast,
in the absence of MSH2, ~50% of the breakpoint junctions were mapped outside the IR
sequence, resulting in the complete loss of the IR sequence (Figure S2).

MSH2 has a variety of functions in several DNA repair pathways, such as MMR, HR,
single-strand annealing (SSA), etc. [51–54], interacting, stimulating or inhibiting the activity
of different proteins [52]. For example, MutSβ (MSH2-MSH3) can stimulate the activity
of the SMX trinuclease in Holliday junction (HJ) resolution [55]. MutSα (MSH2-MSH6)
can interact with the BLM helicase and promote dissolution of HJs [56]. Because HJs are
structurally similar to cruciform DNA, we speculate that MSH2, via its interacting partners
MSH3, MSH6, or other interacting proteins, may regulate the processing of structures
formed at short IRs. Therefore, the presence or absence of MSH2 could lead to differential
processing around the IR sequence, leading to alterations in the mutation spectra.
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Figure 3. Short IR-induced mutagenesis remains unchanged in the absence of MSH2 and increases
in the absence of both MSH2 and XPF. (a) Mutation frequencies were measured in human XPF-
proficient cell lines in the presence of siCON or siMSH2. Mutation reporters containing control
(B-DNA) sequences or short inverted repeat (IR) sequences were transfected into the human XPF-
proficient cells at T48 and collected 48 h later at T96. Mutation frequencies were calculated as the
ratio of white colonies to the total number (blue plus white) of colonies counted. Experiments
were performed in triplicate, data are expressed as mean ± SD, and a 2-way ANOVA with Šidák
posthoc test, **** p < 0.0001 was used for statistical analysis. (b) Percentage distribution of different
types of mutants in human XPF-proficient cell lines following treatment with siCON or siMSH2.
Mutants are characterized as point mutations and deletions. Gray solid bars represent siCON-treated
samples, while gray patterned bars represent siMSH2-treated samples. (c) Mutation frequencies were
measured in human XPF-deficient cell lines in the presence of siCON or siMSH2. Mutation reporters
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containing control (B-DNA) sequences or short inverted repeat (IR) sequences were transfected into
the human XPF-deficient cells at T48 and collected 48 h later at T96. Mutation frequencies were
calculated as the ratio of white colonies to the total number (blue plus white) of colonies counted.
Experiments were performed in triplicate, data are expressed as mean ± SD, and a 2-way ANOVA
with Šidák posthoc test, * p < 0.05, **** p < 0.0001 was used for statistical analysis. (d) Percentage
distribution of different types of mutants in human XPF-deficient cell lines following treatment
with siCON or siMSH2. Mutants are characterized as point mutations and deletions. Gray solid
bars represent siCON-treated samples, and gray patterned bars represent siMSH2-treated samples.
(e) Comparative analysis of short IR-induced deletions from human XPF-proficient and XPF-deficient
cells treated with siMSH2. The deletions were categorized as small deletions (<100 bp) and large
deletions (>100 bp). Blue patterned bars correspond to XPF-proficient cells treated with siMSH2, and
red patterned bars represent human XPF-deficient cells treated with siMSH2. (Adapted from [45]).

Surprisingly, upon the knockdown of MSH2 in XPF-deficient cells (Figure S1a,c), we
observed that the absence of both MSH2 and XPF led to an increase in short IR-induced
genomic instability (6.7 × 10−4 vs. 18.5 × 10−4) (Figure 3c, gray bars). We also observed a
minor shift in the mutation spectra associated with short IR-induced genomic instability
in the presence or absence of MSH2, with ~65% deletions and ~35% point mutations
in mutants from the wild-type cells, while there were ~80% deletions and ~20% point
mutations in mutants from the MSH2-depleted cells (Figure 3d). Interestingly, we also
observed an alteration in the size of the deletions in MSH2-depleted samples in the presence
or absence of XPF. The deletions were grouped as >100 bp or <100 bp, and, in the presence
of XPF, ~14% of deletions were <100 bp while the remaining ~86% were >100 bp (blue
dashed bars). In contrast, ~52% of deletions were <100 bp and the remaining ~48% were
>100 bp in the absence of XPF (red dashed bars) (Figure 3e). Mutants from the control
B-DNA samples predominantly contained point mutations in the presence or absence
of MSH2.

The differences in the sizes of the deletions generated in the human XPF-proficient
or deficient cells in the absence of MSH2 could be attributed to the different mechanisms
that might be involved in processing the short IRs as a result of the interplay between
ERCC1-XPF and MSH2. Therefore, under these conditions, one might speculate on the roles
of additional proteins/nucleases in the mutagenic processing of short IRs. Because IRs can
adopt cruciform structures, they may be susceptible to processing by enzymes that cleave
around the single-stranded regions (loops), as seen with ERCC1-XPF-mediated cleavage of
the 29-bp IR substrate around the loop region indicating a ‘center break’ mechanism [22,57].
In addition, the presence of four-way junctions in the cruciform structure, which are remark-
ably similar to an HJ intermediate, could make these potential substrates for HJ resolvases
(e.g., GEN1, SLX1, MUS81) [58–60] in a ‘resolution’-type mechanism. Interestingly, Inagaki
et al. (2013) have shown that palindrome-mediated translocations associated with the
Palindromic AT-rich repeat (PATRR) entail two sequential cleavage reactions by the GEN1
and Artemis proteins, suggesting a mechanism that involves the resolution of the four-way
junction of the cruciform structure [61]. Additionally, Kaushal et al. (2019) have shown that
the fragility linked to the Flex1 long AT-rich region of the common fragile site FRA16D
could be attributed to its capacity to adopt a cruciform structure. The fragility involves
the yeast Mus81-Mms4 and Slx1-4/Rad1-10 protein complexes [62]. Since these proteins
play a role in HJ resolution and the processing of cruciform structures formed at long IRs,
additional studies must be undertaken to determine their roles and those of other proteins
in short IR-induced genomic instability.

Previously, we demonstrated a role for the ERCC1-XPF nuclease in the mutagenic
processing of short IRs [22]. Here, we extended our study to include the CtIP and MRE11
nucleases (critical in DSB repair processing) [63,64]. Upon knockdown of CtIP and MRE11
in XPF-proficient cells (Figure S3a,b), we found that the short IR-induced genomic instabil-
ity increased in the absence of CtIP (9.9 × 10−4 vs. 27.5 × 10−4) and MRE11 (9.9 × 10−4
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vs. 26.2 × 10−4) (Figure 4a,c). This suggests a role for CtIP and MRE11 in suppress-
ing short IR-induced genomic instability. Upon analysis of the mutation spectra, we
observed a shift in the mutation types between the wild-type cells and the CtIP- or MRE11-
depleted cells. When CtIP or MRE11 were depleted, 100% of the mutants contained deletion
events, whereas the wild-type cells had ~75% deletion events and ~25% point mutations
(Figure 4b,d).
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As mentioned previously, both CtIP and MRE11 have varied roles in the DNA damage
repair processes; in this case, CtIP and MRE11 could favor the repair of the short IR-induced
DSBs by the error-free HR pathway. Therefore, these proteins could potentially restore
stability in short IR-induced DSBs. Because these events are error-free, they will not be
captured by our blue−white screening assay. However, the presence of short IR-induced
deletions in the absence of CtIP and MRE11 is intriguing. Since both CtIP and MRE11 are
regulators of the key step of 5′-3′ resection, the depletion of these proteins could affect
resection at the short IR-induced DSBs. Since deletion events may require resection at the
DSBs, it is possible that other nucleases are able to compensate, in part, for the resection
function of MRE11. One such protein is EXO1, a 5′-3′ exonuclease involved in revealing
long tracts of ssDNA after initial resection by MRE11/CtIP [65,66].

Interestingly, it has been shown that the yeast homologs of MRE11 and EXO1, i.e.,
Mre11 and Exo1, have overlapping functions, suggesting redundancy in the resection
functions and defects in Mre11 being compensated for by overexpression of ExoI [67,68].
Studies in yeast have also found roles for ExoI in repair via MMEJ mechanisms [69]. Perhaps
in the absence of CtIP/MRE11, EXO1 could, to a limited extent, facilitate resection in regard
to the short IR-induced DSBs and promote the more mutagenic MMEJ pathway, leading to
deletions observed in the absence of CtIP and MRE11.

Our study provides evidence to suggest that short IRs may be processed in a manner
distinct from that of H-DNA and Z-DNA-forming sequences, i.e., the mutagenic processing
of short IRs appears to be independent of both a functional NER pathway and MSH2,
which is required for functional MMR.

4. Concluding Remarks

Previously, we demonstrated that the mutagenic processing of different non-B DNA
structures involves distinct mechanisms, with H-DNA being processed by NER and Z-
DNA being processed by the NER nuclease ERCC1-XPF, which requires the MMR complex
MSH2-MSH3 for the recruitment of ERCC1-XPF to the Z-DNA region [17,23,70]. This
study provides preliminary evidence of the roles of different DNA repair proteins in
the mutagenic processing of cruciform-forming short IRs. Due to the complex interplay
between different DNA repair proteins on this structure, several protein/pathways are
likely involved in its mutagenic processing. Future studies are necessary to define the
exact mechanism(s) involved in short IR-induced genomic instability. Understanding the
mechanisms responsible for DNA structure-induced genomic instability and their roles in
disease etiology will allow for the development of therapeutics to treat and/or prevent
diseases of genetic instability, such as cancer and neurodegenerative disorders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/dna4020008/s1, Figure S1: Expression of XPF in XPF proficient
and deficient cell lines and knockdown of MSH2 in XPF-proficient cells, Figure S2: Schematic
distribution of short IR-induced deletions from human XPF-proficient cells treated with: (a) siCON
(b) siMSH2, Figure S3: Knockdown of CtIP and MRE11 in XPF-proficient cells.
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