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Abstract: We introduce a novel microscopic image dataset augmented with segmentation and de-
tection labels specifically designed for microplastic analysis in sewage environments. Recognizing
the increasing concern over microplastics—particles of synthetic polymers smaller than 5 mm—and
their detrimental effects on marine ecosystems and human health, our research focuses on enhanc-
ing detection and analytical methodologies through advanced computer vision and deep learning
techniques. The dataset comprises high-resolution microscopic images of microplastics collected
from sewage, meticulously labeled for both segmentation and detection tasks, aiming to facilitate
accurate and efficient identification and quantification of microplastic pollution. In addition to dataset
development, we present example deep learning models optimized for segmentation and detection
of microplastics within complex sewage samples. The models demonstrate significant potential in
automating the analysis of microplastic contamination, offering a scalable solution to environmen-
tal monitoring challenges. Furthermore, we ensure the accessibility and reproducibility 12 of our
research by making the dataset and model codes publicly available, accompanied by detailed 13
documentation on GitHub and LabelBox.
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1. Introduction

Concerns about microplastics, i.e., synthetic polymer materials smaller than 5 mm,
have surged since the issue was first discovered in the 1970s. Globally, many scientists have
revealed the adverse effects of microplastics on marine life, which are widely distributed in
marine ecosystems, establishing it as a crucial aspect of the plastic waste problem on land
and sea. Particularly, research on the impacts on marine ecosystems and human health is
being conducted actively, leading to increased attention in this area.

Since sewage flows into the oceans, microplastics found in sewage can have a direct
impact not only on marine animals but also on human health [1–3]. This underscores the
need for a deep understanding of the microplastics issue and the development of practical
solutions. Recognizing and accurately assessing the impact of microplastics in sewage is a
crucial first step in establishing sustainable strategies for protecting marine ecosystems and
human health.

Studies such as “Environmental fate and impacts of microplastics in aquatic ecosys-
tems” [4] and “The long legacy left behind by plastic pollution” delve deeply into the
presence and effects of microplastics in aquatic environments. They provide critical infor-
mation on how microplastics move and degrade within marine and freshwater ecosystems
and their impacts on marine life. Particularly, these studies analyze how the ability of
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microplastics to absorb pollutants and transfer them through different trophic levels poses
a serious threat to ecosystems.

Despite ongoing research efforts, accurately distinguishing microplastics from natural
materials remains challenging. The identification of microplastics based solely on shape or
color is nearly impossible, necessitating the use of advanced analytical techniques. Fourier
Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy [5] can be employed to
separate microplastics from organic materials and sand. However, due to the small size
and complexity of microplastics, methods combining Scanning Electron Microscopy (SEM)
with Energy Dispersive X-ray Spectroscopy (EDX) [6] are also required. These techniques
allow for the analysis of the morphological and elemental characteristics of microplastics.
Additionally, Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC/MS) [7] can be
used to break down polymers into identifiable chemical markers, distinguishing microplas-
tics from substances with similar appearances. While advanced imaging techniques and
machine learning algorithms can enhance detection capabilities, ultimate confirmation
relies on spectroscopic methods for accurate analysis.

Nevertheless, we aim to develop a method that leverages computer vision technology
to identify and classify microplastics in wastewater environments quickly and effectively,
without the need for complex analytical equipment. This approach offers an automated
solution that, while sacrificing some degree of accuracy, allows for the rapid processing
of microplastics. Such a technological approach can facilitate more extensive and quicker
monitoring of microplastic distribution and impacts, enhancing our understanding and
response to this environmental challenge.

Microplastics found in soil and beach sand require physical separation and are less
likely to enter ecosystems compared to those in sewage. Microplastics in sewage can be
easily collected using mesh screens while flowing through systems and pose a higher risk
of impacting ecosystems. Therefore, focused research using computer vision and deep
learning is essential to detect and analyze microplastics in sewage environments effectively.
This study aims to address these concerns by developing deep learning-based segmentation
and detection methodologies.

We propose a new methodology that utilizes computer vision and deep learning
technologies to recognize and quantify microplastics effectively. This approach is crucial for
accurately assessing the direct impacts of microplastics found underwater on marine life
and human health. Based on these assessments, serves as a vital initial step in establishing
sustainable strategies for the protection of marine ecosystems and human health.

The integration of computer vision and deep learning automates identifying and
classifying microplastics in complex underwater environments, overcoming the limitations
of traditional methodologies and enabling faster and more accurate data collection. This
technological approach allows for more precise monitoring of the distribution and impacts
of microplastics, providing a foundation for using the results in environmental protection
and policy-making processes.

In areas like microplastic detection, diverse research approaches significantly benefit
from public datasets. Open datasets play a crucial role by offering researchers worldwide
opportunities for collaboration and technological development, thereby fostering coopera-
tion and innovation in microplastic research. This establishes a platform where researchers
from various backgrounds can join forces to solve problems.

Therefore, through our research, we aim to deepen the understanding of the mi-
croplastic issue and present innovative technological approaches to address it, thereby
making a practical contribution to solving microplastic pollution. To achieve this, we will
introduce the development process, characteristics, and utilization methods of the dataset,
and discuss the role and potential of computer vision and deep learning technologies in
responding to the underwater microplastic problem.
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2. Related Works
2.1. The Problems of Microplastics

Regarding the environmental fate and impacts of microplastics on marine ecosystems,
ref. [4] profoundly explores how the global distribution of microplastics can be consumed
by marine life and the health effects this entails. Furthermore, this study provides an
overall understanding of the microplastics issue by summarizing the major sources of
various microplastics, as well as their pathways of movement and degradation in aquatic
environments.

In parallel, “The long legacy left behind by plastic pollution” details the process
through which over 430 million tons of plastic are produced annually, with about two-
thirds of it immediately turning into waste that contaminates the oceans and even enters
the human food chain. This report emphasizes the severity of the issue through a compre-
hensive analysis of the toxicity and mechanical impacts of microplastics on marine animals
and plants, highlighting the hazards of microplastics.

Thus, through various studies, a multifaceted understanding of the microplastic issue
is facilitated, and by comprehensively reviewing the impacts on marine ecosystems and
human health, the urgent need to address microplastic pollution is emphasized.

These studies provide valuable information on how microplastics move and degrade
within marine and freshwater ecosystems and their effects on marine life. In particular,
the ability of microplastics in sewage to absorb pollutants and transfer them to other
nutritional levels poses a serious threat to ecosystems. One method to measure the amount
of microplastics in sewage is counting the number of microplastics, which can be done by
object detection deep learning models. Additionally, segmentation deep learning models
enable an easy measurement of the overall quantity of microplastics.

2.2. Approaches with Deep Learning

Along with attempts to segment microplastic fibers in digital images using deep
learning methods, there is research on automatically counting and classifying microplastics
of 1–5 mm size [8]. This study achieves a high accuracy of around 85% by segmenting
microplastics in RGB images and evaluating various machine learning approaches such
as KNN, Random Forest, and SVM RBF. Additionally, [9] develops practical applications
based on open-source computer vision and machine learning algorithms, enabling the
quick and automatic counting and classification of microplastics into four shape and size
categories. This research serves as a useful tool for revealing information that existing
research approaches could not detect, contributing to the development of standardized
methodologies in microplastic research. However, both studies use data taken in a clean
state on a white background. In real environments where microplastics are collected, they
are observed entangled in filters in complex states. Therefore, for practical use, the post-
processing step of transferring and organizing on a white background takes too long to be
a viable rapid-processing method.

Research [10] uses neural networks to perform segmentation of microplastic particles
with the intention of removing them in real-time after placing the sand from beaches on
a conveyor belt. Thus, this study also deals with microplastics of a size identifiable by
the naked eye. It focuses on model lightweight for mounting on mobile devices, compar-
ing U-net and MultiResUNet, and introduces optimized versions based on kernel weight
histograms: Half U-net, Half MultiResUNet, and Quarter MultiResUNet. The Half Mul-
tiResUNet showed the best performance in terms of recall-weighted F1 score and mIoU
with significantly reduced computational requirements. While segmentation models for
microplastics in beach sand could be used for microplastics in sewage, the form of mi-
croplastics filtered by sewage filters differs from that in sand, making direct application
challenging.
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3. Sewage Microplastic Collection Device

Due to organic matter contained in sewage plastic images, which can lead to misiden-
tification of microplastics, it is necessary to remove organic matter. For this purpose, the
method of effectively removing organic matter from samples using the Fenton oxidation
reaction [11] can be utilized. Applying this method and using the organic matter removal
and filter device shown in Figure 1, organic matter was removed from samples collected at
a water treatment plant, and microplastics were separated. The overall configuration of the
iron filter starts with a coarse filter at the top and is composed of progressively finer filters
through five stages. The mesh size of the iron filter for collecting microplastics in sewage
is arranged in five stages from the top where sewage enters: 500 µm, 250 µm, 134 µm,
63 µm, and 25 µm. By passing sewage through this filter, microplastics of various sizes
ranging from 50 µm to 10 mm contained in the sewage can be collected. Since the collected
microplastics are too small to be seen with the naked eye, they must be imaged through
a microscope.

Figure 1. Removal of organic matter and filter device using the Fenton oxidation reaction.

4. Dataset Construction

A dataset focusing on microplastics filtered using iron filters in sewage is introduced.
As depicted in Figure 2, the resolution of the original microscope images collected is
2592 × 1944. For deep learning-based detection and segmentation tasks, these images are
divided into sizes of 224 × 224 and 512 × 512, respectively.
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Figure 2. Microscope photo of microplastics collected from sewage for deep learning training.

The dataset is composed as follows: For the detection task, the dataset consists of
167,195 images for training, 87,264 for validation, and 87,264 for testing. For the segmenta-
tion task, the dataset includes 31,963 images for training, 3995 for validation, and 3995 for
testing. Microplastics are easily observed in the form of broken fragments and fibers shed
from clothing. Thus, as shown in Figure 3, classes are divided into Fiber and Fragment.
Therefore, deep learning models should be designed to distinguish between fibers and
fragments in the segmentation and detection processes.

Figure 3. Samples of Fiber and Fragment filtered by the filter.

The diversity and large volume of the dataset provide a foundation for the devel-
opment of highly accurate models in microplastic research and are expected to promote
technical advancements in the field of environmental protection and pollution monitoring.

During the dataset’s labeling process, the platform LabelBox was utilized to carry
out efficient labeling tasks. Despite some microplastics being partially obscured by the
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filter mesh, a method was adopted that included labeling the entire area, covering even the
obscured parts. This approach was essential for the accurate recognition of microplastics.
Labeling was conducted in two forms: Bounding boxes for Detection and Masks for
Segmentation.

The accuracy of labeling tasks is of utmost importance in the dataset construction
process. In this study, an approach dividing the team into two groups, labelers, and
validators, was adopted to ensure this accuracy. Labelers accurately identified the location
and shape of microplastics and labeled the data for Detection and Segmentation tasks using
Bounding boxes and Masks.

After the labeling tasks, the validator group reviewed the labeled data to correct mis-
labeled parts or missing information. This dual verification process significantly improved
the accuracy of the data. The labeling platform LabelBox was utilized to facilitate efficient
collaboration and data management among teams. The dataset constructed through this
process was used to train deep learning models for the detection and classification of
microplastics, contributing to the improvement of the models’ performance.

5. Experiments
5.1. Segmentation

Segmentation techniques can be used to identify microplastics in sewage. By applying
segmentation, it is possible to calculate the area of microplastics, allowing for an assessment
of the quantity present in the sewage. This method provides a detailed understanding of
microplastic pollution levels in wastewater systems.

For segmentation learning, two neural network architectures were employed to
achieve precise segmentation of microplastics.

Unet [12], as illustrated in Figure 4, features a U-shaped architecture, indicating that
the encoder and decoder parts of the model are symmetrical. The encoder extracts features
from the input image, while the decoder predicts the class to which each pixel of the
original image belongs based on these features. Additionally, skip connections are utilized
between the encoder and decoder to provide a direct path from the encoder to the decoder.
This structure assists the model in accurately restoring both the overall structure and fine
details of the image.

Figure 4. Unet model architecture.

The neural network structure represented by Figure 5, EfficientNetV2B3 + MRFM
×2 [13], is specially designed for the segmentation of microplastic particles. EfficientNet is
a model that emerged from research into the optimization of various hyperparameters such
as depth and channels in deep learning neural networks. It is known for its efficient com-
putation and effective recognition performance. This neural network model is employed
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as the backbone network to extract diverse feature information, designed to perform the
crucial role of extracting key elements necessary for prediction.

This innovative structure uses the EfficientNetV2B3 model [14,15] as its backbone,
which allows for efficient feature extraction and feature fusion. Additionally, it applies
the Multi-Resolution Fusion Module (MRFM) [13] twice to integrate features obtained at
various resolutions. This approach enables the capture of finer details of microplastics,
achieving accurate segmentation.

Figure 5. EfficientNetV2B3 + MRFM ×2 model architecture.

For the performance evaluation of segmentation, three key metrics were used: Recall,
Precision, and mIoU. These evaluation metrics comprehensively indicate how accurately
the model can segment and identify microplastics. Equation (1) defines Recall as a metric
that measures how well the model identifies the correct data. It increases as the model
correctly identifies more of the actual targets present, implying that a higher Recall indicates
the detection of as many microplastics as possible. Equation (2) defines Precision as a
metric that measures how many correct answers are included in the model’s predictions. It
increases as more of the items predicted by the model as target objects are indeed actual
targets, implying that a higher Precision indicates a higher purity in detection. Equation (3)
defines the Mean Intersection over Union (mIoU) as a metric showing the extent of overlap
between the area of the actual target and the area predicted by the model. A higher mIoU
implies that the model accurately predicts the exact areas of the target objects. As expressed
in Equation 4, the F1 Score is a statistical measure used to evaluate the accuracy of a binary
classification model by balancing precision and recall in a single metric. The F1 Score is the
harmonic mean of Precision and Recall, achieving its best value at 1 (perfect precision and
recall) and its worst at 0. It’s especially useful for assessing models where class imbalance
is present.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

mIoU =
1
n

n

∑
i=1

Yi ∩ Ŷi

Yi ∪ Ŷi
(3)
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F1-Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

The experimental results, as shown in Table 1, indicate that the Unet model achieved
a Recall of 55.22%, Precision of 78.83%, F1-Score of 64.95%, and mIoU of 59.4%. This
demonstrates that the Unet model has achieved considerable accuracy in microplastic
segmentation. Additionally, the high Precision value suggests that the model minimizes
errors when segmenting microplastics. The EfficientNetV2B3 + MRFM ×2 model showed
a Recall of 82.14%, Precision of 85.71%, F1-Score of 83.89%, and mIoU of 63.14%. With both
Recall and Precision being high, the prediction error is low, and a high proportion of plastics
is recognized. Therefore, the use of such neural network models for 3-Class Segmentation
tasks—separating microplastic fibers and fragments, as well as other backgrounds—can be
beneficially utilized for future microplastic analysis and monitoring.

Table 1. Results of training with 3-Class Semantic Segmentation using Unet model and Efficient-
NetV2B3 + MRFM ×2 model.

Model mIoU Precision Recall F1-Score

Unet 59.4% 78.83% 55.22% 64.95%
EfficientNetV2B3 + MRFM ×2 63.14% 85.71% 82.14% 83.89%

5.2. Detection

Detection allows for the differentiation of objects and the prediction of their sizes.
Therefore, it can be used to count the number of microplastics in sewage or to determine
their approximate location and size.

As shown in Figure 6, the neural network structure for detection uses EfficientNetV2B3
as the Backbone and BiFPN [16] as the Head, with the YOLO [17–19] algorithm adopted
for training. The choice of the YOLO training algorithm is specifically to utilize its unique
concepts such as Grid, YOLO Loss, Default box, and Responsible.

EfficientNetV2B3 serves as the model’s Backbone, providing high performance and
efficiency, EfficientNet utilizes BiFPN, which processes features through downsampling
and upsampling across various depths to perform complex computations for the final
output. Furthermore, using YOLO as the training algorithm allowed for the fast and
accurate prediction of the locations of objects within each image. This played a crucial role
in increasing detection accuracy through the use of Grid for image segmentation, enhancing
training efficiency with YOLO Loss, and improving detection precision with the concepts
of Default box and Responsible.

AP50 [20] was utilized as a comprehensive performance evaluation metric. Addition-
ally, Recall, Precision, and F1Score were measured as additional performance metrics for
the two main classes of microplastics, Fiber and Fragment.

Table 2 presents the experimental performance results. Through these results, we
have demonstrated the effectiveness of the model in detecting and classifying microplastics
efficiently. However, the values of Recall, Precision, and F1Score for each of the Fiber and
Fragment classes suggest there is still room for improvement. Particularly, Fibers, being
irregularly shaped and long, have significantly lower recognition performance, indicating
a need for considerable efforts toward performance enhancement.
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Table 2. Training results using the EfficientNetV2 B3 and S + BiFPN model with the YOLO training
algorithm.

Model Object AP50 Precision Recall F1 Score

EfficietNetV2 B3 Fiber 42.3% 41.2% 41.6% 41.4%
Fragment 49.7% 47.2% 48.4%

EfficietNetV2 S Fiber 50.22% 49.26% 49.13% 49.20%
Fragment 59.21% 55.58% 57.34%

Figure 6. Neural network structure using EfficientNetV2 B3 and S as the Backbone and BiFPN as the
Head network.

6. Discussion

Microplastics entering sewage systems pose a significant environmental issue that can
directly impact humans and ecosystems [1–3]. Given the severity of this issue, a dataset
of microplastics in sewage is expected to have substantial practical effects on research in
this field. In addition to existing research [8–10,21,22], we achieved a level of performance
that allows for the practical identification and classification of sewage microplastics using
computer vision technologies, namely Segmentation and Detection.

This dataset and related technologies are anticipated to contribute to environmental
protection and the maintenance of ecosystem health through the accurate detection and
classification of microplastics. Furthermore, this research could play a crucial role in un-
derstanding the extent and sources of microplastic pollution, providing scientific evidence
necessary for developing related policies and regulations.
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However, there are still limitations. Since the dataset of microplastics in sewage is
collected only in Korea, it may have limitations in representing various environmental
conditions worldwide. There is a need to construct a dataset that encompasses a variety
of sewage environments and sources of microplastic pollution. Another limitation is
the difficulty of data identification caused by the iron filtration mesh, as illustrated in
Figure 7. During the process of filtering microplastics with an iron mesh, the structure
of the mesh itself can create background noise in the images, making it challenging to
distinguish microplastics. This issue becomes more pronounced when the small size of
the microplastics overlaps with the fine mesh structure of the filter. Microplastics that
are obscured by the mesh or recognized as similar in shape to the structure of the mesh
can cause errors in the identification and classification process. This can make accurate
counting and classification of microplastics challenging, potentially impacting the reliability
of the research findings. Therefore, further research is needed to collect data in various
environments and improve recognition performance related to the filtration mesh.

Figure 7. Example of microplastic detection screened by a filter mesh.

7. Conclusions

Environmental concerns about plastics, especially microplastics, are growing. This
study shows that computer vision and deep learning can effectively detect microplastics in
sewage, providing a more controlled method than detection in beach sand.

However, difficulties in recognizing microplastics during the sampling process using
metal filters were identified. This is because the filters may obscure some microplastics,
making recognition challenging. Despite these limitations, the performance results obtained
through this research showed a certain level of recognition capability, but suggest that
further research and technological development are necessary for more accurate recognition
and classification. Notably, deep learning models for detection exhibited lower performance
compared to segmentation because detection models often assume a fixed shape, whereas
microplastics lack a defined shape. This is especially true for fibers, which are long and
linear, leading to poorer performance compared to fragments. Thus, future research on
deep learning models that consider detection and segmentation may be required.

By publicly sharing the developed dataset and example deep learning code, we pro-
vide other researchers with the opportunity to participate more easily in the development
of technologies to address environmental problems related to microplastics. This will play
a crucial role in facilitating collaboration within the research community and accelerating
the advancement of microplastic detection and classification technologies.
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