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Abstract: In this study, we undertake a systematic study of historic market volatility spanning roughly
five preceding decades. We focus specifically on the time series of the realized volatility (RV) of the
S&P500 index and its distribution function. As expected, the largest values of RV coincide with the
largest economic upheavals of the period: Savings and Loan Crisis, Tech Bubble, Financial Crisis
and Covid Pandemic. We address the question of whether these values belong to one of the three
categories: Black Swans (BS), that is, they lie on scale-free, power-law tails of the distribution; Dragon
Kings (DK), defined as statistically significant upward deviations from BS; or Negative Dragons Kings
(nDK), defined as statistically significant downward deviations from BS. In analyzing the tails of the
distribution with RV > 40, we observe the appearance of “potential” DK, which eventually terminate
in an abrupt plunge to nDK. This phenomenon becomes more pronounced with the increase in the
number of days over which the average RV is calculated—here from daily, n = 1, to “monthly”,
n = 21. We fit the entire distribution with a modified Generalized Beta (mGB) distribution function,
which terminates at a finite value of the variable but exhibits a long power-law stretch prior to that,
as well as a Generalized Beta Prime (GB2) distribution function, which has a power-law tail. We
also fit the tails directly with a straight line on a log-log scale. In order to ascertain BS, DK or nDK
behavior, all fits include their confidence intervals and p-values are evaluated for the data points to
check whether they can come from the respective distributions.
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1. Introduction

Distributions with power-law tails are ubiquitous across multitudes of disciplines [1–3].
Power-law tails are scale-free and as such can meaningfully extend indefinitely, to arbitrarily
large values of the variable. On a log-log scale, a power-law tail presents itself as a straight
line with a negative slope. Such tails are very difficult to pinpoint since the data become
very sparse at large values of the variable. A far more difficult task than that is to be able to
locate outliers, should they exist, that deviate substantially from the power-law behavior.

Detection of outliers in itself is a challenging task, regardless of the distribution, and
requires various statistical tests [4–6]. One such type of outliers, where the data deviate
strongly upward from the above-mentioned straight line, is dubbed “Dragon Kings” and
is also encountered across multitudes of disciplines and phenomena [7–10]. In financial
markets, power-law tails can lead to what theoretically could be arbitrarily large gains or
losses—“Black Swans” in the latter case—while Dragon Kings could indicate even far more
distressful events.

While there are some indications of outlier behavior in financial markets [7,11–14], the
main goal of this paper is to investigate the realized volatility—a market quantity which
is commonly used by market practitioners and economists alike—for the presence of any
potential outliers. This is motivated by the fact that intuitively one would suspect that the
most catastrophic market downturns and spikes in volatility—Black Monday, Tech Bubble,
Financial Crisis and COVID Pandemic—would be plausible candidates for Dragon Kings.

Realized volatility RV is the square root of realized variance, which is defined as follows
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is the average realized variance over n days and

ri = ln
Si
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(3)

are the daily returns, with Si being the reference (closing) price on day i. This is an
annualized value, where 252 represents the number of trading days in a year. In particular,
n = 1 represent daily returns and n = 21, being a typical number of trading days in a month,
is useful for evaluating the monthly RV. We point out, however, that in our calculation, n is
simply a number of consecutive trading days that can fall on different weeks and months.
Specifically, we performed our analysis for n = 1, 2, 3, 5, 7, 9, 13, 17, 21. Here, we present
results for n = 1, 7, 21, which already succinctly illustrate the changes in the RV distribution
with n.

Since it is based on actual trades, realized volatility (RV) is the ultimate measure of mar-
ket volatility, although the latter is more often associated with the implied volatility, most
commonly measured by the VIX index [15,16]—the so-called market “fear index”—that
tries to predict RV of the S&P500 index for the following month. Its model-independent
evaluation [17] is based on option contracts, which are meant to predict future stock prices
fluctuations [18]. The question of how well VIX predicts the future realized volatility has
been of great interest to researchers [19–22]. Recent results [23,24] show that VIX is only
marginally better than past RV in predicting future RV. In particular, it underestimates
future low volatility and, most importantly, future high volatility. In fact, while both RV
and VIX exhibit scale-free power-law tails, the distribution of the ratio of RV to VIX also
has a power-law tail with a relatively small power exponent [23,24], meaning that VIX is
incapable of predicting large surges in volatility.

It should be emphasized that RV is agnostic with respect to gains or losses in stock
returns. Nonetheless, it has been habitual that large gains and losses occur at around the
same time. Here, we wish to address the question of whether the largest values of RV fall
on the power-law tail of the RV distribution. As is well known, the largest upheavals in
the stock market happened on, and close to, Black Monday, which was a precursor to the
Savings and Loan crisis, Tech Bubble, Financial Crisis and COVID-19 pandemic. Plotted on
a log-log scale, power-law tails of a distribution show as a straight line. If the largest RV
fall on the straight line, they can be classified as Black Swans (BS). If, however, they show
statistically significant deviations upward or downward from this straight line, they can be
classified as Dragon Kings (DK) [7,8] or negative Dragon Kings (nDK), respectively [5].

The main result of this paper is that the largest values of RV are in fact nDK. We find that
daily returns are the closest to the BS behavior. However, with the increase in n, we observe
the development of “potential” DK with statistically significant deviations upward from
the straight line. This trend terminates with the data points returning to the straight line
and then abruptly plunging into nDK territory.

To gain further insight into this phenomenon, we start in Section 2, with the time
series of RV from 1970 to 2021, including expanded views of the aforementioned periods of
market upheavals. In Section 3 we provide analytical expressions of the two distribution
functions used to fit the entire RV distribution: modified Generalized Beta (mGB), which
is discussed in great detail in a companion paper [25], and Generalized Beta Prime (GB2),
which is essentially a limiting case of mGB and is chosen because it has power-law tails.
mGB is chosen because it exhibits a long stretch of power-law dependence before dropping
off and terminating at a finite value of the variable, thus mimicking the nDK behavior
of RV [25]. Additionally, both mGB and GB2 emerge as steady-state distributions of a
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stochastic differential equation for stochastic volatility [25]. In Section 4, we describe fits
of RV with mGB and GB2 and provide a detailed description of the tails, specifically in
regards to possible DK/nDK. Towards this end, we also use a linear fit (LF) of the tails. For
all three fits, we provide confidence intervals [4] and, more importantly, the results of a
U-test [5], which evaluates a p-value for the null hypothesis that a data point comes from
a fitting distribution [5]. Section 5 is a discussion of results obtained in Sections 4 and 6
summarizes our findings and touches upon possible extensions of this work.

2. Time Series of Realized Volatility

Figure 1 shows the time series of RV for n = 1, based on daily returns, n = 7, and
n = 21, where n is the number of days over which the daily RV is averaged in (1) and (2).
Only values with RV > 17 are shown, and black dots mark values RV > 101.75 ≈ 56. It is
clear that the time series progression with the increase in n is towards a more pronounced
amplification of singularly important events, such as periods corresponding to Black
Monday, the Financial Crisis and the COVID-19 pandemic—even though the maximum
values of RV understandably decrease in the same progression, as the averaging is taken
over a larger number of days n. While such progression naturally leads to a question of
whether these events might belong to the DK category, we shall see in what follows that
they are actually nDK.
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Figure 1. Cont.
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Figure 1. Time series of RV for S&P500, with RV > 17 shown. From top to bottom n = 1, 7, 21. Black
dots indicate RV > 101.75 ≈ 56.

Figures 2 and 3 give snapshots of the time series in Figure 1 around the largest
volatility events: Figure 2 based on daily returns, n = 1, and Figure 3 for n = 7 and
n = 21, respectively. Based on Figures 1–3, Black Monday was clearly the most singular
volatility event, while Financial Crisis and COVID-19 pandemic were distinguished by
more prolonged periods of sustained extraordinarily large RV.
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Figure 2. Snapshots of n = 1 for S&P500 RV time series in Figure 1 around Black Monday, Tech
Bubble, Financial Crisis and COVID-19 pandemic.
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Figure 3. Snapshots of n = 7 (top two) and n = 21 (bottom two) for S&P500 RV time series in Figure 1
for the same periods as in Figure 2.

3. Generalized Beta Distribution Function

A companion paper [25] discusses in great detail the modified Generalized Beta
distribution function (mGB) used here to fit the distributions of RV. A generalization of
the traditional [26] GB can be written, in a slightly modified form relative to that of [25],
as follows:

fGB(x; α, β1, β2, p, q) =
α
(

1 +
(

β2
β1

)α)p(
x

β2

)αp−1(
1 +

(
x

β2

)α)−p−q(
1 −

(
x

β1

)α)q−1

β2B(p, q)
, (4)

where β1 and β2 are scale parameters and α, p and q are shape parameters, all positive;
B(p, q) is the beta function and x ≤ β1. Although it has a concise and transparent form, it
does not come out as a solution of a stochastic differential equation (SDE) [27–29], which is
desirable for the purpose of modeling behavior of quantities, such as stochastic volatility,
which is important for the understanding of RV [30].

The probability density function (PDF) of mGB, which comes out as a solution of
an SDE (with minor caveats explained in [25]) and which is used here to model the RV
distribution, can be written as

fmGB(x; α, β1, β2, p, q) =
α(p + q)

(
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(
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β1

)α)p+1(
x

β2

)αp−1(
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(
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1 −

(
x
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)α)q−1

β2B(p, q)
(

q +
(

β2
β1

)α
(p + q)

) , (5)

The cumulative distribution function (CDF) and complementary CDF (CCDF) of mGB are
given, respectively, by

FmGB(x; α, β1, β2, p, q) = I

( (
x
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)α
+
(

x
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+ 1
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)α(
1+
(

x
β2

)α)
)p

, (6)

and



Foundations 2024, 4 97

1 − FmGB(x; α, β1, β2, p, q) = I
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where the first term in (6) and (7) represent, respectively, CDF and CCDF of GB (whose
PDF is given by (4)), while I(y; p, q) = B(y; p, q)/B(p, q) and B(y; p, q) are, respectively, the
regularized and incomplete beta functions [31].

In what follows, we will be specifically interested in the β2 ≪ β1 circumstance, since,
for β2 ≪ x ≪ β1, GB and mGB exhibit a power-law dependence,

fmGB ∝
(

x
β2

)−α(q+1)−1
, 1 − FmGB ∝

(
x
β2

)−α(q+1)
; fGB ∝

(
x
β2

)−αq−1
, 1 − FGB ∝

(
x
β2

)−αq
. (8)

In the limit of β1 → ∞, mGB and GB become, respectively, mGB2 and GB2 (the latter is also
known as Generalized Beta Prime) and are given by [25]

fmGB2(x; α, β2, p, q) =
α(p + q)

(
x

β2

)αp−1(
1 +

(
x

β2

)α)−p−q−1

qβ2B(p, q)
, (9)

and

fGB2(x; α, β1, β2, p, q) =
α
(

x
β2

)αp−1(
1 +

(
x

β2

)α)−p−q

β2B(p, q)
. (10)

Unlike mGB and GB, for whom the power-law dependences in (8) eventually terminate at
β1, mGB2 and GB2 will sustain these power-law dependences indefinitely.

Below, we will use (7) to fit CCDF of distributions of RV. As explained in [25], mGB2
and GB2 are equivalent, since q and p are independently defined at this level of the GB
family of distributions and q can be shifted by unity in the definition of mGB2/GB2.
Consequently, we choose a more familiar CCDF of GB2

1 − FGB2(x; α, β1, β2, p, q) = I

 1

1 +
(

x
β2

)α ; q, p

 (11)

to fit the CCDF of the RV data. Insofar as the main difference between mGB and GB is
concerned, it is their behavior near β1 in the present context [25]. Namely,

1 − FGB ≈ 1
qB(p, q)
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and
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, (13)

that is, 1 − FmGB drops off to zero (FmGB saturates to unity) faster than 1 − FGB due to the

factor
(

β2
β1

)α
. This feature accounts for a better fit via mGB versus GB, which may be due

to the fact that mGB emerges from a physically motivated stochastic model [25].

4. Fitting Distribution of Realized Volatility
4.1. Methodology

We fit CCDF of the full RV distribution—for the entire time span discussed in
Section 2—using mGB (7) and GB2 (11). We use Bayesian fitting since the latter (and
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the gradient descent) consistently provide better fits of the sparsely populated tails. The fits
are shown on the log-log scale in Figures 4–13, together with the linear fit (LF) of the tails
with RV > 40. LF excludes the end points, as prescribed in [5], that visually may be nDK
candidates. (In order to mimic LF, we also excluded those points in GB2 fits, which has a
minimal effect on GB2 fits, including the slope and KS statistic). To make the progression
of the fits as a function of n clearer, we included results for n = 5 and n = 17, in addition to
n = 1, 7, 21, which we used in Section 2. Confidence intervals (CI) were evaluated per [4],
via the inversion of the binomial distribution. p-values were evaluated in the framework of
the U-test, which is discussed in [5] and is based on order statistics (a wide variety of tests
statistics is discussed in [6]):

p(xk,m) = 1 − B(F(xk,m); k, m − k + 1), (14)

where xk,m is the k’s member of numbers between 1 and m ordered by increasing the
magnitude (RV values in this case), and F(xk,m) is the assumed CDF (here, mGB, GB2 and
LF). p-values are evaluated in order to test the null hypothesis H0: all observations of the
sample are generated by the same fitting distribution. The p-value (14) is defined as a probability
of exceeding the observed value xk,m under the null hypothesis. If among the p-values
there are some small values—≤0.05 here—then those observed values are identified as DK
with probability 1 − p. Conversely, large p-values—≥0.95 here—are identified as nDK with
the probability p [5].

4.2. Results

For each number of days n in Equations (1) and (2), from top to bottom, Figures 4–13
are organized as follows:

• Full data CDF fit with mGB and GB2 and LF of the tails;
• Same as above shown for RV > 40;
• p-values of all three fits for RV > 40, with p < 0.05 indicating DK and p > 0.95 nDK;
• LF with its CI;
• GB2 fit with its CI;
• mGB fit with its CI.

In the CI plots, upward pointing triangles indicate p-values consistent with DK, while
downward pointing triangles indicate p-values consistent with nDK [5]. Figure 14 shows
LF for n = 7, 17, 21, where the last 10% of the range of values were excluded, that is, values
greater than 0.9 max{RV}, as opposed to excluding points visually, as in Figures 4–13.

Figure 15 shows LF and GB2 slopes and the Kolmogorv–Smirnov (KS) statistic for
GB2 and mGB as a function of n; the horizontal line with the table value of KS statistic for
our sample size [32] is shown for guidance only since mGB and GB2 here are distributions
with estimated parameters. Tables 1–3 list, respectively, parameters of the mGB and GB fits,
their standard errors (SE) and linear slope values of GB2 and LF in Figure 15.

Table 1. All estimated parameters of mGB and GB2 fits of S&P500 RV distribution.

n Parameters of mGB(α, β1, β2, p, q) Parameters of GB2(α, β, p, q)

1 (1.5500, 399.9009, 27.4233, 0.6519, 1.7828) (1.5289, 27.4156, 0.6545, 2.7780)
5 (2.3708, 200.5519, 10.7210, 1.7255, 0.4456) (2.3749, 10.7480, 1.7205, 1.4409)
7 (2.4744, 180.8711, 9.7136, 2.1430, 0.3848) (2.4681, 9.7169, 2.1371, 1.3796)

17 (2.3026, 120.110, 6.3561, 6.1121, 0.5403) (2.2797, 6.3471, 6.0946, 1.5334)
21 (2.4016, 104.9925, 6.3853, 6.3429, 0.5043) (2.3850, 6.2193, 6.5117, 1.4457)
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Figure 4. Linear, GB2 and mGB fits of S&P500 RV (top), tail RV > 40 (middle), and p-values (bottom)
for n = 1.
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for n = 5.
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Figure 7. Same as the middle Figure 6 (tail parts of fits of S&P500 RV for n = 5) with the respective
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Figure 9. Same as the middle Figure 8 (tail parts of fits of S&P500 RV for n = 7) with the respective
CI, “potential” DK (up triangles) and nDK (down triangles).
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Figure 10. Linear, GB2 and mGB fits of S&P500 RV (top), tail RV > 40 (middle), and p-values (bottom)
for n = 17.
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Figure 11. Same as the middle Figure 10 (tail parts of fits of S&P500 RV for n = 17) with the respective
CI, “potential” DK (up triangles) and nDK (down triangles).
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Figure 12. Linear, GB2 and mGB fits of S&P500 RV (top), tail RV > 40 (middle), and p-values (bottom)
for n = 21.
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Figure 13. Same as the middle Figure 12 (tail parts of fits of S&P500 RV for n = 21) with the respective
CI, “potential” DK (up triangles) and nDK (down triangles).
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Figure 14. From top to bottom, LF of the tail of S&P500 RV, RV > 40, for n = 7, 17, 21 with end
values > 0.9 max{RV} excluded from LF.
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Figure 15. As a function of n: linear slope values of linear (stars) and GB2 (squares) fits (also listed
in Table 3)—(left); KS statistic values indicating relative goodness of fit of mGB (stars) and GB2
(squares)—(right).

Table 2. Standard error of all estimated parameters of mGB and GB2 fits of S&P500 RV distribution.

n SE of Parameters of mGB (α, β1, β2, p, q) SE of Parameters of GB2 (α, β, p, q)

1 (0.2049, 5.6537, 0.3884, 0.1196, 0.3171) (0.0079, 0.0018, 0.0018, 0.0026)
5 (0.0690, 0.0127, 0.0152, 0.0175, 0.0922) (0.0018, 0.0004, 0.0004, 0.0006)
7 (0.1193, 0.0246, 0.0348, 0.0246, 0.0281) (0.0021, 0.0005, 0.0005, 0.0007)

17 (0.0614, 0.0220, 0.0150, 0.0288, 0.0325) (0.0055, 0.0013, 0.0013, 0.0018)
21 (0.6300, 0.2807, 0.0114, 0.3419, 0.2451) (0.0085, 0.0020, 0.0020, 0.0028)

Table 3. Slopes in Figure 15 of GB2 tail (−αq) and of LF.

n GB2 LF

1 −4.25 −3.01
5 −3.42 −2.95
7 −3.41 −2.84
17 −3.50 −2.34
21 −3.45 −2.28

5. Discussion

While the standard search for Dragon Kings involves performing a linear fit of the
tails of the distribution combined with statistical tests, such as U-test [5] and evaluation
of confidence intervals [4], here, we tried to broaden our analysis by also fitting the en-
tire distribution—of realized volatility of S&P500 index in this case—using mGB (7) and
GB2 (11), the two members of the Generalized Beta family of distributions [25,26]. As ex-
plained in the paragraph that follows (7), the central feature of mGB is that, after exhibiting
a long power-law dependence, it eventually terminates at a finite value of the variable.
GB2, on the other hand, has a power-law tail that extends mGB’s power-law dependence
to infinity.

The key to understanding the results of fits in Section 4 is the analysis of the structure
of RV used by the markets—a square root of realized variance (1). At its core is the average
of the consecutive daily realized variances (2). Distribution of daily realized variance can be
modeled using a duo of stochastic differential equations—for stock returns and stochastic
volatility—which produces distributions of daily variance such as mGB [25] and GB2 [30].
Via a simple change of variable, daily RV would then follow the same distributions but
with renormalized parameters.

Even assuming the knowledge of the distribution of the daily realized variance,
finding the distribution of the averages constitutes a daunting task. To begin with, using
convolution to evaluate the distribution of a sum of just two such complex distributions
as mGB and GB2 is already not amenable to an analytical evaluation. To complicate
things further, the consecutive daily RV cannot be treated as an independent identically
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distributed variable (i.i.d.), due to the correlations that persist on average for up to roughly
5–7 days [24].

With the above in mind, we first address Figures 4–13. According to Figures 4 and 5,
daily RV appears to be the closest to being commensurate with the Black Swan behavior,
as both LF and GB2 approximate the tail of the distribution better than mGB and LF does
not point to the existence of either DK, p < 0.05, or nDK, p > 0.95. The n = 1 behavior
undergoes a dramatic change with the increase in n, as observed in Figures 6–13, where we
observe that, first, the “potential” DK, p < 0.05, develop at the earlier portions of the tails,
only to terminate in nDK at the tail ends.

Generally speaking, the existence of the large number of “potential” DK in the tail of
the distribution indicates that the distribution is not describing the tail adequately. This
becomes pronounced for large n for all three fits—LF, GB2 and mGB—although less so for
LF, which also does not exhibit “potential” DK for small n. However, if we adopt a different
procedure for LF, whereby instead of visually excluding nDK candidates at the tail end
we exclude the values whose RV is greater than 0.9 of the maximum RV, we observe in
Figure 14 that it has little effect on LF for small n but all but eliminates “potential” DK.

For large n we also observe that mGB approximates the tail end better than GB2—consistent
with smaller KS values in Figure 15 and the smaller number of nDK. However, neither
approximates the preceding portion of the tail well, as indicated by the “potential” DK.
This has to do with the fact that neither of the distributions appear as a solution of a
first-principle model describing the average RV. Finally, in the first plot in Figure 15, we
observe that after roughly 5–7 days, the slope of the GB2 tail saturates, consistent with the
correlation range of daily RV [24]. The slope of LF, on the other hand, increases with n.
However, neither is consistent with a naive assumption of the distribution having the same
slope as that of the daily RV.

6. Conclusions

We showed that for daily returns, the distribution of realized volatility likely has a
power-law tail, consistent with the Black Swan behavior. The averaged realized volatility
develops a strong negative Dragon King signature, as the number of days involved in the
averaging of daily realized variances increases. The breadth and strength of the S&P500
index analyzed here may be a contributing factor in suppressing the runaway power-law
Black Swan behavior.

It should be emphasized, however, that there exists a plethora of other quantities
describing markets, some of which may exhibit Black Swan or Dragon King behavior—to
wit, the study of outliers in [11–14]. For that matter, given that market crashes are often
characterized by their longevity, accumulated (multi-day) stock returns and associated
realized volatility may be more appropriate quantities to study [33,34]. On the other
hand, the realized volatility studied here is widely used both by economists and market
practitioners, and it provides a good retrospective picture of market calamities.

We also attempted to fit the entire distributions using modified Generalized Beta and
Generalized Beta Prime distributions. While the former qualitatively mimics termination
of the empirical distributions of realized volatility, goodness of fit—which is in itself a
complicated subject of future research—remains an open question.

A natural extension of this work, and specifically of the application of the Generalized
Beta family of distributions, would be, aside from the aforementioned accumulated returns
and volatility, the analysis of separate gains and losses of stock returns vis-a-vis realized
volatility, as well as of other large data sets that may exhibit power-law tails and outliers,
such as income distributions and associated quantities such as house prices and house
price indices [35]. It would also be of great interest to compare these distributions across
different markets and geographical areas.
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