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Abstract: Cannabis sativa L. is an ancient cultivar that has found applications in various fields, e.g.,
medicine, due to its beneficial effects. However, due to its psychotropic effects, the regulation
of this cultivar has increased throughout the decades. In this context, the need for rapid and
reliable analytical methods to ensure the quality control of Cannabis cultivars has become of extreme
importance. NIRS has arisen as a powerful tool in this field due to its multiple advantages, e.g., non-
destructive, rapid, and cost-effective. In this article, the chemometric techniques commonly employed
in NIRS method development are described, along with their application for the analysis of Cannabis
samples. Regarding qualitative methods, different mathematical treatments and classification models
are explained. As for quantitative methods, the representative linear and non-linear modelling
techniques applied for the development of prediction equations are described, alongside their
application in the Cannabis field. To the best of our knowledge, this is the first time this type of review
is written, since there are several articles which address cannabinoid determination, but the main
purpose of this review is to enhance the potential of NIRS over the traditional techniques employed
for the analysis of Cannabis samples.
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1. Introduction

Cannabis sativa L. is one of the oldest known cultivars and it has been exploited for
its versatility and advantages in various fields, such as medicine and food or textile in-
dustry. Despite its negative connotation related to its recreational consumption, Cannabis
has been used as a potential treatment or palliative measure for various illnesses and
medical conditions such as chronic pain, epilepsy, multiple sclerosis, cancer, glaucoma,
and neurodegenerative disorders, like Parkinson’s and Huntington’s disease, among oth-
ers [1]. In this sense, the medical Cannabis industry focuses on the cultivation, processing,
and distribution of Cannabis and Cannabis-derived products for medical purposes. It
includes the production of pharmaceutical-grade Cannabis products, such as oils, tinctures,
capsules, and more, which are used to treat various medical conditions. The medicinal
Cannabis industry is subject to strict regulations and often requires specific licenses and
certifications. Cannabis produces at least 144 distinct phytocannabinoids, the main con-
stituents of the plant, which represent the potential cause of this medical benefit. The most
prevalent cannabinoids are the non-psychoactive tetrahydrocannabinolic and cannabidiolic
acid (THCA and CBDA, respectively); these transform into the biologically active neu-
tral forms, ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), after undergoing
the decarboxylation process. In recent years, there has been a growing interest in the
scientific examination of various phytocannabinoids, including CBN (cannabinol), CBC
(cannabichromene), and CBG (cannabigerol), with regard to their potential applications in
the fields of medicine, cosmetics, and other purposes [2].
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On the other hand, the non-psychotropic species of Cannabis sativa L., industrial hemp,
is characterized by containing minimal concentrations of ∆9-THC. Hemp fibres can be
used in the production of textiles, paper, and building materials, while hemp seeds can be
processed into food products and dietary supplements. The common agricultural policy
(CAP) of the European Union provides subsidies for the cultivation of these specific strains,
as long as their ∆9-THC content does not exceed 0.2%. In this sense, according to Regulation
(EU) No. 1307/2013 of the European Parliament, the verification of the ∆9-THC content
must be carried out to prevent the cultivation of illicit drug-type Cannabis in hemp fields.
However, this limitation may vary depending on the country, increasing up to 1% in Czech
Republic [3].

For this reason, the importance of the quality control of the Cannabis industry has
increased dramatically and numerous accredited testing laboratories have emerged in the
last decade [4]. The complexity of the Cannabis sample challenges the quality control
of this matrix, since many parameters may be determined. In this sense, analysis could
be classified considering both favorable and unfavorable parameters. In the first group,
different compounds such as cannabinoids, terpenes, flavonoids, alkaloids, or sterols,
among others may be quantified [5–9]. All these parameters will give beneficial information
of the vegetal material intended to be used as a medicinal product, since they provide
certain characteristics to the Cannabis plant, such as flavour or smell. On the other hand,
certain parameters such as pesticides, mycotoxins, or heavy metals are categorized as
adverse factors, and their presence may need to be limited to specific quantities [10–13].
Therefore, they are also essential considerations for the quality control of Cannabis.

Traditionally, the determination of cannabinoids in Cannabis samples, has been per-
formed via chromatographic techniques, such as gas (GC) [14–16] or liquid chromatography
(LC) [17–19] coupled to different detectors, namely diode array (DAD), mass spectrometry
(MS) and flame ionization detector (FID), among others [20]. These techniques present
a series of advantages that make them appropriate for the analysis of cannabinoids and
other minor analytes such as terpenes or flavonoids, which are depicted in Figure 1. LC
and GC provide excellent separation capabilities, allowing the analysis of complex mix-
tures and permitting the determination of cannabinoids and other compounds with high
selectivity and sensitivity. This is especially reinforced when coupled with detectors like
mass spectrometry, which makes them suitable for the detection and quantification of
compounds, even at low concentrations [21]. However, the achievement of superior analyt-
ical performance using these techniques involves the use of hazardous solvents such as
acetonitrile, methanol, and/or hexane (Figure 1). On the other hand, it should be noted that
the expenses associated with the acquisition, maintenance, and operation of the LC and
GC equipment are significant, accompanied by the daily operation of these instruments
that requires highly skilled personnel [22]. As for GC, this approach is not suitable for the
direct determination of the acidic form of cannabinoids since high temperatures (up to
300 ◦C) are reached throughout the analysis and these compounds decarboxylate to their
neutral form when heated due to their thermolabile nature. Additionally, some studies
have demonstrated the potential degradation of cannabinoids in the chromatographic
injector port, leading in inaccuracies [23]. For this reason, derivatization of the acidic
cannabinoids is mandatory prior GC analysis, which can be time-consuming. Furthermore,
temperature can also lead to conversion reactions [24–28], thus resulting in an inappropriate
determination of the analyte. Further techniques, such as thin-layer chromatography (TLC)
or nuclear magnetic resonance (NMR) have also been employed for the determination of
cannabinoids [29,30]. However, these techniques are not suitable for quantification due to
the limitations they present, i.e., elevated cost and maintenance in the case of NMR, or low
sensitivity in the case of TLC.
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Figure 1. Comparison of the traditional techniques employed for the analysis of Cannabis samples 
versus NIRS. Advantages are represented in greenish colour while disadvantages are in orangish 
colour, grey circles express unfilled. A scale from 1 to 5 has been employed to evaluate each param-
eter in terms of the degree of benefit/drawback. For instance, when comparing the ‘Instru-
ment/Maintenance expenses’, a 5/5 disadvantage score is chosen for traditional techniques due to 
their characteristic high cost, while a 3/5 advantage score is selected for NIRS since they tend to have 
an intermediate cost. 

Additional techniques have been utilized to determine further components of the 
plant. Malík et al. [31] describe the use of Kjeldahl method for the analysis of the nitrogen 
content in Cannabis as part of a comparative study of nutrition. Some other macro and 
microelements as well as trace elements were determined via flame atomic absorption 
spectroscopy (FAAS) and inductively coupled plasma optical emission spectroscopy (ICP-
OES) [32,33]. In all the cases, sample treatment procedures require the use of hazardous 
chemicals, like nitric or sulfuric acid, at very high temperatures, which need to be handled 
with caution by trained personnel. It involves multiple steps, like sample digestion, and 
distillation and titration in the case of Kjeldahl, taking several hours to complete a single 
analysis (Figure 1). Moreover, it is imperative to follow the appropriate procedures and 
comply with environmental regulations when disposing of the chemical waste produced 
during the analysis. Despite all these disadvantages, the Kjeldahl approach is a well-es-
tablished chemical method, used for many years to determine nitrogen in multiple sam-
ples of different fields, such as the food and beverage industry, agriculture and soil sci-
ence, environmental analysis, and pharmaceutical industry [34]. On the other hand, meas-
uring moisture content is particularly useful as it allows for results normalization, ac-
counting for variations in sample humidity that may occur during storage, and can also 
provide information regarding the progress of cultivation [8,35]. This parameter could be 
determined employing several analytical techniques, such as a nuclear magnetic reso-
nance (NMR) instrument [36], which has been used to measure the reference moisture 
content of ground and whole hemp materials. Additionally, the determination of sugars 
in Cannabis is a crucial aspect of plant analysis since it can provide valuable information 
regarding physiology or quality. Furthermore, sugars play a pivotal role in the 

Figure 1. Comparison of the traditional techniques employed for the analysis of Cannabis samples
versus NIRS. Advantages are represented in greenish colour while disadvantages are in orangish
colour, grey circles express unfilled. A scale from 1 to 5 has been employed to evaluate each
parameter in terms of the degree of benefit/drawback. For instance, when comparing the ‘Instru-
ment/Maintenance expenses’, a 5/5 disadvantage score is chosen for traditional techniques due to
their characteristic high cost, while a 3/5 advantage score is selected for NIRS since they tend to have
an intermediate cost.

Additional techniques have been utilized to determine further components of the
plant. Malík et al. [31] describe the use of Kjeldahl method for the analysis of the nitrogen
content in Cannabis as part of a comparative study of nutrition. Some other macro and
microelements as well as trace elements were determined via flame atomic absorption
spectroscopy (FAAS) and inductively coupled plasma optical emission spectroscopy (ICP-
OES) [32,33]. In all the cases, sample treatment procedures require the use of hazardous
chemicals, like nitric or sulfuric acid, at very high temperatures, which need to be handled
with caution by trained personnel. It involves multiple steps, like sample digestion, and
distillation and titration in the case of Kjeldahl, taking several hours to complete a single
analysis (Figure 1). Moreover, it is imperative to follow the appropriate procedures and
comply with environmental regulations when disposing of the chemical waste produced
during the analysis. Despite all these disadvantages, the Kjeldahl approach is a well-
established chemical method, used for many years to determine nitrogen in multiple
samples of different fields, such as the food and beverage industry, agriculture and soil
science, environmental analysis, and pharmaceutical industry [34]. On the other hand,
measuring moisture content is particularly useful as it allows for results normalization,
accounting for variations in sample humidity that may occur during storage, and can also
provide information regarding the progress of cultivation [8,35]. This parameter could be
determined employing several analytical techniques, such as a nuclear magnetic resonance
(NMR) instrument [36], which has been used to measure the reference moisture content of
ground and whole hemp materials. Additionally, the determination of sugars in Cannabis
is a crucial aspect of plant analysis since it can provide valuable information regarding
physiology or quality. Furthermore, sugars play a pivotal role in the biosynthesis of terpenes
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and cannabinoids, and thus, understanding the sugar content can offer valuable insights
into the capacity of the plant for producing these compounds, which are responsible for
the plant’s aroma and psychoactive effects. There are various analytical techniques that can
be employed for determining sugar content, with HPLC being one of the most widely used
methods [37,38].

As previously mentioned, there are adverse compounds of the Cannabis plant that
also need to be determined in order to assess the quality control of Cannabis, i.e., pesticides,
heavy metals or mycotoxins [11–13]. These compounds can be introduced in the Cannabis
plant via various sources, e.g., soil, water, or air [39,40] and can be harmful to human health
if consumed, leading to potential neurological problems, organ damage, or cancer, among
others. For this reason, many countries have established regulations and limits, and thus,
quality assessment by a specialized laboratory is mandatory for licensed Cannabis produc-
ers [40]. Numerous analytical techniques are typically employed for the determination of
heavy metals, i.e., ICP-MS, AAS, or X-ray fluorescence (XRF) [41]; pesticides, i.e., GC-MS
or LC-MS; and mycotoxins, i.e., LC-MS [11].

One of the main common disadvantages of all the aforementioned techniques, is the
employment of expensive equipment that require expertise personnel as well as reactants
and solvents. In this context, near-infrared spectroscopy (NIRS) has been gaining much
attention in the last decade due to its multiple advantages (Figure 1). On the one hand, its
broad spectral range facilitates the detection and quantification of numerous compounds
or properties in complex mixtures without the need for extensive separation methods.
Additionally, it is a low-cost and rapid technique that can provide results within a few
minutes, which is especially useful for high-throughput analysis or applications where
quick results are required [42]. Since it is a non-destructive technique, samples can be used
after NIRS measurements for other applications [36,43], which is particularly advantageous
when working with valuable or limited sample quantities [44]. On the other hand, its
versatility allows broad application across various sample types, including solids, liquids,
and gases, being particularly adept at simultaneous analysis of multiple components
within a sample [45]. Nowadays, with the development of portable NIRS instruments,
measurements can be performed in situ, and consequently, sample treatment is either
entirely or almost entirely avoided [42]. Therefore, NIRS is truly in line with the green
analytical chemistry principles, i.e., diminishing the utilization of hazardous chemicals and
reagents, employing equipment that is energy-efficient, and producing minimal waste [46].
However, the main drawback of NIRS technology is the interpretation of the spectra, which
is difficult, and the use of mathematical and statistical methods, i.e., chemometrics, is
mandatory to extract the important information related to chemical mechanisms [47,48].

Once the potential of NIRS against traditional techniques has been settled, in this
article, the different chemometric techniques commonly employed in NIRS method devel-
opment will be described, along with their application for the analysis of Cannabis sativa
L. samples. For this purpose, the article is divided in Sections 2 and 3, i.e., qualitative
and quantitative methods, in which a thorough explanation of the different multivariate
statistical techniques will be provided. Although there are several articles that review the
different analytical techniques employed for the determination of cannabinoids [49], to
the best of our knowledge, this is the first time that all this information along with the
theoretical basis of NIRS method development is gathered in a revision article.

2. Qualitative Methods

The term “qualitative methods” refers to the identification and classification of samples
based on their NIR spectra by means of spectral patterns. These methods are particularly
useful when aiming for a differentiation between types or classes of samples without
quantifying specific compounds. In this sense, Cannabis sativa L. is a type of cultivar
with multiple characteristics than can be employed for its classification, e.g., chemotype,
genotype, and growth stage, among others [50–52]. Additionally, NIRS methodology
has been used for the classification of samples regarding the crop year or location [53].
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Furthermore, to develop a robust NIR methodology, a large number of samples is required
in order to cover a wide range of variability among the samples. As a consequence, a big
matrix of data and variables is usually obtained, thus hindering the ability to easily extract
the important information within the data [54]. There are different chemometric techniques
that can facilitate the process of data management (Table 1), which will be described in this
section, along with their application to the analysis of Cannabis sativa L. samples.

Prior method development, preprocessing of the spectra is a very important step
in order to avoid interferences related to factors that may affect the information of inter-
est, e.g., sample particle size variations, outliers, scatter effects or baseline shifts, among
others [52,55]. For this purpose, different mathematical treatments can be used, e.g., stan-
dard normal variate (SNV), detrending, Savitzky–Golay polynomial derivative filters,
multiplicative scatter correction (MSC), etc. [56]. These techniques are useful to prevent
the effects previously mentioned while preserving the shape and integrity of the original
spectral features, which is particularly interesting in the case of complex spectra [57]. As can
be seen in Figure 2, the quality of the spectra is considerably improved after preprocessing,
with sharper and well-differentiated bands.
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Once the data are preprocessed, the classification can be performed following two
approaches, i.e., supervised and unsupervised. Regarding the first approach, the supervised
methods, there is previous knowledge about some characteristics of the samples, such as the
categories in which the samples are classified. However, when developing unsupervised
methods, no previous information about the samples is provided and, therefore, self-
interpretation of the differences encountered among the spectra is needed [58].

2.1. Unsupervised Methods
2.1.1. Principal Component Analysis

The aim of principal component analysis (PCA) is to reduce the dimensionality of the
spectral data and identify the most significant variations, thus facilitating the visualization
and interpretation of sample groupings [58]. In order to achieve this goal, PCA finds a
new coordinate system that represents the data with a reduced number of uncorrelated
variables called principal components (PCs) [59]. In this sense, PCA is used to obtain a
graphical representation with no previous knowledge about the samples.

Considering that PCA diminishes the complexity of the spectral data, other advantages
arise, namely data processing, since redundant or highly correlated variables are eliminated.
Additionally, PCA facilitates the detection of outliers, i.e., samples that deviate significantly
from the majority of data points, by means of their abnormal coordinates in the transformed
space. By combining all these features, PCA effectively identifies important characteristics
within a dataset, thus being a highly valuable technique [60]. In the field of Cannabis,
PCA has been particularly interesting, since it allows researchers to differentiate not only
between chemotypes, but also to distinguish among illegal or legal Cannabis plantations
depending on the country regulations, thus becoming a great help for the authorities
considering that further analysis and sample treatment can be avoided [51,52,61]. To
give an example, Duchateau et al. [52] employed different chemometric techniques to
compare the performance of two NIR devices, i.e., a benchtop and a handheld device, for
the classification of 189 Cannabis samples as legal or illegal according to the European and
Swiss legislation. In this article, PCA played a crucial role in visualizing the spectra in two-
or three-dimensional plots. Its purpose was to perform an exploratory analysis, ensuring
that the data could be effectively modelled afterwards using supervised techniques, and
that good predictive results are not based on coincidence or due to modelling of the noise.

Borille et al. [51] also employed the NIRS technology combined with chemometric
methods for the growth stage classification of 29 sample triplicates obtained from Cannabis
cultivated in a greenhouse from seized seeds. In this article, PCA by intervals (iPCA)
was employed in the raw spectra as a preprocess step in order to eliminate irrelevant
information and select the best spectral range for the classification. This technique is an
extension of the traditional PCA that evaluates intervals rather than point estimates, thus
providing a more comprehensive and robust analysis of the data. Subsequent PCA was
also used for the purpose of visualizing the clusters of samples according to similarity.

Relatedly, Tran et al. [42] developed prediction models using two different NIRS
instruments, i.e., benchtop and handheld, for the quantification of cannabinoids in Cannabis
samples. Before quantitative method development, they applied different preprocessing
techniques and PCA to take an overview of the classification of the data. As can be seen in
Figure 3, PCA revealed three well-defined classes depending on the cannabinoid content,
i.e., high CBDA, high THCA, and even ratio, for the benchtop instrument, thus showing
the potential of this technique to preliminary classification of samples.
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2.1.2. Hierarchical Clustering Analysis

Hierarchical clustering analysis (HCA) is an unsupervised multivariate analysis tech-
nique commonly used in NIRS technology. HCA consists of clustering the samples into
groups by means of the similarities between the spectra, so that the within-group similari-
ties are larger compared to the between-group similarities. Thus, by performing successive
divisions, a tree-like structure, i.e., dendrogramme, is obtained [62]. In order to obtain this
dendrogramme, two main approaches are employed: agglomerative and divisive. The
agglomerative approach is a bottom-up strategy in which the samples are considered as
individual clusters that are progressively grouped according to their similarity until a single
cluster containing all the samples is formed. On the other hand, the divisive approach is a
top-down method that separates a single cluster containing all the samples into smaller
subclusters based on the differences between samples or groups.

In the article previously mentioned by Duchateau et al. [52], HCA was employed to do
a preliminary evaluation of the different clusters of samples. For the benchtop NIR, three
major clusters were obtained, separating the samples according to the content of ∆9-THC
in higher than 1% (w/w), between 0.2 and 1% (w/w) and less than 0.2% (w/w). As for the
handheld device, HCA showed to major clusters: one with samples with a ∆9-THC content
higher than 1% (w/w) and a second cluster with samples containing less than 1% (w/w).
Thus, by employing HCA, a global vision of the similarities between samples is possible,
and therefore, the suitability of a subsequent supervised method is ensured.

Furthermore, in the article mentioned in the previous section by Borille et al. [51],
HCA revealed three main groups according to the three growth stages employed. However,
the dendrogram did not entirely reveal the specific clustering of the growth stage, which
confirms that these chemometric techniques are used only for a preliminary exploratory
analysis and not for a precise classification, for which more advanced chemometric tools
are required.

2.1.3. Non-Hierarchical Clustering Analysis

The objective of non-hierarchical clustering methods is to obtain one final partition
of the data. In this case, the number of clusters is fixed by the user, which is an important
drawback to these techniques since there is no previous knowledge about the samples.
Some examples of non-hierarchical clustering methods are the k-means, which assess
the similarities between samples by means of distance measurements; the Density Based
Spatial Clustering of Applications with Noise (DBSCAN), based on sample density; or
the Self-Organising Map (SOM), which studies the relationship between variables and
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samples, among others [63]. However, no applications of these methods to Cannabis
samples combined with NIRS spectroscopy have been found.

2.2. Supervised Methods
2.2.1. Soft Independent Modelling of Class Analogy

Soft Independent Modelling of Class Analogy (SIMCA) is a class modelling technique
commonly used in chemometrics for pattern recognition and classification, thus being a
supervised method [64,65]. Samples are placed in a PCs space that describes a certain class
created by SIMCA after applying PCA, in order to evaluate whether they belong to it or not.
The number of PCs determined by SIMCA is key, since important features from the model
may be excluded when lacking PCs, thus hindering the selectivity. On the other hand,
employing an excessive number of PCs can lead to increase in the noise and overfitting of
the model [66]. As implied on its name, SIMCA is focused on evaluating the similarities
among the samples within a class rather than on discrimination between classes [67].

Pereira et al. [50] developed a method using NIRS hyperspectral imaging and machine
learning methods for the detection and identification of illegal plantations of Cannabis sativa
L. PCA was firstly employed to explore the characteristics of the images and identify the
potential clusters related to Cannabis sativa L. Different areas of the images were selected in
order to collect the pixels from important parts of the plant, e.g., margin, veins, etc. Prior to
SIMCA method development, sparse PCA was performed to eliminate the variables that
were not informative. Then, the training set of 401 pixels/spectrum selected via sparse
PCA were used to build the SIMCA model. By selecting another region of interest from the
same image, a validation set was obtained and the developed SIMCA model was applied,
obtaining good results in terms of sensitivity and specificity, thus ensuring the suitability
of the model for the identification of Cannabis sativa L. with a low false-positive rate.

2.2.2. Partial Least Squares Discriminant Analysis

Another supervised method is the so-called partial least squares discriminant analy-
sis (PLS-DA), which combines dimensionality reduction and prediction model construc-
tion [68]. Although this technique has been gaining attention in recent decades, it is prone
to overfitting in some cases in which the number of variables significantly exceeds the
number of samples. Therefore, cross-validation becomes an essential step, not only for
characteristic selection and classification, but also for mere data visualization. On the other
hand, it is a multi-step procedure that involves different mathematical operations and
parameters [68]. However, if all the potential obstacles are carefully taken into account
and a thorough evaluation of every step of the procedure is carried out, PLS-DA can be a
powerful technique for managing highly multidimensional data.

There are several articles in which this technique is employed so as to take an overlook
of the data that are going to be subsequently fitted into a quantitative method or to develop
very accurate qualitative methods for the classification of Cannabis samples [20,42,69,70].
For instance, Birenboim et al. [20] developed a method for the classification of Cannabis
cultivars and the quantification of major cannabinoids and terpenes via Fourier transform
near-infrared spectroscopy (FT-NIR) combined with chemometrics. Prior development of
the quantitative method, multivariate classification and regression models were used, e.g.,
PLS-DA. This technique was particularly useful for major class separation of the samples
in four categories, namely high-THC, high-CBD, hybrid, and high-CBG, for which the
FT-NIR spectra of the ground inflorescence samples were employed, as observed in Figure 4.
The results showed no misclassified samples, with sensitivity and specificity values of 1,
which ensures that the classification model is highly accurate. Furthermore, the root mean
standard error of cross validation (RMSECV) and calibration (RMSEC) ratio, along with the
root mean standard error of prediction (RMSEP) and the RMSECV ratio, were both below
1.5, thus indicating a low probability of model overfitting to the data.
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Table 1. Highlighted applications of chemometric methods in the analysis of Cannabis samples.

Instrument Spectral Range (nm) Samples Parameter Spectra Pretreatment Chemometric
Method Ref.

FOSS NIRSystem
6500 (benchtop) 1100–2500 Inflorescences

and leaves ∆9-THC - PCA [61]

PerkinElmer™
Frontier

MIR/NIR
(benchtop)

Thermo Scientific
MicroPHAZIR RX

(handheld)

1000–2500
1600–2500 Inflorescences ∆9-THC

SNV and
Savitzky–Golay filters
First derivative and

SNV

PCA, HCA, SIMCA,
k-NN, and PLS-DA [52]

PerkinElmer 400
IR 1000–2500 Aerial parts Growth stage

Savitzky–Golay filters,
MSC, and mean

centering

HCA, PCA, PLS-DA,
and SVM-DA [51]

Bruker MPA II
FT-NIR

(benchtop)
Viavi MicroNIR

Onsite-W
(handheld)

870–2500
950–1650

Dried
inflorescences 14 cannabinoids Detrend, SNV, and

normalization PCA and PLS-DA [42]

Specim,
SisuChema
(handheld)

- Leaves
Detection and

classification of
Cannabis

SNV, MSC,
Savitzky–Golay filters PCA and SIMCA [50]

ThermoFisher,
Antaris II FT-NIR

(benchtop)
1000–2500 Inflorescences CBDA, CBGA

and THCA

Savitzky–Golay filters,
SNV, MSC, and mean

centering
PLS-DA [20]

VIAVI, microNIR
(portable) 900–1700 Hemp flours CBD, ∆9-THC

and CBG

SNV, MSC, mean
centering,

normalization,
Savitzky–Golay filters

PCA [69]

VIAVI, microNIR
(portable) 900–1700 Oral fluids ∆9-THC

SNV, MSC,
normalization, and

Savitzky–Golay filters
PLS-DA [70]

Perten DA7250 950–1650 Ground and
whole hemp ∆9-THC Mean centering LDA [36]

∆9-THC: tetrahydrocannabinol; PCA: principal component analysis; SNV: standard normal variation; HCA:
hierarchical clustering analysis; SIMCA: soft independent modelling of class analogy; k-NN: k-nearest neigh-
bour; MSC: multiplicative scatter correction; PLS-DA: partial least squares discriminant analysis; SVM-DA:
support vector machine discriminant analysis; CBDA: cannabidiolic acid; CBGA: cannabigerolic acid; THCA:
tetrahydrocannabinolic acid; CBD: cannabidiol; CBG: cannabigerol; LDA: linear discriminant analysis.



AppliedChem 2023, 3 535

Similarly, Tran et al. [42] developed different prediction models using two NIRS
instruments, i.e., a benchtop FT-NIR and a handheld microNIR, for the classification and
quantification of cannabinoids in Cannabis sativa L. samples. After performing PCA to check
data quality and have an overview of the trends within the population, which showed
three different clusters based on the chemotype, PLS-DA models were carried out to ensure
how accurately the chemotypes could be predicted. The results showed three well-defined
categories, namely high-CBDA, high-THCA, and even-ratio for the benchtop device, with
a classification accuracy of 100% for both high-CBDA and high-THCA models and 99.4%
for even-ratio model. The models obtained by using the handheld device also showed the
same three categories as the benchtop instrument; however, only the high-THCA model
has a classification accuracy of 100%, and the other models showed lower classification
accuracy values compared to the benchtop instrument.

San Nicolas et al. [71] developed a non-invasive method for the classification of
Cannabis cultivars based on hyperspectral imaging along with PCA and PLS-DA. In this
case, two different approaches employing PLS-DA were proposed, i.e., direct calibration
with the complete dataset, which comprise 502 flower spectra; and a two-layer hierarchical
model, which classifies the stem separated from the rest of the plant. Both classification
methods showed promising results, with an 89.47% correct classification of the samples for
the direct calibration, and a 91.23% for the hierarchical approach.

2.2.3. Parametric and Non-Parametric Methods

Artificial neural networks (ANN) are non-linear, non-parametric supervised methods
composed of several layers of neurons, namely inputs output and hidden [72]. A neuron
is a processing unit that transforms input data into output by means of back-propagation
of the hidden layers, which represent the modelling process. Several parameters have to
be optimized when developing ANN methods, e.g., the number of hidden layers, which
can be an intricated and time-consuming process if the proper training algorithm is not
selected [72,73]. Despite the fact that it is challenging to ascertain the structure of an ANN,
these methods are suitable for classification purposes due to their ability to calculate and
approximate functions of any form [74,75].

There are several articles in which ANN are applied to create a model for the deter-
mination of different parameters from samples of hemp extracts [76] or for optimizing
in vitro germination and growth of hemp seeds [77], among others. However, no specific
applications of this technique to Cannabis samples in combination with NIRS technology
have been found.

On the other hand, k-nearest neighbours (KNN) is a non-parametric supervised
technique used for classification via evaluation of distances between samples [58]. Typically,
the Euclidean distance between the samples from the validation set and the samples from
the training set is calculated and the different classes in which samples can be divided are
established [78]. Then, the unknown samples are placed in the class to which the majority
of its KNN from the training set belong.

Linear discriminant analysis (LDA) is a linear, parametric, and, as its name indicates,
discriminant supervised technique originally described by R. Fisher [79]. This method aims
to reduce the dimensionality of the data set, similarly to what PCA provides; however,
LDA finds the hyperplane that maximizes the distance between the different classes [80].
Furthermore, when employing LDA, the location of the data set is not changed, as opposed
to PCA. Su et al. [36] developed a NIRS method for rapid measurement of moisture and
cannabinoid contents in samples of Cannabis sativa L., along with a qualitative method
for the classification of the samples in legal or illegal via LDA. The application of this
technique yielded up to 94% correct classifications, thus showing the potential of LDA
for discriminant analysis. A more flexible technique is Quadratic Discriminant Analysis
(QDA), since it can learn quadratic boundaries, as opposed to LDA, which is based on
linear boundaries [81]. Borregaard et al. [82] carried out a study about the discrimination of
crop and weed based on high-dimensional spectral data. They stated that QDA and LDA
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classification present similarities, with a lower performance than PCA/SIMCA and PLS
methods in illegal or legal Cannabis plantations.

Table 1 summarizes the applications mentioned throughout the present article, which
comprise different chemometric techniques employed for the classification of cannabi-
noids and other parameters in Cannabis samples, alongside the mathematical techniques
employed for spectra pretreatment.

3. Quantitative Methods

Quantitative methods in near-infrared spectroscopy (NIRS) refer to analytical ap-
proaches used to determine the concentration or amount of specific compounds or proper-
ties in a sample. They are valuable for quality control, potency assessment, and determining
the chemical composition of Cannabis samples in research, forensic, and regulatory set-
tings [22,43]. These methods involve establishing a relationship between the spectral data
obtained from NIRS measurements and the concentration of the target analyte or property
of interest [83]. Despite all the advantages of NIRS, which were previously described in
Figure 1, it is important to note that calibration models for Cannabis analysis should be
developed and validated using appropriate reference values and considering the specific
Cannabis matrices and regulatory requirements of the intended application [36]. Therefore,
high-quality reference data are essential to ensure the accuracy, precision, and reliability
of the calibration model and subsequent predictions. In order to achieve this goal, a set
of representative samples with known reference values is initially introduced in the NIRS
equipment to obtain their corresponding spectra. These samples should cover the range
of concentrations expected in the samples to be analyzed [20]. The reference values are
typically obtained using a reference method, such as traditional wet chemistry techniques.
Although this step may appear inconsequential, it truly holds significant importance within
the process as the accurate prediction of the model relies heavily on these data.

Once all the data are obtained, as was the case with qualitative methods, the NIRS
spectra collected from the calibration sample set may be preprocessed to avoid interferences
related to factors that may affect the information of interest, e.g., sample particle size
variations, outliers, scatter effects, or baseline shifts, among others. This may involve steps
like baseline correction, smoothing, normalization, or noise reduction techniques [56]. The
preprocessed spectral data are then correlated with the corresponding reference values to
establish a calibration model. Various multivariate statistical techniques, such as partial
least squares (PLS) regression or principal component regression (PCR), are commonly used.
These methods aim to find the best mathematical relationship between the spectral data
and the reference values. Finally, the developed calibration model needs to be validated
using an independent set of samples not used in the model development. These validation
samples are analyzed using NIRS, and the predicted values are compared to their reference
values to assess the accuracy and reliability of the model. Statistical parameters like root
mean square error of prediction (RMSEP) or correlation coefficients are typically used to
evaluate the performance of the model. According to the ICH Guideline Q2(R2) on the
validation of analytical procedures, if RMSEP is comparable to root mean-squared error of
calibration (RMSEC), then the accuracy of the method is confirmed [84]. Another parameter
that is usually employed is standard error of prediction (SEP), which is similar to RMSEP
but independent of bias, unlike RMSEP [85]. Calibration in NIRS is an ongoing process that
should be continuously improved over time by introducing new samples that can enrich
the performance of the predictive equation and increase its robustness.

Quantitative NIRS methods find applications in various fields such as pharmaceutical
analysis, food quality control, agricultural monitoring, and environmental analysis. In
the field of Cannabis, this technique has garnered increasing attention in recent years,
gradually establishing itself as an integral part of the quality control process for this
medicinal product [20,71]. For the calibration model development, as aforementioned,
there are multiple techniques commonly employed for the obtention of predictive equations,
which will be described in the next section.
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3.1. Linear Regression Multivariate Statistical Techniques
3.1.1. Partial Least Squares Regression

Partial Least Squares Regression (PLS-R) is a predictive technique that originated from
Herman Wold’s concept of PLS and has gained considerable importance in various fields
over time. This method is particularly useful when dealing with datasets exhibiting a high
degree of multicollinearity [86]. In order to solve the problem mentioned, PLS-R performs
iterative least squares fitting on latent variables, which are found as linear combinations of
the initial variables. By doing so, PLS-R sets the spectral data variables that best describe the
reference values [58]. In contrast to other multivariate statistical techniques, such as PCR,
PLS-R provides more accurate predictions by placing stronger emphasis on the relationship
between the independent and dependent variables during dimensionality reduction.

Owing to PLS-R being one of the most employed multivariate techniques, numerous
articles describe the use of this approach for developing calibration models for various
matrices in NIRS. In the particular case of Cannabis, PLS-R is usually employed for the
construction of regression models for cannabinoids [22,36,42–44,55,69,70,87] and/or ter-
penes [20], among other parameters [36,88]. Birenboim et al. [20] describe the use of Fourier
transform near-infrared spectroscopy (FT-NIR) to determine cannabinoid and terpene con-
tent in Cannabis inflorescence samples. Spectral regions of 1450–1880 and 2130–2350 nm
were fundamental for predicting all cannabinoids and terpenes by means of PLS-R. As
can be observed in Figure 5A, when representing the complete dataset, three well-defined
clusters are formed, i.e., THCA high (Figure 5B), THCA mid (Figure 5C), and THCA low
(Figure 5D). This is also observed for the rest of cannabinoids. The authors indicate the
high predictive capabilities of the developed models; however, according to Williams [89],
RPD values are low for that classification (Table 2), and they should be used instead for
screening purposes.
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Sánchez-Carnerero et al. [48] made a comparative study using two equipment, a
dispersive NIR and a FT-NIR spectrometers. In this case, they employed PLS-R for the
determination of various cannabinoids, affording RPD values better than 3 for ∆9-THC,
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CBC and CBD, being close to 6 for the latter. They also build prediction equations for
CBDV, ∆9-THCV, ∆8-THC, CBG, and CBN, obtaining RPD values close to 2 in these cases
(Table 2), and therefore being useful for screening purposes. The large number of samples
for calibration, as well as the dispersion of data (SD) in ∆9-THC, CBC, and CBD, play
an important role in obtaining good predictive results. Both instruments provide similar
results for all cannabinoids, although the chemometric treatment of data was varied.

3.1.2. Principal Component Regression

Principal component regression (PCR) is a multivariate analysis technique based on the
combination of PCA and least-squares regression. PCR mainly focuses on dimensionality
reduction, unlike PLS-R, in which the prediction of the dependent variables is emphasized.
This is one of the reasons to explain that PCR components are always orthogonal, i.e., they
are not affected by the dependent variable, as opposed to PLS-R, in which components
are not necessarily orthogonal and are chosen to retrieve as much predictive information
as possible [90]. However, although PCR interpretability can be challenging owing to
the components being linear combinations of the original predictors, it is a very useful
technique in those cases in which dimensionality reduction is the priority. PCR models have
been extensively employed in different matrices; nevertheless, only one NIRS application
in Cannabis has been found. Townsend et al. [91] developed an application note explaining
the determination of ∆9-THC and CBD content in Cannabis flowers via FT-NIR. For this
purpose, PCR was employed as chemometric model, affording values of standard error
of prediction (SEP) of 0.73 and 0.92% (Table 2), for total CBD and total THC, respectively,
which demonstrates the potential of this PCR-based FT-NIR model.

Further lineal regression multivariate statistical techniques, namely multiple linear
regression (MLR), are also helpful in those cases in which the number of independent
variables is small, and the main objective is the interpretation of the results and not to
reduce dimensionality or to predict [92]. However, although MLR has been widely used in
various matrices, no NIRS approaches employing MLR in Cannabis have been found.

3.2. Non-Linear Regression Multivariate Statistical Techniques
3.2.1. Artificial Neural Networks

Although all the aforementioned techniques have been widely used throughout the
years, there are some situations in which these methods are not suitable for data treatment,
e.g., when the mathematical model describing the data set is unknown. In this context,
artificial neural networks (ANN) emerges as a powerful modelling technique since it can
retrieve useful information when going through all the data and is capable of modelling
complex non-linear relationships [93]. For this reason, it has great potential when dealing
with multicollinearity and a large number of independent variables. However, due to
the complicated relationships provided by ANN, the interpretation of the model can
be a hurdle. Furthermore, this technique usually requires a higher amount of data and
computational resources.

ANN models have been used in a wide variety of fields and matrices, from biological
to commercial or food and drink approaches. As for Cannabis applications, there are
few in which ANN models are applied. For example, Gloerfelt-Tarp et al. [47] developed
a NIR-based chemometric application for the quantification of 12 cannabinoids in plant
material, with emphasis on the discrimination between neutral and carboxylic forms of
each cannabinoid. For this purpose, different machine learning algorithms were employed,
including deep neural network and random forest, affording values of root mean standard
error of validation (RMSEv) in the range of 0.001 and 0.560 (%) (Table 2). Valinger et al. [76]
also employed ANN modelling to predict different physical and chemical properties in
hemp extracts, namely total dissolved solids, extraction yield, total polyphenolic content,
and antioxidant activity. As observed in Table 2, the values of RMSEv were in the range of
0.0140–305.5601% for solid–liquid extraction (SLE) and 0.0320–21.8810% for microwave-
assisted extraction (MAE).
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Table 2. Highlighted applications of multivariate statistical techniques in the analysis of Cannabis samples.

Instrument Spectral Range
(nm) Samples Parameter Regression

Model n rv
2 RMSEv (%) RMSEP (%) SEP (%) RPD Ref.

FT-NIR (handheld) 1350–2560 Dry hemp
CBD, total CBD,

∆9-THC, and total
THC

PLS-R 67–72 0.9100–0.9500 - - 0.02–0.61 - [22]

VIAVI, microNIR
(portable) 900–1700 Hemp flours CBD, ∆9-THC, and

CBG PLS-R 10 0.9741–0.9980 0.005 0.005–0.007 - - [69]

Acousto-Optic Tunable
Filter NIR 1200–2200 Dry hemp ∆9-THC and CBD PLS-R 91–103 0.77 0.0140–0.4310 - - 2.04–2.07 [55]

Bruker
MPA II
FT-NIR

(benchtop)

Viavi
MicroNIR
Onsite-W

(hand-
held)

870–
2500

950–
1650

Dried
inflorescences 14 cannabinoids PLS-R 734 730 0.2500–

0.9800
0.2100–
0.9800

0.0800–
7.000

0.0800–
6.530

0.0600–
5.5100

0.0800–
6.2300 - - [42]

VIAVI, microNIR
(portable) 900–1700 Oral fluids ∆9-THC PLS-R 50 0.989 1.1 1.3 - - [70]

Resonon Pika XC2
hyperspectral camera 400–1000

Fresh
flow-
ers

Fresh
leaves

CBD, ∆9-THC, CBG,
CBDA, THCA, and

CBGA
PLS-R 100 0.5100–

0.8500
0.4200–

0.71
0.9000–
20.6700

0.1600–
3.7600 - - 1.43–

2.62
1.32–
1.88 [44]

Perten DA7250 950–1650

Ground hemp MC 5 cannabi-
noids

PLS-R

115 0.91 0.0300–
0.8500

-
1.28 0.02–

0.92
- [36]

Whole hemp MC 5 cannabi-
noids 194 0.94 0.03–

0.89 1.24 0.01–
0.60

Tellspec NIR-S-G1
(handheld) 900–1700

Resins ∆9-THC PLS-R -
0.02 5.19 3.87

-
1.51

[43]
Viavi Solutions MicroNIR

(handheld) 950–1650 0.67 2.5 1.46 2.26

ThermoFisher Antaris II
FT-NIR 1000–2500 Dried

inflorescences
10

cannabi-
noids

9 terpenes PLS-R 47–
237

84–
218

0.6250–
0.9900

0.7000–
0.8870

0.0100–
1.0080

0.0032–
0.0400

0.0110–
1.2750

0.0037–
0.0416 - 1.87–

10.87
1.78–
3.00 [20]

FOSS NIR
Systems

6500
(benchtop)

Bruker
FT-NIR

(portable)
400–
2498

800–
2500

Dried leaves and
inflorescences 8 cannabinoids PLS-R 189 0.5400–

0.9800
0.7800–
0.9900 - - 0.03–

1.72
0.04–
1.79

1.25–
6.03

1.52–
6.00 [48]

PerkinElmer Spectrum
Two FT-NIR 1000–2500 Dried flowers CBD and ∆9-THC PCR 302 0.9700–0.9800 - - 0.73–0.92 - [91]

Hone HL-EVT9-Neo NIR
(portable) 1250–2500 Dried flowers 12 cannabinoids ANN 249 0.0300–1.0000 0.0010–0.5600 - - - [47]

Control development
NIR spectrophotometer 904–1699 Hemp extracts TDS, EY, TPC, and AC ANN

(SLE)
ANN

(MAE) - 0.5925–
0.9547

0.6459–
0.9434

0.0140–
305.5601

0.0320–
21.8810 - - - [76]

Bruker Matrix-F FT-NIR 800–2500 Hemp oil CBD and total CBD SOSVEN sPLS-
R 20 0.9828–

0.9864
0.9810–
0.9844

6.4000–
6.6000

6.8700–
7.0000 - - - [57]

CBD: cannabidiol; ∆9-THC: tetrahydrocannabinol; PLS-R: partial least squares regression; CBG: cannabigerol; CBDA: cannabidiolic acid; THCA: tetrahydrocannabinolic acid; CBGA:
cannabigerolic acid; MC: moisture content; PCR: principal component regression; ANN: artificial neural network; SLE: solid–liquid extraction; MAE: microwave-assisted extraction;
SOSVEN: self-optimizing support vector elastic net; sPLS-R: super partial least squares regression.
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3.2.2. Support Vector Machine

Support vector machine (SVM) is a multivariate statistical technique originally pro-
posed to address classification issues, but it can be applied to various situations and fields,
e.g., bioinformatics or handwriting recognition, among others [94]. The main objective of
SVM is to find a hyperplane that best separates the different classes of a data set based
on particular patterns in those classes or observations. Unlike ANN, SVM models are
transparent; i.e., it is easier to interpret which data points contribute to the model. However,
SVM applications are mainly designed for binary classification, while ANN can handle
multiclass classification without the need of combination with other techniques. Nonethe-
less, SVM models are preferred when overfitting is a concern, since they tend to be less
prone to cause this problem [95]. Chen et al. [57] proposed a NIR methodology for the
quantification of CBD in hemp oil via comparison of PLS-R and self-optimizing support
vector elastic net (SOSVEN) models. This technique is an advanced variant of SVM that
combines the typical elements of SVM with characteristics from elastic nets (EN), which
are usually employed in linear regression. SOSVEN is particularly useful for feature and
model selection, along with hyperparameter optimization. In this case, SOSVEN had lower
validation errors when compared to PLS-R to predict the concentration of CBD and total
CBD (Table 2), thus demonstrating the potential of this multivariate statistical technique.

3.3. Near-Infrared Hyperspectral Imaging

Although NIRS can predict physical and biochemical characteristics in diverse sample
types with high efficiency, simplicity, and accuracy, its measurement scope is restricted
to a relatively small section of the specimen for determining average composition values.
This shortcoming is especially problematic when dealing with heterogeneous samples,
such as Cannabis samples, as NIRS spectroscopy fails to provide important information
on the spatial distribution of quality parameters [96]. However, the integration of NIRS-
hyperspectral imaging systems facilitates the simultaneous acquisition of spatial and
spectral information [73].

Near-infrared hyperspectral imaging (NIR-HSI) is a highly advanced methodology,
which can capture up to several hundred images of different wavelength, offering a detailed
spectral response of target features [97]. This technique is particularly adept at discerning
even the most subtle variations in ground covers, as well as tracking changes over time.
Previous research has also demonstrated that HSI surpasses multispectral images in terms
of effectively monitoring vegetation properties, such as the leaf area index (LAI), differenti-
ating between crop types, retrieving crop biomass, and assessing leaf nitrogen content [98].
HSI has emerged as a highly promising method for the non-invasive assessment of diverse
constituents of the Cannabis plant. This technique involves the measurement of pixel
reflectance and subsequent correlation with cannabinoid content, enabling effective and
reliable evaluation of the properties of the plant. Holmes et al. [99] utilized NIRS-HSI
to estimate the content of cannabidiolic acid (CBDA) in flowers and leaves of Cannabis
sativa L. The Gaussian Process Regression (GPR) model was chosen as it possessed the
capacity to effectively predict the outcomes obtained through LC-MS. The proposed model
displayed significant potential as a screening technique for implementation in the cultiva-
tion of this crop. Additionally, Lu et al. [44] describe a HSI technology for non-destructive
quantification of major cannabinoids, including CBD, ∆9-THC (tetrahydrocannabinol),
CBG (cannabigerol) and their acid forms in fresh floral and leaf materials of industrial
hemp on a dry weight basis. Parsimonious PLS models were utilized, obtaining the best
RPD values of 2.6 for CBD and ∆9-THC in flowers. This value indicates that the prediction
of these cannabinoids is fair, being appropriate for screening purposes [100]. The lack
of accuracy in the prediction method could be related to the measurement wavelength
range used in this article, which was in in the short-wave near-infrared (SW-NIR) region,
from 400 to 1000 nm. However, according to Sánchez-Carnerero et al. [48], cannabinoids
mainly absorb in the 1064–2357 nm range. Therefore, extending the measurement region
to a wider scale could be a solution, as additional information may have been lost in the
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shorter region. On the other hand, Abeysekera et a1. [101] developed a method based
on HSI to determine THCA in Cannabis plant samples. In this case, the utilized camera
worked from 645 nm to 2070 nm, obtaining increased spectral information to be related to
cannabinoids concentration. Partial least squares feature selection (PLSFS) was selected as
the regression model, as it provided the best accuracy in estimating of the THCA content.
Despite the multiple benefits of NIR-HSI, the technique presents several disadvantages to
take into consideration, such as limited accessibility to some researchers or industries with
budget constraints, due to the high cost of acquisition and maintenance of HSI systems.
Additionally, HSI generates large amounts of data due to the high number of spectral bands.
Analyzing and processing such voluminous data can be computationally intensive and
time-consuming [102]. On the other hand, the spectral interference and the environmental
sensitivity makes it difficult to obtain good predictions to be used in quality control or
process control evaluation [97].

Table 2 summarizes the applications mentioned throughout the present article, which
comprise various quantitative multivariate statistical techniques for the quantification of
cannabinoids, terpenes, and/or other parameters in Cannabis samples via NIRS.

4. Conclusions

Traditionally, Cannabis has been analysed using different analytical techniques that,
despite their inherent benefits, come with significant disadvantages, hindering their ap-
plication for routine analysis. In the era of heightened environmental consciousness, the
demand for more eco-friendly methodologies has intensified. Near-infrared spectroscopy
(NIRS) satisfies this necessity as moderately-priced equipment that efficiently operates
within seconds without the requirement of toxic reagents. However, its primary drawbacks
include the necessity of analytical reference techniques for providing reference values
and the expertise in chemometrics to correlate spectral and numerical data, necessary for
developing predictive equations. This article offers a comprehensive review of the most
employed chemometric techniques, classified into qualitative and qualitative methods, and
their application to obtain NIRS equations for predicting cannabinoids, terpenes, and other
parameters in Cannabis samples.

Future applications of NIRS in Cannabis analysis should be headed towards devel-
oping new predictive equations, expanding beyond cannabinoids, terpenes, and moisture
content. Further interesting compounds of Cannabis, such as flavonoids, phenols, or al-
kaloids, shows considerable potential in influencing the organoleptic properties of the
future medicine. Furthermore, compounds like heavy metals or pesticides, which are
related to possible contamination of the plant, could also benefit from these applications.
The portability of this equipment open doors to new possibilities, enabling direct plant
monitoring without the necessity of harvesting.
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