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Abstract: Four measures of association, namely, Spearman’s ρ, Kendall’s τ, Blomqvist’s β and
Hoeffding’s Φ2, are expressed in terms of copulas. Conveniently, this article also includes explicit
expressions for their empirical counterparts. Moreover, copula representations of the four coefficients
are provided for the multivariate case, and several specific applications are pointed out. Additionally,
a numerical study is presented with a view to illustrating the types of relationships that each of the
measures of association can detect.
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1. Introduction

Copula representations and sample estimates of the correlation measures attributed to
Spearman, Kendall, Blomqvist and Hoeffding are provided in this paper. All these measures
of association depend on the ranks of the observations on each variable. They can reveal the
strength of the dependence between two variables that are not necessarily linearly related,
as is required in the case of Pearson’s correlation. They can as well be applied to ordinal
data. While the Spearman, Kendall and Blomqvist measures of association are suitable for
observations exhibiting monotonic relationships, Hoeffding’s index can also ascertain the
extent of the dependence between the variables, regardless of the patterns that they may
follow. Thus, these four measures of association prove quite versatile when it comes to
assessing the strength of various types of relationships between variables. Moreover, since
they are rank-based, they are all robust with respect to outliers. What is more, they can be
readily evaluated.

Copulas are principally utilized for modeling dependency features in multivariate
distributions. They enable one to represent the joint distribution of two or more random
variables in terms of their marginal distributions and a specific correlation structure. Thus,
the effect of the dependence between the variables can be separated from the contribution of
each marginal. As measures of dependence, copulas have found applications in numerous
fields of scientific investigations, including reliability theory, signal processing, geodesy,
hydrology, finance and medicine. We now review certain basic definitions and results on
the subject.

In the bivariate framework, a copula function is a distribution whose support is the
unit square 12 = [0 , 1]2 and whose marginals are uniformly distributed. A more formal
definition is now provided.

A function C : 12 7→ 1 is a bivariate copula if it satisfies the two following properties:

1. For every u, v ∈ 1,

C(u, 1) = u, C(1, v) = v , and C(u, 0) = C(0, v) = 0.
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2. For every u1, u2, v1, v2 ∈ 1 such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

This last inequality implies that C(u, v) is increasing in both variables.

We now state a result due to Sklar (Theorem 1) [1].

Theorem 1. Let H(x, y) be the joint cumulative distribution function of the random variables
X and Y whose continuous marginal distribution functions are denoted by F(x) and G(y). Then,
there exists a unique bivariate copula C : 12 7→ 1 such that

H(x, y) = C(F(x), G(y)) (1)

where C(·, ·) is a joint cumulative distribution function having uniform marginals. Conversely,
for any continuous cumulative distribution functions F(x) and G(y) and any copula C(·, ·), the
function H(·, ·), as defined in (1), is a joint distribution function with marginal distribution
functions F(·) and G(·).

Sklar’s theorem provides a technique for constructing copulas. Indeed, the function

C(u, v) = H
(

F−1(u), G−1(v)
)

(2)

is a bivariate copula, where the quasi-inverses F−1(·) and G−1(·) are defined by

F−1(u) = inf{x|F(x) ≥ u}, u ∈ (0, 1), (3)

and
G−1(v) = inf{y|G(y) ≥ v}, v ∈ (0, 1). (4)

Copulas are invariant with respect to strictly increasing transformations. More specifi-
cally, assuming that X and Y are two continuous random variables whose associated copula
is C(· , ·), and letting α(·) and β(·) be two strictly increasing functions and Cα,β(· , ·) be the
copula obtained from α(X) and β(Y), then for all (u, v) ∈ 1

2, one has

Cα, β(u, v) = C(u, v). (5)

We shall denote the probability density function corresponding to the copula C(u1, u2)
by

c(u, v) =
∂2

∂u∂v
C(u, v). (6)

The following relationship between h(·, ·), the joint density function of the random
variables X and Y as defined in Sklar’s theorem, and the associated copula density function
c(· , ·) can then be readily obtained from Equation (1) as

h(x, y) = f (x) g(y) c(F(x), G(y)) (7)

where f (x) and g(y) denote the marginal density functions of X and Y, respectively.
Accordingly, a copula density function can be expressed as follows:

c(u, v) =
h(F−1(u), G−1(v))

f (F−1(u)) g(G−1(v))
. (8)



AppliedMath 2024, 4 365

Now, given a random sample (x1, y1), . . . , (xn, yn) generated from the continuous
random vector (X, Y), let

(ui, vi) = (F(xi), G(yi)), i = 1, . . . , n, (9)

where F(·) and G(·) are the usually unknown marginal cumulative distribution functions
(cdfs) of X and Y. The empirical marginal cdfs F̂(·) and Ĝ(·) are then utilized to determine
the pseudo-observations:

(ûi, v̂i) = (F̂(xi), Ĝ(yi)), i = 1, . . . , n, (10)

where the empirical cdfs (ecdfs) are given by F̂(x) = 1
n ∑n

i=1 I(xi ≤ x) and Ĝ(y) =
1
n ∑n

i=1 I(yi ≤ y), with I(ℵ) denoting the indicator function which is equal to one if the
condition ℵ is verified and zero, otherwise. Equivalently, one has

(ûi, v̂i) = (ri/n, si/n), (11)

where ri is the rank of xi among {x1, . . . , xn}, and si is the rank of yi among {y1, . . . , yn}.
The frequencies or probability mass function of an empirical copula can be expressed as

ĉ(u, v) =
1
n

n

∑
i=1

I(F̂(xi) = u) I(Ĝ(yi) = v)

=
1
n

n

∑
i=1

I(ri/n = u) I(si/n = v),
(12)

and the corresponding empirical copula (distribution function) is then given by

Ĉ(u, v) =
1
n

n

∑
i=1

I(F̂(xi) ≤ u) I(Ĝ(yi) ≤ v)

=
1
n

n

∑
i=1

I(ri/n ≤ u) I(si/n ≤ v),
(13)

which is a consistent estimate of C(u, v). We note that, in practice, the ranks are often
divided by n + 1 instead of n in order to mitigate certain boundary effects, and that other
adjustments that are specified in Section 2 may also be applied. As pointed out by [2], who
refers to [3], “Empirical copulas were introduced and first studied by Deheuvels who called
them empirical dependence functions”.

Additional properties of copulas that are not directly relevant to the results presented
in this article are discussed for instance in [4–6].

This article contains certain derivations that do not seem to be available in the literature
and also provides missing steps that complete the published proofs. It is structured as
follows: Sections 2–5, which, respectively, focus on Spearman’s, Kendall’s, Blomqvist’s
and Hoeffding’s correlation coefficients, include representations of these measures of
dependence in terms of copulas, in addition to providing sample estimates thereof and
pointing out related distributional results of interest. The effectiveness of these correlation
coefficients in assessing the trends present in five data sets exhibiting distinctive patterns
is assessed in a numerical study that is presented in Section 6. Section 7 is dedicated to
multivariate extensions of the four measures of association and their copula representations.

To the best of our knowledge, the four major dependence measures discussed here,
along with their representations in terms of copulas, have not been previously covered in a
single source.
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2. Spearman’s Rank Correlation

Spearman’s rank correlation statistic, also referred to as Spearman’s ρ, measures the
extent to which the relationship between two variables is monotonic—either increasing or
decreasing.

First, Spearman’s ρ is expressed in terms of a copula denoted by C(U, V). Then, some
equivalent representations of Spearman’s rank correlation statistic are provided; one of
them is obtained by replacing C(U, V) by its empirical counterpart.

Let (X, Y) be a bivariate continuous random vector having h(x, y) as its joint density
function, and F(X) and G(Y) denote the respective marginal distribution functions of X
and Y.

Theoretically, Spearman’s correlation is given by

ρS =
Cov[F(X), G(Y)]√

Var[F(X)]Var[G(Y)]
(14)

=

∫∫
R2 F(x)G(y)h(x, y)dxdy − (

∫
R F(x)dF(x))(

∫
R G(y)dG(y))√

[
∫
R F(x)2 dF(x)− (

∫
R(F(x)dF(x))2][

∫
R G(y)2 dG(y)− (

∫
R(G(y)dG(y))2]

(15)

=

∫ 1
0

∫ 1
0 u v c(u, v)dudv − (1/2)(1/2)√

(1/12)(1/12)
in light of (8), (16)

with the transformation {x = F−1(u) and y = G−1(v)} whose Jacobian is the

inverse of the Jacobian associated with the following transformation:

{u = F(x) and v = G(y)}, that is, 1/[ f (F−1(u)) g(G−1(v))],

= 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3, (17)

= 12 E[UV]− 3, (18)

where C(·, ·) and c(·, ·), respectively, denote the copula and copula density function associ-
ated with (X, Y), and R represents the set of real numbers. In [7,8], it is taken as a given
that the double integral appearing in (16) can be expressed as that appearing in (17). We

now prove that this is indeed the case. First, recall that ∂2C(u,v)
∂u∂v = c(u, v), the copula density

function. On integrating by parts twice, one has

∫ 1

0

∫ 1

0
u v dC(u, v) =

∫ 1

0

∫ 1

0
uv

∂2C(u, v)
∂u∂v

dvdu

=
∫ 1

0
u
[∫ 1

0
v

∂

∂v

(
∂C(u, v)

∂u

)
dv

]
du

=
∫ 1

0
u

[
v

∂C(u, v)
∂u

∣∣∣∣1
0
−

∫ 1

0

∂C(u, v)
∂u

dv

]
du

=
∫ 1

0
u
[

1 −
∫ 1

0

∂C(u, v)
∂u

dv
]

du, as C(u, 1) = u

=
∫ 1

0
udu −

∫ 1

0

∫ 1

0
u

∂C(u, v)
∂u

dvdu

=
1
2
−

∫ 1

0

[
uC(u, v)

∣∣1
0 −

∫ 1

0
C(u, v)du

]
dv

=
1
2
− 1

2
+

∫ 1

0

∫ 1

0
C(u, v)dudv, as C(1, v) = v

=
∫ 1

0

∫ 1

0
C(u, v)dudv.

(19)
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Now, let (X1, Y1), . . . , (Xn, Yn) be a random sample generated from the random vector
(X, Y), and denote by F̂(X) and Ĝ(Y) the respective empirical distribution functions of X
and Y. Throughout this article, the sample size is assumed to be n. On denoting by Ri and
Sj, the rank of Xi among {X1, . . . , Xn} and the rank of Yj among {Y1, . . . , Yn}, respectively,
one has F̂(Xi) = Ri/n ≡ Ui and Ĝ(Yj) = Sj/n ≡ Vj, where Ui and Vj denote the canonical
pseudo-observations on each component. Note that the rank averages R̄ and S̄ are both
equal to (n + 1)/2. Then, Spearman’s rank correlation estimator admits the following
equivalent representations:

ρ̂S =
∑n

i=1(Ri − R)(Si − S)√
∑n

i=1(Ri − R)2 ∑n
i=1(Si − S)2

(20)

=
(∑n

i=1 RiSi)− nR S√
[(∑n

i=1 R2
i )− nR2

][(∑n
i=1 S2

i )− nS2
)]

(21)

=
(∑n

i=1 F̂(xi) Ĝ(yi))− n(n + 1)2/4√
[(∑n

i=1 F̂(xi) 2)− n(n + 1)2/4][(∑n
i=1 Ĝ(yi) 2)− n(n + 1)2/4]

(22)

=
(∑n

i=1 UiVi)− n(n + 1)2/4√
[(∑n

i=1 U2
i )− n(n + 1)2/4][(∑n

i=1 V2
i )− n(n + 1)2/4]

(23)

=
∑n

i=1(Ui − U)(Vi − V)√
∑n

i=1(Ui − U)2 ∑n
i=1(Vi − V)2

, (24)

where Ū = ∑n
i=1 Ui/n and V̄ = ∑n

i=1 Vi/n.
Of course, (24) readily follows from (20), and it is seen from either one of these

expressions that Spearman’s rank correlation is not be affected by any monotonic affine
transformation, whether applied to the ranks or the canonical pseudo-observations. As
pointed out for instance in [9], the pseudo-observations are frequently taken to be

Ûi =
Ri

n + 1
=

n
n + 1

F̂(xi) =
1

n + 1

n

∑
k=1

I(xk ≤ xi) (25)

and

V̂j =
Sj

n + 1
=

n
n + 1

Ĝ(yj) =
1

n + 1

n

∑
k=1

I(yk ≤ yj). (26)

Alternatively, one can define the pseudo-observations so that they be uniformly—and
less haphazardly—distributed over the unit interval as follows:

Ũi =
Ri
n

− 1
2n

= F̂(xi)−
1

2n
(27)

and

Ṽj =
Sj

n
− 1

2n
= Ĝ(yj)−

1
2n

. (28)

In a simulation study, Dias (2022) [10] observed that such pseudo-observations have a
lower bias than those obtained by dividing the ranks by n + 1. What is more, it should be
observed that if we extend the pseudo-observations Ũi, i = 1, . . . , n, and Ṽj, j = 1, . . . , n, by
1

2n on each side and assign their respective probability, namely, 1
n , to each of the n resulting

subintervals, the marginal distributions is then uniformly distributed within the interval
[0, 1], which happens to be a requirement for a copula density function. However, this is not
the case for any other affine transformation of the ranks. The alternative transformations
rank−1/3

n+1/3 and rank−1
n−1 were also considered by [10,11], respectively. As established in [10], the

pseudo-observation estimators resulting from any of the above-mentioned transformations
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as well as the canonical pseudo-observations are consistent estimators of the underlying
distribution functions.

Kojanovik and Yan (2010) [7] pointed out that ρ̂S, as specified in (21), can also be
expressed as

ρ̂S =
12

n(n + 1)(n − 1)

n

∑
i=1

RiSi − 3
(n + 1)
(n − 1)

, (29)

where ρ̂S is a consistent estimator of ρS.
Moreover, it can be algebraically shown that, alternatively,

ρ̂S = 1 − 6
n

∑
i=1

(Ri − Si)
2

n(n2 − 1)
(30)

when the ranks are distinct integers.
On writing (17) as

ρS = 12
∫ 1

0

∫ 1

0
u v dC(u, v)− 3, (31)

and replacing C(u, v) by Ĉ(u, v) as defined in (13), the double integral becomes

1
n

n

∑
i=1

∫ 1

0
u d(I(ri/n ≤ u))

∫ 1

0
v d(I(si/n ≤ v)).

For instance, on integrating the first integral by parts, one has

u I(ri/n ≤ u)
∣∣1
0 −

∫ 1

0
I(ri/n ≤ u)du = 1 − (1 − ri/n) = ri/n.

Thus, the resulting estimator of Spearman’s rank correlation is given by

ρ̂S =
12
n3

n

∑
i=1

RiSi − 3,

which is approximately equal to that given in (29).
Now, letting Cθ(u, v) be a copula whose functional representation is known, and

assuming that it is a one-to-one function of the dependence parameter θ, it follows from
(17) that

ρS(θ) = 12
∫∫

12
Cθ(u, v)dudv − 3, (32)

which provides an indication of the extent to which the variables are monotonically related.
Moreover, since ρ̂S, as defined in (21), (29) or (30), tends to ρS(θ), θ̂ = ρ−1

S (ρ̂S) can serve as
an estimate of θ.

It follows from (17) that Spearman’s ρ can be expressed as

ρS = 12
∫∫

12
[C(u, v)− uv]dudv. (33)

On replacing [C(u, v)− uv] in (33) by |C(u, v)− uv|, one obtains a measure based on
the L1 distance between the copula C and the product copula Π = uv ( [5]). This is the
so-called Schweizer–Wolff’s sigma as defined in [12], which is given by

σX,Y = σC = 12
∫∫

12
|C(u, v)− uv|dudv. (34)

The expression (34) is a measure of dependence which satisfies the properties of
Rényi’s axioms [13] for measures of dependence [12], [14] (p. 145).
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Note that Pearson’s correlation coefficient,

r̂ = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
, (35)

only measures the strength of a linear relationship between X and Y, whereas Spearman’s
rank correlation ρS assesses the strength of any monotonic relationship between X and Y.
The latter is always well-defined, which is not the case for the former. Both vary between
−1 and 1 and ρS = ±1 indicates that Y is either an increasing or a decreasing function of X.
Moreover, it should be noted that Pearson’s correlation coefficient cannot be expressed in
terms of copulas since its estimator is a function of the observations themselves rather than
their ranks.

The next three sections include results that were gleaned from the following books
among others: [4,5,15,16].

3. Kendall’s Rank Correlation Coefficient

Kendall’s τ, also referred to as Kendall’s rank correlation coefficient, was introduced
by [17]. Maurice Kendall also proposed an estimate thereof and published several papers
as well as a monograph in connection with certain ordinal measures of correlation. Further
historical details are available from [18].

Kendall’s τ is a nonparametric measure of association between two variables, which is
based on the number of concordant pairs minus the number of discordant pairs. Consider
two observations (xi, yi) and (xj, yj), with (i, j) ∈ {1, . . . , n} such that i ̸= j, that are
generated from a vector (X, Y) of continuous random variables. Then, for any such
assignment of pairs, define each pair as being concordant, discordant or equal, as follows:

◦ (xi, yi) and (xj, yj) are concordant if
{xi < xj and yi < yj or if xi > xj and yi > yj}, or equivalently
(xi − xj)(yi − yj) > 0, i.e., the slope of the line connecting the two points is positive.

◦ (xi, yi) and (xj, yj) are discordant if
{xi < xj and yi > yj or if xi > xj and yi < yj}, or equivalently
(xi − xj)(yi − yj) < 0, i.e., the slope of the line connecting the two points is negative.

◦ (xi, yi) and (xj, yj) are equal if xi = xj or yi = yj. Actually, pair equality can be
disregarded as the random variables X and Y are assumed to be continuous.

3.1. The Empirical Kendall’s τ

Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be a random sample of n pairs arising from the
vector (X, Y) of continuous random variables. There are Cn

2 = (n
2) possible ways of

selecting distinct pairs (xi, yi) and (xj, yj) of observations in the sample, with each pair
being either concordant or discordant.

Let Sij be defined as follows:

Sij = sign(Xi − Xj) sign(Yi − Yj), (36)

where

sign(u) =


−1 if u < 0

0 if u = 0

1 if u > 0.

Then, the values that Sij can take on are

sij =


−1 when the pairs are discordant

0 when the pairs are neither concordant nor discordant

1 when the pairs are concordant.
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Kendall’s sample τ̂ is defined as follows:

τ̂ = ∑
1≤i<j≤n

sij

Cn
2
=

2
n(n − 1) ∑

1≤i<j≤n
sij. (37)

Alternatively, on letting c denote the number of concordant pairs and d the number of
discordant pairs in a given sample of size n, one can express the estimate of Kendall’s τ as

τ̂ =
c − d
c + d

=
c − d
Cn

2
=

2(c − d)
n(n − 1)

. (38)

As it is assumed that there can be no equality between pairs, Cn
2 = c + d, so that

τ̂ =
4c

n(n − 1)
− 1 or, equivalently, τ̂ = 1 − 4d

n(n − 1)
. (39)

In fact, τ̂ is an unbiased estimator of τ. As well, Kendall and Gibbons (1990) [19]
(Chapter 5) established that Var(τ̂) = 2(2n+5)

9n(n−1) . A coefficient related to that specified in (39)
was discussed in [20–22] in the context of double time series.

3.2. The Population Kendall’s τ

Letting (X1, Y1) and (X2, Y2) be independent and identically distributed random
vectors, with the joint distribution function of (Xi, Yi) being H(x, y), F(x) and G(y) denote
the respective distribution functions of Xi and Yj, i, j = 1, 2, and the associated copula be
C(u, v) = H(F−1(u), G−1(v)), the population Kendall’s τ is defined as follows:

τ = τX,Y = Pr[concordant pairs] − Pr[discordant pairs]

≡ pc − pd

= Pr[(X1 − X2)(Y1 − Y2) > 0]− Pr[(X1 − X2)(Y1 − Y2) < 0] (40)

= 2 Pr[(X1 − X2)(Y1 − Y2) > 0]− 1 (41)

= 4 Pr[(X1 < X2, Y1 < Y2)]− 1 (42)

= 4
∫∫

R2
Pr(X2 ≤ x, Y2 ≤ y)dH(x, y)− 1, with H(x, y) = C(F(x), G(y)) (43)

= 4
∫∫

R2
H(x, y)c(F(x), G(y)) f (x)g(y)dxdy − 1

= 4
∫∫

12

H(F−1(u), G−1(v))c(u, v) f (F−1(u))g(G−1(v))
f (F−1(u))g(G−1(v))

dudv − 1

= 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 (44)

= 4 E[C(U, V)]− 1, (45)

where
U and V have a Uniform (0, 1) distribution, their joint cdf being C(u, v);
u = FX(x) and v = FY(y);
R2 ≡ {(x, y) | x and y are real numbers};

dC(u, v) = ∂2C(u,v)
∂u∂v dudv = c(u, v)dudv.

Clearly, (41) follows from (40) since

Pr[(X1 − X2)(Y1 − Y2) < 0] = 1 − Pr[(X1 − X2)(Y1 − Y2) > 0].

We now state Theorem 5.1.1 from [5]:

Theorem 2. Let (X1, Y1) and (X2, Y2) be independent vectors of continuous random variables with
joint distributions functions H1 and H2, respectively, with common marginals F(·) and G(·). Let
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C1 and C2 be the copulas of (X1, Y1) and (X2, Y2), respectively, so that H1(x, y) = C1(F(x), G(y))
and H2(x, y) = C2(F(x), G(y)). Let

Q = P[(X1 − X2)(Y1 − Y2) > 0]− P[(X1 − X2)(Y1 − Y2) < 0]. (46)

Then,
Q(C1, C2) = 4

∫∫
12

C2(u1, u2)dC1(u1, u2)− 1. (47)

If X and Y are continuous random variables whose copula is C, then Equation (44)
follows from (40), (46) and (47).

3.3. Marginal Probability of Sij

The marginal probability of Sij is

pSij(sij) =


pc, sij = 1

pd, sij = −1

1 − pc − pd, sij = 0 .

Gibbons and Chakraborti (2003) [15] proved that

E(Sij) = 1 pc + (−1) pd = τ.

3.4. Certain Properties of τ

◦ The correlation coefficient τ is invariant with respect to strictly increasing
transformations.

◦ If X1 and Y1 are independent, then the value of τ is zero:

τ(X1, Y1) = 2 Pr[(X1 − X2)(Y1 − Y2) > 0]− 1

= 2{Pr[X1 − X2 > 0, Y1 − Y2 > 0] + Pr[X1 − X2 < 0, Y1 − Y2 < 0]} − 1

= 2
(

1
4
+

1
4

)
− 1 = 0.

◦ Kendall’s τ takes on values in the interval [−1, 1].
◦ As stated in [4], when the number of discordant pairs is 0, the value of τ is maximum

and equals 1, which means a perfect relationship; the variables are then comonotonic,
i.e., one variable is an increasing transform of the other; if the variables are counter-
monotonic, i.e., one variable is a decreasing transform of the other, the correlation
coefficient τ equals −1. Note that these two properties do not hold for Pearson’s
correlation coefficient. Moreover, it proves more appropriate to make use of Kendall’s
τ when the joint distribution is not Gaussian.

4. Blomqvist’s Correlation Coefficient

Blomqvist (1950) [23] proposed a measure of dependence that was similar in its
structure to Kendall’s correlation coefficient, except that in this instance, medians were
utilized. Blomqvist’s correlation coefficient can be defined as follows:

β = βX,Y = P[(X − F−1
X (1/2))(Y − G−1

Y (1/2)) > 0]

− P[(X − F−1
X (1/2))(Y − G−1

Y (1/2)) < 0],
(48)

where F−1
X (1/2) ≡ x̃ and G−1

Y (1/2) ≡ ỹ are the respective medians of X and Y, which
explains why this coefficient is also known as the median correlation coefficient.
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Now, letting X and Y be continuous random variables whose joint cdf is H(·, ·), F(·)
and G(·) denote the respective marginal cdfs, and C(·, ·) be the associated copula, then,

F(x̃) = F(F−1
X (1/2)) = 1/2, G(ỹ) = G(G−1

Y (1/2)) = 1/2,

and

β = βX,Y = 2 Pr[(X − F−1
X (1/2))(Y − G−1

Y (1/2)) > 0]− 1 (49)

= 2 {Pr[X < F−1
X (1/2), Y < G−1

Y (1/2)] + Pr[X > F−1
X (1/2), Y > G−1

Y (1/2)]} − 1 (50)

= 4 H(F−1
X (1/2), G−1

Y (1/2))− 1 (51)

= 4 C(1/2, 1/2)− 1. (52)

In the development of these equations, the following relationships were utilized in
addition to H(x, y) = C(F(x), G(y)):

P[(X − F−1
X (1/2))(Y − G−1

Y (1/2)) > 0]

= P[X − F−1
X (1/2) > 0, Y − G−1

Y (1/2) > 0]

+ P[X − F−1
X (1/2) < 0, Y − G−1

Y (1/2) < 0];

(53)

P[X > F−1
X (1/2), Y > G−1

Y (1/2)] = P[X < F−1
X (1/2), Y < G−1

Y (1/2)]. (54)

4.1. Estimation of β

Let x̃n and ỹn be the respective medians of the samples x1, . . . , xn and y1, . . . , yn. The
computation of Blomqvist’s correlation coefficient is based on a 2 × 2 contingency table
that is constructed from these two samples.

According to Blomqvist’s suggestion, the x y-plane is divided into four regions by
drawing the lines x = x̃n and y = ỹn. Let n1 and n2 be the number of points belonging to
the first or third quadrant and to the second or fourth quadrant, respectively.

Blomqvist’s sample βn or the median correlation coefficient is defined by

βn =
n1 − n2

n1 + n2
= 2

n1

n1 + n2
− 1. (55)

If the sample size n is even, then clearly, no sample points fall on the lines x = x̃n and
y = ỹn. Moreover, n1 and n2 are then both even. However, if n is odd, then one or two
sample points must fall on the lines x = x̃n and y = ỹn. In the first case (a single point
lying on a median), Blomqvist proposed that this point shall not be counted. For the second
case, one point has to fall on each line; then, one of the points is assigned to the quadrant
touched by both points, while the other is not counted.

Genest et al. (2013) [24] provided an accurate interpretation of βn as “the difference
between the proportion of sample points having both components either smaller or greater
than their respective medians, and the proportion of the other sample points”. Finally, as
pointed out by [23], the definition of βn as given in (55) was not new [25]; however, its
statistical properties had not been previously fully investigated.

4.2. Some Properties of Blomqvist’s Correlation Coefficient

◦ The coefficient β is invariant under strictly increasing transformations of X and Y.
◦ The correlation coefficient β takes on values in the interval [−1, 1].
◦ If X and Y are independent, then C(1/2, 1/2) = F(1/2)G(1/2) = 1/4, and β = 0.

5. Hoeffding’s Dependence Index

To measure the strength of relationships that are not necessarily monotonic, one may
make use of Hoeffding’s dependence coefficient. Letting H(X, Y) denote the joint distribu-
tion function of X and Y, and F(X) and G(Y) stand for the marginal distribution functions
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of X and Y, Hoeffding’s nonparametric rank statistic for testing bivariate independence is
based on

D(x, y) = H(x, y)− F(x)G(y), (56)

which is equal to zero if and only if X and Y are independently distributed.
The nonparametric estimator of the quantity D2 = 30

∫
D2(x, y)dH(x, y) results in

the statistic

D̂2 = 30
Q − 2(n − 2)R + (n − 2)(n − 3)S

n(n − 1)(n − 2)(n − 3)(n − 4)
, (57)

where

Q =
n

∑
i=1

(Ri − 1)(Ri − 2)(Si − 1)(Si − 2), (58)

R =
n

∑
i=1

(Ri − 2)(Si − 2)Ci, (59)

and

S =
n

∑
i=1

(Ci − 1)Ci, (60)

with Ri and Sj representing the rank of Xi among {X1, . . . , Xn} and the rank of Yj among
{Y1, . . . , Yn}, respectively, and Ci denoting the number of bivariate observations (Xj, Yj) for
which Xj ≤ Xi and Yj ≤ Yi.

We now state Hoeffding’s Lemma [26]: Let X and Y be random variables with joint
distribution function H(x, y) and marginal distributions F(x) and G(y). If E(XY) and E(X)E(Y)
are finite, then

Cov(X, Y) =
∫ ∞

−∞

∫ ∞

−∞
[H(x, y)− F(x)G(y)]dxdy. (61)

This result became known when it was cited by [27]. Refs. [28,29] discussed multivariate
versions of this lemma.

The correlation coefficient is thus given by

Cor(X, Y) =

∫ ∞
−∞

∫ ∞
−∞[H(x, y)− F(x)G(y)]dxdy√

Var(X)
√

Var(Y)
(62)

or

Cor(X, Y) =

∫ ∞
−∞

∫ ∞
−∞[C(F(x), G(y))− F(x)G(y)]dxdy√

Var(X)
√

Var(Y)
, (63)

with (63) resulting from Sklar’s theorem.
Invoking Hoeffding’s lemma, Hofert et al. (2019) [16] (p. 47) pointed out two fallacies

about the uniqueness and independence of random variables. Hoeffding appealed to his
lemma to identify the bivariate distributions with given marginal distribution functions
F(x) and G(y), which minimize or maximize the correlation between X and Y.

Hoeffding’s Φ2

Hoeffding (1940) [26] defined the stochastic dependence index of the random variables
X and Y as

Φ2
X,Y = 90

∫ 1

0

∫ 1

0
(C(u, v)− uv)2dudv, (64)

where

Φ2
X,Y =


0 in the case of independence since then C(u, v) = uv,

1 in the case of monotone dependence,

Φ2 ∈ (0, 1) otherwise.
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Hoeffding (1940) [26] showed that Φ2
X,Y takes the value one in the cases of monoton-

ically increasing and monotonically decreasing continuous functional dependence; it is
otherwise less than one and greater than zero.

Let X1, . . . , Xn be a simple random sample generated from the two-dimensional ran-
dom vector X whose distribution function and copula are denoted by H(·) and C(·),
respectively, and assumed to be unknown. The copula C is then estimated by the empirical
copula Ĉn, which is defined as

Ĉn(u) =
1
n

n

∑
j=1

2

∏
i=1

I(Ûij ≤ ui) for u = (u1, u2) ∈ 1
2, (65)

with the pseudo-observations Ûij = F̂i(Xij) for i = 1, 2, and j = 1, . . . , n and F̂i(x) = 1
n

∑n
j=1 I(Xij ≤ x), x ∈ R. Since Ûij =

1
n (rank of Xij in Xi1, . . . , Xin), statistical inference is

based on the ranks of the observations.
A nonparametric estimator of Φ2 is then obtained by replacing the copula C(·) in (64)

by the empirical copula Ĉn(·), i.e.,

Φ̂2
n := Φ2(Ĉn) = 90

∫∫
12
{Ĉn(u)− Π(u)}2du, (66)

where Π(u) = u1u2 denotes the independence copula.
As explained in [30], this estimator can be evaluated as follows:

Φ̂2
n = 90

{
1
n2

n

∑
j=1

n

∑
k=1

2

∏
i=1

(1 − max{Ûij, Ûik})−
1

2n

n

∑
j=1

2

∏
i=1

(1 − Û2
ij) +

(
1
3

)2
}

. (67)

The asymptotic distribution of Φ̂2
n can be deduced from the asymptotic behavior of

the empirical copula process which, for instance, has been discussed by [31–33].
The quantity Φ2

X,Y was introduced by [34] without the normalizing factor 90, as a
distribution-free statistic for testing the independence of X and Y.

Referring to [12], Nelsen (2006) [5] (p. 210) states that “... any Lp distance should
yield a symmetric nonparametric measure of dependence”. For any p, 1 < p < ∞, the Lp
distance between the copula C(·) and the product copula Π(·) is given by the following
expression: (

kp

∫∫
12

|C(u, v)− uv|pdudv
) 1

p
, (68)

where kp is the normalizing factor. On letting p = 2, one obtains ΦX,Y.

6. Illustrative Examples

In order to compare the measures of association discussed in the previous sections,
five two-dimensional data sets exhibiting different patterns that will be identified by
the letters A, B, C, D and E, are considered. The first one was linearly decreasing, in
which case Pearson’s correlation ought to be the most appropriate coefficient. The strictly
monotonic pattern of the second set ought to be readily detected by Spearman’s, Kendall’s
and Blomqvist’s coefficients, whose performance is assessed when applied to the fourth
pattern, which happens to be piecewise monotonic. In the case of patterns C and E, whose
points exhibit distinctive patterns, Hoeffding’s measure of dependence is expected to be
more suitable than any of the other measures of association.

First, 500 random values of x, denoted by S , were generated within the interval (−3, 3).
Now, let

fA(x) = −x/5 + 1 + ϵ,
fB(x) = −x5 + ϵ,
fC(x) = sin(x) + ϵ,
fD(x) = −

√
|x3/2|+ ϵ and
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fE = tan(x)3 + ϵ,
where ϵ represents a slight perturbation consisting of a multiple of random values gen-
erated from a uniform distribution on the interval [−1, 1]. The five resulting data sets,
A = {(x, fA(x))|x ∈ S}, B = {(x, fB(x))|x ∈ S}, C = {(cos(x), fC(x))|x ∈ S}, D =
{(x, fD(x))|x ∈ S} and E = {(x, fE(x))|x ∈ S} are plotted in Figures 1–5.

Figure 1. Plot of data set A.

Figure 2. Plot of data set B.

Figure 3. Plot of data set C.
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Figure 4. Plot of data set D.

Figure 5. Plot of data set E.

We then evaluated Spearman’s, Kendall’s, Blomqvist’s and Hoeffding’s statistics, as
well as Pearson’s sample correlation coefficient for each data set. Their numerical values
and associated p-values are reported in Table 1.

Table 1. Five statistics and their associated p-values.

Statistics and p-Values A B C D E

Spearman {−0.9963, 0} {−0.9218, 0} {0.0022, 0.9602} {0.1028, 0.0215} {−0.0745, 0.0961}
Kendall {−0.9456, 0} {−0.8072, 0} {0.0071, 0.8136} {0.0919, 0.0021} {−0.0350, 0.2419}

Blomqvist {−0.9600, 0} {−0.6160, 0} {0.0320, 0.4209} {0.0720, 0.0891} {0.0640, 0.1283}
Hoeffding {0.8679, 0} {0.5302, 0} {0.0472, 0} {0.1902, 0} {0.0104, 0}

Pearson {−0.9964, 0} {−0.8207, 0} {0.0202, 0.6529} {0.0555, 0.2152} {−0.0092, 0.8377}

Hoeffding’s statistic strongly rejects the null hypothesis of independence since the
p-values are all virtually equal to zero. This correctly indicates that, in all five cases, the
variables are functionally related.

As anticipated, Pearson’s correlation coefficient is larger in absolute value in the case
of a linear relationship (data set A) with a value of −0.9964, than in the case of a monotonic
relationship (data set B) with a value of −0.8207.

Spearman’s, Kendall’s and Blomqvist’s statistics readily detect the monotonic rela-
tionships that data sets A and B exhibit. Interestingly, in the case of data set D, which
happens to be monotonically increasing and then decreasing, at the 5% significance level,
both Spearman’s and Kendall’s statistics manage to reject the independence assumption.
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7. Multivariate Measures of Association
7.1. Blomqvist’s β

Consider the random vector (X1, X2, . . . , Xn) whose joint distribution function is
F(x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) and marginal continuous distribution functions
are Fi(xi) = P(Xi ≤ xi) for xi ∈ R, i ∈ {1, 2, . . . , n}. We now state Sklar’s Theorem for the
multivariate case:

Let F be an n-dimensional continuous distribution function with continuous marginal distri-
bution functions (F1, F2, . . . , Fn). Then, there exists a unique n-copula C : 1n → 1 such that

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (69)

Conversely, if C is an n-copula and F1, F2, . . . , Fn are continuous distribution functions, then
the function F is an n-dimensional distribution function with marginal distribution functions
(F1, F2, . . . , Fn) [5] (Theorem 2.10.9, p. 46).

Clearly, the copula C(·) in Equation (69) is the joint distribution function of the
random variables Ui = Fi(xi), i ∈ {1, 2, . . . , n}. Observe that C(u) = P(U ≤ u) =
F(F−1

1 (u1), F−1
2 (u2), . . . , F−1

n (un)) for all u = (u1, . . . , un) ∈ 1
n.

Letting Wn(u) = max(u1 + u2 + · · ·+ un − n+ 1, 0) and Mn(u) = min(u1, u2, . . . , un),
the Fréchet–Hoeffding inequality,

Wn(u) ≤ C(u) ≤ Mn(u), (70)

provides lower and upper bounds for any copula. This inequality is attributed to [26,35].
We note that a related result appeared in [36].

The Fréchet–Hoeffding upper bound is a copula when the random variables are
perfectly positively dependent, i.e., they are comonotonic. However, the lower bound is a
copula only in the bivariate case [8].

Blomqvist’s β, as given in Equation (52), can also be expressed as

β =
C(1/2, 1/2)− Π(1/2, 1/2) + C̄(1/2, 1/2)− Π̄(1/2, 1/2)

M(1/2, 1/2)− Π(1/2, 1/2) + M̄(1/2, 1/2)− Π̄(1/2, 1/2)
. (71)

where Πn(u) = u1u2 · · · un, and the survival function C̄(u) = P(U > u). When C is a
copula involving n random variables, Equation (71) can be generalized as follows:

β =
C(1/2)− Π(1/2) + C̄(1/2)− Π̄(1/2)

M(1/2)− Π(1/2) + M̄(1/2)− Π̄(1/2)

= kn (C(1/2) + C̄(1/2)− 21−n),
(72)

where 1/2 = (1/2, 1/2, . . . , 1/2), kn = 2n−1

2n−1−1 , Π(1/2) = 2−n, and M(1/2) = 1/2. When
n = 2, one has C(1/2, 1/2) = C̄(1/2, 1/2) for any copula; however, this is not the case for
n ≥ 3. The coefficient β can be interpreted as the normalized average distance between the
copula C and the independence copula Π.

Ref. [37] utilized the multivariate Blomqvist measure of dependence to analyze main
GDP (gross domestic product) aggregates per capita in the European Union, Germany and
Portugal for the period 2008–2019.

7.2. Spearman’s ρ

In the bivariate case, Spearman’s rank correlation can be expressed as

ρS =
E(UV)− E(U)E(V)√

Var(U)Var(V)
, (73)
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where U and V are uniformly distributed, so that E(U) = E(V) = 1/2 and Var(U) =
Var(V) = 1/12. As previously established,

ρS =

∫ 1
0

∫ 1
0 u v dC(u, v)− (1/2)2

1/12

= 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3,

(74)

where C is the joint distribution of (U, V).
Employing the same notation as in the previous section, we now present different

versions of Spearman’s ρ for the multivariate case:

(i) Kendall (1970) [38]:

ρS4 = h2(4 ∑
i<j

(Cn
2 )

−1
∫
[0,1]n

Cij(u, v)dudv − 1); (75)

(ii) Ruymgaart and van Zuijlen (1978) [39]:

ρS1 = hn(2n
∫
[0,1]n

C(u)du − 1); (76)

(iii) Joe (1990) [40]:

ρS2 = hn(2n
∫
[0,1]n

Π(u)dC(u)− 1); (77)

(iv) Nelsen (2002) [2]:

ρS3 = hn{2n−1(
∫
[0,1]n

C(u)dΠ(u) +
∫
[0,1]n

Π(u)dC(u)− 1)}; (78)

where hn = 1+n
2n−(1+n) , Cn

2 = n!
2!(n−2)! , and u = (u1, u2, . . . , un).

We observe that ρS3 appears in [41] (p. 227) as a measure of average upper and lower
orthant dependence, and that ρS4 constitutes the population version of the weighted
average pairwise Spearman’s rho given in Chapter 6 of [38], where Cij(u, v) is the bivariate
marginal copula [6] (p. 22).

As obtained by [41] (p. 228), a lower bound for ρSi, i ∈ {1, 2, 3}, is given by

2n − (n + 1)!
n!{2n − (n + 1)} for n ≥ 2.

For n = 3, this lower bound is at least equal to −4/3, and for n = 2, we have ρS1 = ρS2 =
ρS4. As noted by [42] (p. 787), the aforementioned lower bound may fail to be the best
possible.

Spearman’s rank correlation can also be expressed as follows for the bivariate case:

ρS =

∫
[0,1]2 C(u, v)dudv −

∫
[0,1]2 Π(u, v)du dv∫

[0,1]2 M(u, v)du dv −
∫
[0,1]2 Π(u, v)dudv

(79)

=

∫
[0,1]2 uv dC(u, v)−

∫
[0,1]2 uv dΠ(u, v)∫

[0,1]2 uv dM(u, v)−
∫
[0,1]2 uv dΠ(u, v)

, (80)

where
∫
[0,1]2 M(u, v)dudv = 1/3 and

∫
[0,1]2 Π(u, v)dudv = 1/4. It is readily seen that

representation (79) coincides with that given in (74). The coefficient ρS can be interpreted
as the normalized average distance between the copula C and the independence copula Π.



AppliedMath 2024, 4 379

Equation (79) suggests the following natural generalization for the multivariate case:

ρS =

∫
[0,1]n C(u)du −

∫
[0,1]n Π(u)du∫

[0,1]n M(u)du −
∫
[0,1]n Π(u)du

, (81)

which, incidentally, agrees with the representation specified in Equation (76).
For instance, Liebscher (2021) [43] made use of the multivariate Spearman measure

of correlation to determine the dependence of a response variable on a set of regressor
variables in a nonparametric regression model.

7.3. Kendall’s τ

Joe (1990) [40] provides the following representation of Kendall’s τ for the multivari-
ate case:

τn,c = (2n−1 − 1)−1{2n
∫
[0,1]n

C(u)dC(u)− 1}, (82)

which also appears in [5] (p. 231) as measure of average multivariate total positivity. In
fact, Equation (82) generalizes Equation (44), i.e.,

τ2,c = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1. (83)

Nelsen (1996) [41] also notes that a lower bound for τn,c is given by

−(2n−1 − 1)−1 since
∫
[0,1]n

C(u)dC(u) ≥ 0. (84)

As shown by [42] (Theorem 5.1), and reported by [44] (p. 218), this lower bound is attained
if at least one of the bivariate margins of the copula C equals W (the Fréchet–Hoeffding
lower bound).

Kendall and Babington Smith (1940) [45] introduced an extension of Kendall’s τ as a
coefficient of agreement among n ≥ 2 rankings. Another generalization is proposed in [46].

A test based on the nonparametric estimator of the multivariate extension of Kendall’s
τ was utilized in [47] to establish links between innovation and higher education in certain
regions.

7.4. Hoeffding’s Φ2

Using the same notation as in the previous sections, one can express Hoeffding’s
dependence index as follows for the bivariate case:

Φ2
X,Y = 90

∫ 1

0

∫ 1

0
{C(u, v)− uv}2dudv

= 90
∫
[0,1]2

{C(u, v)− Π(u, v)}2dudv,
(85)

where

Φ2
X,Y =


0 in the case of stochastic independence,
1 in the case of monotone dependence,
(0, 1), otherwise.

(86)

Observe that Φ2
X,Y = 0 if and only if C = Π.

For the multivariate case, Φ2 is defined as

Φ2 = hn

∫
[0,1]n

{C(u)− Π(u)}2du, (87)

where hn = [
∫
[0,1]n{M(u)du − Π(u)du}2]−1 is the normalizing constant.
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Gaißer et al. (2010) [30] determined that the inverses of the normalizing constants for
the upper and lower bounds are, respectively, given by

(hn)
−1 =

∫
[0,1]n

{M(u)du − Π(u)}2du

=
2

(n + 1)(n + 2)
− 2−nn!

∏n
i=0(i + 1/2)

+ (1/3)n
(88)

and

(gn)
−1 =

∫
[0,1]n

{W(u)du − Π(u)}2du

=
2

(n + 2)!
− 2

n

∑
i=0

Cn
i (−1)i 1

(n + 1 + i)!
+ (1/3)n,

(89)

where Cn
i = n!

i!(n−i)! .
For instance, Medovikov and Prokhorov (2017) [48] made use of Hoeffding’s multi-

variate index to determine the dependence structure of financial assets and evaluate the
risk of contagion.

7.5. Note

As pointed out by [49], Spearman’s ρ and Blomqvist’s β can be expressed as follows:

kn(C) = αn

{∫
[0,1]n

(C + σ∗)dµn −
1

2n−1

}
, (90)

where µn is a probability measure on [0, 1]n, whereas Kendall’s τ has the following repre-
sentation:

τn(C) = αn

{∫
[0,1]n

C dC − 1
2n

}
, (91)

with

αn =
(1 + n)2n−1

2n − (1 + n)
, for Spearman’s rho,

αn =
2n−1

2n−1 − 1
, for Blomqvist’s beta,

and

αn =
2n

2n−1 − 1
, for Kendall’s tau.

8. Conclusions

Bivariate and multivariate measures of dependence originally due to Spearman,
Kendall, Blomqvist and Hoeffding, as well as related results of interest such as their sample
estimators and representations in terms of copulas, were discussed in this paper. Various
recent applications were also pointed out. Additionally, a numerical study corroborated
the effectiveness of these coefficients of association in assessing dependence with respect to
five sets of generated data exhibiting various patterns.

A potential avenue for future research would consist in studying matrix-variate rank
correlation measures as was achieved very recently by [50] for the case of Kendall’s τ.
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