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Methods by Full-Rank Update of the Jacobian Approximates
Peter Berzi

Applied Informatics and Applied Mathematics Doctoral School, Óbuda University, Bécsi út 96/B,
1034 Budapest, Hungary; berzi.peter@uni-obuda.hu; Tel.: +36-20-389-0242

Abstract: A system of simultaneous multi-variable nonlinear equations can be solved by Newton’s
method with local q-quadratic convergence if the Jacobian is analytically available. If this is not the
case, then quasi-Newton methods with local q-superlinear convergence give solutions by approximat-
ing the Jacobian in some way. Unfortunately, the quasi-Newton condition (Secant equation) does not
completely specify the Jacobian approximate in multi-dimensional cases, so its full-rank update is not
possible with classic variants of the method. The suggested new iteration strategy (“T-Secant”) allows
for a full-rank update of the Jacobian approximate in each iteration by determining two independent
approximates for the solution. They are used to generate a set of new independent trial approximates;
then, the Jacobian approximate can be fully updated. It is shown that the T-Secant approximate is in
the vicinity of the classic quasi-Newton approximate, providing that the solution is evenly surrounded
by the new trial approximates. The suggested procedure increases the superlinear convergence of
the Secant method (φS = 1.618 . . .) to super-quadratic (φT = φS + 1 = 2.618 . . .) and the quadratic
convergence of the Newton method (φN = 2) to cubic (φT = φN + 1 = 3) in one-dimensional cases.
In multi-dimensional cases, the Broyden-type efficiency (mean convergence rate) of the suggested
method is an order higher than the efficiency of other classic low-rank-update quasi-Newton methods,
as shown by numerical examples on a Rosenbrock-type test function with up to 1000 variables. The
geometrical representation (hyperbolic approximation) in single-variable cases helps explain the
basic operations, and a vector-space description is also given in multi-variable cases.

Keywords: quasi-Newton methods; multi-variable nonlinear equations; full-rank Jacobian approximate
update; Rosenbrock function; super-quadratic convergence; efficiency

1. Introduction

It is a common task in numerous disciplines (e.g., physics, chemistry, biology, eco-
nomics, robotics, and engineering, social, and medical sciences) to construct a mathematical
model with some parameters for an observed system which gives an observable response
to an observable external effect. The unknown parameters of the mathematical model are
determined so that the difference between the observed and the simulated system responses
of the mathematical model for the same external effect is minimized (see e.g., [1–11]). This
problem leads to finding the zero of a residual function (difference between observed and
simulated responses). The rapidly accelerating computational tools and the increasing
complexity of mathematical models with more and more efficient numerical algorithms
provide a chance for better understanding and control of the surrounding nature.

As referenced above, root-finding methods are essential for solving a great class
of numerical problems, such as data fitting problems with m sampled data D =

[
Dj
]

(j = 1, . . . , m) and n adjustable parameters x = [xi] (i = 1, . . . , n) with m ≥ n. This leads to
the problem of least-squares solving of an over-determined system of nonlinear equations,

f (x) = 0, (1)
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(x ∈ Rn and f : Rn → Rm (m ≥ n)), where the solution x∗ minimizes the difference

∥ f (x)∥2= ∥ϕ(x)− D∥2 (2)

between the data D and a computational model function ϕ(x). The system of simultane-
ous multi-variable nonlinear Equation (1) can be solved by Newton’s method when the
derivatives of f (x) are available analytically and a new iterate,

xp+1 = xp − J−1
p f p, (3)

that follows xp can be determined, where f p = f (xp) is the function value and Jp = J(xp)

is the Jacobian matrix of f at xp in the pth iteration step. Newton’s method is one of the
most widely used algorithm, with very attractive theoretical and practical properties and
with some limitations. The computational costs of Newton’s method is high, since the
Jacobian Jp and the solution to the linear system (3) must be computed at each iteration. In
many cases, explicit formulae for the function f (x) are not available ( f (x) can be a residual
function between a system model response and an observation of that system response) and
the Jacobian Jp can only be approximated. The classic Newton’s method can be modified
in many different ways. The partial derivatives of the Jacobian may be replaced by suitable
difference quotients (discretized Newton iteration, see [12,13]),

[
△ f
△x

]
=

 f j

(
x +△xkdk

)
− f j(x)

△xk

 =

[△ f j(x)
△xk

]
, (4)

(k = 1, . . . , n), (j = 1, . . . , m) with n additional function value evaluations, where dk is the
kth Cartesian unit vector. However, it is difficult to choose the stepsize △x. If any △xk is
too large, then Expression (4) can be a bad approximation to the Jacobian, so the iteration
converges much more slowly if it converges at all. On the other hand, if any △xk is too small,
then △fj(x) ≃ 0, and cancellations can occur which reduce the accuracy of the difference
quotients (4) (see [14]). The suggested procedure (“T-Secant”) may resemble the discretized
Newton iteration, but it uses a systematic procedure to determine suitable stepsizes for the
Jacobian approximates. Another modification is the inexact Newton approach, where the
nonlinear equation is solved by an iterative linear solver (see [15–17]).

It is well-known that the local convergence of Newton’s method is q-quadratic if the
initial trial approximate x0 is close enough to the solution x∗, J(x∗) is non-singular, and
J(x) satisfies the Lipschitz condition

∥J(x)− J(x∗)∥ ≤ L∥x − x∗∥ (5)

for all x close enough to x∗. However, in many cases, the function f (x) is not an analytical
function, the partial derivatives are not known, and Newton’s method cannot be applied.
Quasi-Newton methods are defined as the generalization of Equation (3) as

xp+1 = xp − B−1
p f p (6)

and
Bp △xp = − f p (7)

where
△xp = xp+1 − xp (8)

is the iteration step length and Bp is expected to be the approximate to the Jacobian matrix
Jp without computing derivatives in most cases. The new iterate is then given as

xp+1 = xp +△xp (9)
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and Bp is updated to Bp+1 according to the specific quasi-Newton method. Martinez [18]
has made a thorough survey on practical quasi-Newton methods. The iterative methods of
the form (6) that satisfy the equation

Bp+1 △xp = f p+1 − f p (10)

for all k = 0, 1, 2, . . . are called “quasi-Newton” methods, and Equation (10) is called the
fundamental equation of quasi-Newton methods (“quasi-Newton condition” or “secant
equation”). However, the quasi-Newton condition does not uniquely specify the updated
Jacobian approximate Bp+1, and further constraints are needed. Different methods offer
their own specific solution. One new quasi-Newton approximate xp+1 will never allow
for a full-rank update of Bp+1 because it is an n × n matrix and only n components can be
determined from the Secant equation, making it an under-determined system of equations
for the elements

[
Bi,j,p+1

]
(i, j = 1, . . . n) if n > 1.

The suggested new strategy is based on Wolfe’s [19] formulation of a generalized
Secant method. The function

x → f (x), where x ∈ Rn and f : Rn → Rn, n > 1 (11)

is locally replaced by linear interpolation through n + 1 interpolation base points Ap, Bp,k
(k = 1, . . . , n). The variables x and the function values f are separated into two equations
and an auxiliary variable qA is introduced. Then the Jacobian approximate matrix Bp is split
into a variable difference △Xp and a function value difference △Fp matrix, and the zero
xA

p+1 of the pth interpolation plane is determined from the quasi-Newton condition (7) as[
△xA

p+1

− f A
p

]
=

[
△Xp
△Fp

]
qA

p (12)

where
△xA

p+1 = xA
p+1 − xA

p . (13)

The auxiliary variable qA
p is determined from the second row of Equation (12), and the new

quasi-Newton approximate xA
p+1 comes from the first row of this equation. Popper [20]

made further generalization for functions

x → f (x), where x ∈ Rn and f : Rn → Rm, m ≥ n > 1 (14)

and suggested the use of a pseudo-inverse solution for the over-determined system of
linear equations (where n is the number of unknowns and m is the number of function
values). The auxiliary variable qA

p is determined from the second row of Equation (12) as

qA
p = −△F +

p f A
p , (15)

where [.]+ stands for the pseudo-inverse, and the new quasi-Newton approximate xA
p+1

comes from the first row of this equation as

xA
p+1= xA

p −△Xp △Fp
+ f A

p . (16)

The new iteration continues with n + 1 new base points Ap+1, Bp+1,k (k = 1, . . . , n). Details
are given in Section 3.

Ortega and Rheinboldt [12] stated that a necessary condition of convergence is that
the interpolation base points should be linearly independent and they have to be “in
general position” through the whole iteration process. Experiences show that the low-rank
update procedures often lead to a dead end because this condition is not satisfied. The
purpose of the suggested new iteration strategy is to determine linearly independent base
points providing that the Ortega and Rheinboldt condition is satisfied. The basic idea
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of the procedure is that another new approximate xB
p+1 is determined from the previous

approximate xA
p+1 and a new system of n linearly independent base points is generated.

The basic equations of the Wolfe–Popper formulation (Equation (12)) were modified as[
△xp+1

− f A
p

]
=

[
TX

p 0
0 TF

p

][
△Xp
△Fp

]
qB

p (17)

where

△xp+1 = xB
p+1 − xA

p+1 (18)

TX
p = diag

(
tX
p,i

)
= diag

(
xB

p+1,i − xA
p+1,i

xA
p+1,i − xA

p,i

)
(19)

and

TF
p = diag

(
tF

p,j

)
= diag

(
f B
p+1,j − f A

p+1,j

f A
p+1,j − f A

p,j

)
. (20)

The auxiliary variable qB
p is determined from the second row of Equation (17) as

qB
p = −△F +

p

(
TF

p

)−1
f A

p = −
[

m

∑
j=1

(
△F +

p,i,j

f A
p,j

tF
p,j

)]
, (21)

and the new quasi-Newton approximate xB
p+1 comes from the first row of Equation (17) as

xB
p+1,i =xA

p+1,i+

(
△xA

p,i

)2

△xp,i qB
p,i

= xA
p+1,i−

(
△xA

p,i

)2

m
∑

j=1

(
△xp,i △F +

p,i,j
f A
p,j

tF
p,j

) (22)

(i = 1, . . . , n). The details of the proposed new strategy (“T-Secant method”) are given
in Section 4. It is different from the traditional Secant method in that all interpolation
base points Ap and Bp,k (k = 1, . . . , n) are updated in each iteration (full-rank update),
providing n + 1 new base points Ap+1 and Bp+1,k for the next iteration. The key idea of
the method is very simple. The function value f A

p+1 (that can be determined from the new
Secant approximate xA

p+1) measures the “distance” of the approximate xA
p+1 from the root

x∗ (if f A
p+1 = 0, then the distance is zero and xA

p+1 = x∗). The T-Secant method uses this
information so that the basic equations of the Secant method are modified by a scaling
transformation T, and an additional new estimate xB

p+1 is determined. Then, the new

approximates xA
p+1 and xB

p+1 are used to construct the n + 1 new interpolation base points
Ap+1 and Bp+1,k.

The T-Secant procedure has been worked out for solving multi-variable problems.
It can also be applied for solving single-variable ones, however. The geometrical repre-
sentation of the latter provides a good view with which to explain the mechanism of the
procedure as shown in Section 5. It is a surprising result that the T-Secant modification
corresponds to a hyperbolic function

zp(x) =
ap

x − xA
p+1

+ f A
p , (23)

the zero of which gives the second approximate xB
p+1 in the single-variable case. A vector

space interpretation is also given for the multvariable case in this section.



AppliedMath 2024, 4 147

The general formulations of the proposed method are given in Section 6 and compared
with the basic formula of classic quasi-Newton methods. It follows from Equation (16) that

Sp △xA
p = − f A

p , (24)

where

Sp = △Fp △X−1
p =


△f1,1,p
△x1

. . .
△fn,1,p
△xn

...
...

...
△f1,m,p
△x1

· · · △fn,m,p
△xn

 =

[
△fk,,j,p

△xi,p

]
(25)

is the Jacobian approximate of the traditional Secant method. It follows from the first and
second rows of Equation (17) of the T-Secant method and from the Definition (25) of Sp that

ST,p △xA
p = − f A

p (26)

is the modified Secant equation, where

ST,p = TF
p Sp

(
TX

p

)−1
= TF

p △Fp △X−1
p

(
TX

p

)−1
=

[
tF
j,p

tX
i,p

△fk,j,p

△xi,p

]
. (27)

It is well known that the single-variable Secant method has asymptotic convergence for suf-
ficiently good initial approximates xA and xB if f ′(x) does not vanish in x ∈

[
xA xB ]

and
f ′′(x) is continuous at least in a neighborhood of the zero x∗. The super-linear convergence
property has been proved in different ways, and it is known that the order of convergence
is α =

(
1 +

√
5
)

/2 = φ (where φ = 1.618 . . . is the golden ratio). The convergence order of
the proposed method is determined in Section 7, and it is shown that it has super-quadratic
convergence with rate αTS = φ + 1 = φ2 = 2.618 . . . in the single variable case. It is also
shown for the multi-variable case in this section that the second approximate xB

p+1 will

always be in the vicinity of the classic Secant approximate xA
p+1, providing that the solution

x∗ will evenly be surrounded by the n + 1 new trial approximates and matrix Sp+1 will
be well-conditioned.

A step-by-step algorithm is given in Section 8, and the results of numerical tests with
a Rosenbrock-type test function demonstrates the stability of the proposed strategy in
Section 9 for up to 1000 unknown variables. The Broyden-type efficiency (mean conver-
gence rate) of the proposed method is studied in a multi-variable case in Section 10, and it
is compared with other classic rank-one update and line-search methods on the basis of
available test data. It is shown in Section 11 how the new procedure can be used to improve
the convergence of other classic multi-variable root finding methods (Newton–Raphson
and Broyden methods). Concluding remarks are summarized in Section 12. Among others,
the method has been used for the identification of vibrating mechanical systems (founda-
tion pile driving [21,22], percussive drilling [23]) and found to be very stable and efficient
even in cases with a large number of unknowns.

The proposed method needs n + 1 function value evaluations in each iteration, and it
is not using the derivative information of the function like the Newton–Raphson method
is doing. On the other hand, it needs n more function evaluations than the traditional
secant method needs in each iteration. However, this is an apparent disadvantage, as the
convergence rate considerably increases (αTS ∼= 2.618 . . .). Furthermore, the stability and
the efficiency of the procedure has been greatly improved.

2. Notations

Vectors and matrices are denoted by bold-face letters. Subscripts refer to components
of vectors and matrices; superscripts A and B refer to interpolation base points. Notations
A and B are introduced so as to be able to clearly distinguish between the two new approx-
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imates xA and xB. Vectors and matrices may also be given by their general elements. △
refers to a difference of two elements. x and X denote unknown quantities. f and F denote
function values and matrices. q, q, t, and T denote multiplier scalars, vectors, and matrices.
e, ε, and E denote approximate error. p is iteration counter, α is convergence rate, and ε∗ is
termination criterion. n is the number of unknowns, m is the number of function values,
and i, j, k, and l are running indexes of matrix columns and rows. Superscripts S and TS
refer to the traditional Secant method and to the proposed T-Secant method, receptively.

3. Secant Method

The history of the Secant method in single-variable cases is several thousands of years
old, its origin was found in ancient times. The idea of finding the scalar root x∗of a scalar
nonlinear function

x → f (x) (where x ∈ R1 and f : R1 → R1) (28)

by successive local replacement of the function by linear interpolation (secant line) gives a
simple and efficient numerical procedure. It has the advantage that it does not need the
calculation of function derivatives, it only uses function values, and the order of asymptotic
convergence is super-linear with a convergence of rate αS ∼= 1.618 . . . .

The function f (x) is locally replaced by linear interpolation (secant line) through
interpolation base points A and B, and the zero xA of the Secant line is determined as
an approximate to the zero x∗ of the function. The next iteration continues with new
base points, selected from available old ones. Wolfe [19] extended the scalar procedure to
multidimensional

x → f (x), where x ∈ Rn and f : Rn → Rn, n > 1, (29)

and Popper [20] made a further generalization

x → f (x), where x ∈ Rn and f : Rn → Rm, m ≥ n > 1 (30)

and suggested use of pseudo-inverse solution for the over-determined system of linear
equations (where n is the number of unknowns and m is the number of function values).

The zero x∗ of the nonlinear function x → f (x) has to be found, where x ∈ Rn and
f : Rn → Rm. Let xA be the initial trial for the zero x∗, and let the function f (x) be linearly
interpolated through n + 1 interpolation base points A

(
xA f A

)
and Bk

(
xB

k f B
k

)
(k = 1, . . . , n) and be approximated/replaced by the interpolation “plane” y(x) near x∗.
One of the key ideas of the suggested numerical procedure is that interpolation base points
Bk

(
xB

k f B
k

)
are constructed by individually incrementing the coordinates xA

i of the

initial trial xA by an “initial trial increment” value △xi (i = 1, . . . , n) as

xB
k,i = xA

i +△xi, (31)

or in vector form as

xB
k = xA +△xk dk, (32)

where dk is the kth Cartesian unit vector, as shown in Figure 1.
It follows from this special construction of the initial trials xB

k that xB
k,i − xA

i = 0 for
i ̸= k and xB

k,i − xA
i = △xi for i = k providing that

△x =
[

xB
i,i − xA

i

]
= [△xi] (33)

is the “initial trial increment vector”. Let

△ f k =
[
△ fk,j

]
=
[

f B
k,j − f A

j

]
(34)
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(j = 1, . . . , m). Any point on the n dimensional interpolation plane y(x) can be expressed as

B1 1A

1
2

3

2A

3A

B3

B2

A

x 3

x 2

x
1

x Ax
B

Bx2 x1

R3  x-space

B x B

x3
B

Figure 1. Formulation of a new set of base vectors (n = 3): xA, xB
1 , xB

2 , xB
3 and interpolation base

points A, B1, B2 and B3 from new approximate xA and from new trial increment (iteration stepsize)

△x = xB − xA =
[

△x1 △x2 △x3

]T
.

[
x

y(x)

]
=

[
xA

f A

]
+

[
△X
△F

]
qA, (35)

where

△X =
[

xB
k − xA

]
=

 xB
1,1 − xA

1 · · · xB
n,1 − xA

1
...

. . .
...

xB
1,n − xA

n · · · xB
n,n − xA

n

 (36)

△F =
[

f B
k − f A

]
=

 f B
1,1 − f A

1 · · · f B
n,1 − f A

1
...

...
...

f B
1,m − f A

m · · · f B
n,m − f A

m

 (37)

(k = 1, . . . , n), qA is a vector with n scalar multipliers qA
i (i = 1, . . . , n), and as a consequence

of Equation (32),

△X = [△xk] =

 △x1 · · · 0
...

. . .
...

0 · · · △xn

 = diag(△xk) (38)

is a diagonal matrix that has great computational advantage. It also follows from
Definition (34) that

△F = [△ f k] =

 △ f1,1 · · · △ fn,1
...

...
...

△ f1,m · · · △ fn,m

. (39)
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Let xA
p+1 be the zero of the n-dimensional interpolation plane yp(x) with interpolation base

points Ap

(
xA

p f A
p

)
and Bk,p

(
xB

k,p f B
k,p

)
in the pth iteration. Then, it follows from the

zero condition that

yp(xA
p+1) = 0 (40)

and from the second row of Equation (35) that

△Fp qA
p = − f A

p , (41)

and the vector qA
p of multipliers qA

p,i can be expressed as

qA
p = −△F +

p f A
p = −

[
m

∑
j=1

(
△F +

p,i,j f A
p,j

)]
, (42)

where [.]+ stands for the pseudo-inverse. Let[
△xA

p
△ f A

p

]
=

[
xA

p+1 − xA
p

f A
p+1 − f A

p

]
(43)

be the iteration stepsize of the Secant method; then, it follows from the first row of Equation (35)
and from Equation (42) that

△xA
p = △Xp qA

p = −△Xp △F +
p f A

p , (44)

and from Definition (43), it follows that[
xA

p+1

f A
p+1

]
=

[
xA

p +△xA
p

f A
p +△ f A

p

]
, (45)

and the new Secant approximate xA
p+1 can be expressed from Equation (44) as

xA
p+1 = xA

p +△xA
p . (46)

A new base point Ap+1

(
xA

p+1, f A
p+1

)
can than be determined for the next iteration. In

a single-variable case (m = n = k = 1) with interpolation base points Ap

(
xA

p , f A
p

)
and

Bp

(
xB

p , f B
p

)
, Equation (42) will have the form

qA
p = −

f A
p

f B
p − f A

p
= −

f A
p

△ fp
, (47)

and the new Secant approximate

xA
p+1 = xA

p +△xp qA
p = xA

p −
△xp

△ fp
f A
p =

xA
p f B

p − xB
p f A

p

f B
p − f A

p
(48)

can be determined according to Equation (46). The procedure then continues with new
interpolation base points Ap+1

(
xA

p+1, f A
p+1

)
and Bp+1

(
xB

p+1, f B
p+1

)
.

4. T-Secant Method
4.1. Single-Variable Case

The T-Secant method is different from the traditional Secant method in the way that all
interpolation base points Ap and Bp,k (k = 1, . . . , n) are updated in each iteration, providing
n + 1 new base points Ap+1 and Bp+1,k for the next iteration. The key idea of the method
is very simple. The function value f A

p+1 (that can be determined from the new Secant
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approximate xA
p+1) measures the “distance” of the approximate xA

p+1 from the root x∗ (if

f A
p+1 = 0, then the distance is zero and xA

p+1 = x∗). The T-Secant method uses this informa-

tion to determine another approximate xB
p+1. In a single-variable case(m = n = k = 1) with

interpolation base points Ap and Bp, the basic equation

△ fp qA
p = −f A

p (49)

of the Secant method (Equation (41) in multi-variable case) is modified by a factor

t f
p =

f A
p+1

f A
p

(50)

that expresses the “improvement rate” of the new approximate xA
p+1 to the original approx-

imate xA
p , providing the T-Secant-modified basic equation

t f
p △ fp qB

p= −f A
p . (51)

Then, the T-Secant multiplier

qB
p =

qA
p

t f
p
= −

(
f A
p

)2

f A
p+1△ fp

(52)

can be determined. The other basic equation

△xA
p = △xp qA

p (53)

of the Secant method (Equation (44) in multi-variable case) with iteration stepsize

△xA
p = xA

p+1 − xA
p (54)

is also modified in a similar way to that in the case of Equations (49) and (51) by a factor

tx
p=

xB
p+1 − xA

p+1

xA
p+1 − xA

p
=

△xp+1

△xA
p

(55)

that expresses the “improvement rate” of the new “T-Secant stepsize” △xp+1 to the previous
“secant stepsize” △xA

p , providing a new basic equation

△xA
p = tx

p △xp qB
p , (56)

from which

△xA
p =

△xp+1

△xA
p

△xpqB
p (57)

and

xA
p+1 − xA

p =−
xB

p+1 − xA
p+1

xA
p+1 − xA

p

(
xB

p − xA
p

) (
f A
p

)2

f A
p+1

(
f B
p − f A

p

) . (58)
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By re-ordering Equation (58), the T-Secant approximate

xB
p+1 = xA

p+1 +

(
△xA

p

)2

△xp qB
p

= xA
p+1 −

(
xA

p+1 − xA
p

)2(
f B
p − f A

p

)
f A
p+1(

xB
p − xA

p

)(
f A
p

)2 (59)

can be determined, and it is used to update the original interpolation base point Bp to Bp+1.
The new iteration will then continue with new base points Ap+1 and Bp+1. Note that it
follows from Equations (52), (53), and (59) that

△xp+1 = xB
p+1 − xA

p+1 =

(
△xA

p

)2

△xp qB
p

= t f
p

(
△xA

p

)2

△xp qA
p

= t f
p △xA

p . (60)

4.2. Multi-Variable Case

In the multi-variable case (m ≥ n > 1)with (n+ 1) interpolation base points Ap

(
xA

p f A
p

)
and

Bp,k

(
xB

p,k f B
p,k

)
(k = 1, . . . , n), the basic equations of the Secant method (Equations (41) and (44))

are modified as
TF

p△Fp qB
p = − f A

p (61)

and
△xA

p = TX
p △Xp qB

p . (62)

Then, a vector-based equation can be formulated, as in case of the traditional Secant method
(see Equation (35)), in a the following form:[

x −△x
z(x)

]
=

[
xA

f A

]
+

[
TX 0
0 TF

][
△X
△F

]
qB, (63)

where △X and △F are defined in (36) and (37), z(x) is a function with zero at xB
p+1, and

the diagonal transformation matrix in the pth iteration is

T p=

[
TX

p 0
0 TF

p

]
, (64)

with TX
p and TF

p sub-diagonals, where

TX
p = diag

(
tX
p,i

)
= diag

(
xB

p+1,i − xA
p+1,i

xA
p+1,i − xA

p,i

)
= diag

(
△xp+1,i

△xA
p,i

)
(65)

TF
p = diag

(
tF

p,j

)
= diag

(
f B
p+1,j − f A

p+1,j

f A
p+1,j − f A

p,j

)
, (66)

and TF
p is approximated with the assumption f (x) ≃ yp

(
xA

p+1

)
≃ zp

(
xB

p+1

)
and according

to the conditions yp

(
xA

p+1

)
= 0 and zp

(
xB

p+1

)
= 0 as

TF
p ≃ diag

zp,j

(
xB

p+1

)
− f A

p+1,j

yp,j

(
xA

p+1

)
− f A

p,j

 = diag

(
f A
p+1,j

f A
p,j

)
(67)

(i = 1, . . . , n), (j = 1, . . . , m), where f A
p,j ̸= 0. The vector of T-Secant multipliers

qB
p = −△F +

p

(
TF

p

)−1
f A

p = −
[

m

∑
j=1

(
△F +

p,i,j

f A
p,j

tF
p,j

)]
(68)
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can be determined from Equation (61), where [.]+ stands for the pseudo-inverse (△F +
p has

already been calculated when qA
p was determined from Equation (42)). The ith element of

the new approximate xB
p+1 can be expressed from the ith row of Equation (62):

△xA
p,i =

△xp+1,i

△xA
p,i

△xp,i qB
p,i =

xB
p+1,i − xA

p+1,i

△xA
p,i

△xp,i qB
p,i, (69)

and the T-Secant approximate xB
p+1 can be expressed as

xB
p+1,i =xA

p+1,i+

(
△xA

p,i

)2

△xp,i qB
p,i

= xA
p+1,i−

(
△xA

p,i

)2

m
∑

j=1

(
△xp,i △F +

p,i,j
f A
p,j

tF
p,j

) , (70)

where △xp,i ̸= 0 and qB
p,i ̸= 0 (i = 1, . . . , n). Then, the next iteration continues with the new

trial increment vector (iteration stepsize)

△xp+1 = xB
p+1 − xA

p+1 (71)

and with n+ 1 new interpolation base points Ap+1

(
xA

p+1 f A
p+1

)
Bk,p+1

(
xB

k,p+1 f B
k,p+1

)
(k = 1, . . . , n). Figure 1 shows the formulation of a set of new base vectors xB

k,p+1 from xA
p+1

and xB
p+1 in the n = 3 case.

Let the ratio µi of constants qA
p,i and qB

p,i be introduced as

µi =
qA

p,i

qB
p,i

. (72)

Then, it follows from Equations (42), (44), (68), (70), and (71) that the ith element of the new
trial increment vector is

△xp+1,i =

(
△xA

p,i

)2

△xp,i qB
p,i

= µi

(
△xA

p,i

)2

△xp,i qA
p,i

= µi△xA
p,i. (73)

The basic equations in single-variable and multi-variable cases are summarized in Table 1.

Table 1. Summary of the basic equations (single- and multi-variable cases).

Single-Variable (m = n = 1) Multi-Variable(m ≥ n > 1) Equations

1 xA
p xA

p

2 xB
p xB

p,k = xA
p +△xp,k dk (32)

3 △xp= xB
p − xA

p △Xp =
[

xB
p,k − xA

p

]
= diag

(
△xp,i

)
(36), (38)

4 △ fp= f B
p − f A

p △F p =

 △ fp,1,1 · · · △ fp,n,1
...

. . .
...

△ fp,1,m · · · △ fp,n,m

 (34), (37),
(39)

5 △ fp qA
p = −f A

p △F p qA
p = − f A

p (49), (41)

6 qA
p = − f A

p
△fp

qA
p = −△F +

p f A
p (47), (42)

7 xA
p+1 = xA

p +△xp qA
p xA

p+1 = xA
p +△Xp qA

p (48), (46)

8 △xA
p = xA

p+1 − xA
p △xA

p = xA
p+1 − xA

p (54)
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Table 1. Cont.

Single-Variable (m = n = 1) Multi-Variable(m ≥ n > 1) Equations

9 t f
p =

f A
p+1

f A
p

TF
p =diag

(
f A
p+1,j

f A
p,j

)
(50), (67)

10 tf
p △fp qB

p= −f A
p TF

p△Fp qB
p = − f A

p (51), (61)

11 qB
p =

qA
p

t f
p
= − ( f A

p )
2

f A
p+1△ fp

qB
p = −△F +

p

(
TF

p

)−1
f A

p
(52), (68)

12 tx
p =

xB
p+1−xA

p+1

xA
p+1−xA

p
=

△xp+1

△xA
p

TX
p = diag

(
△xp+1,i

△xA
p,i

)
(55), (65)

13 △xA
p = tx

p △xp qB
p △xA

p = TX
p △Xp qB

p (56), (62)

14 xB
p+1 = xA

p+1 +
(△xA

p )
2

△xp qB
p

xB
p+1,i = xA

p+1,i+
(△xA

p,i)
2

△xp,i qB
p,i

(59), (70)

15 △xp+1= tf
p △xA

p △xp+1,i = µi △xA
p,i (60), (73)

5. Geometry
5.1. Single-Variable Case

The T-Secant procedure has been worked out for solving multi-variable problems.
It can also be applied for solving single-variable ones, however. The geometrical repre-
sentation of the latter gives a good view with which to explain the mechanism of the
procedure.

Find the scalar root x∗ of a nonlinear function x → f (x), where x ∈ R1 and f : R1 → R1.
Let the function f (x) be linearly interpolated through initial base points Ap

(
xA

p , f A
p

)
and

Bp

(
xB

p , f B
p

)
, providing a “secant” line yp(x) as shown on Figure 2, where f A

p = f (xA
p ) and

f B
p = f (xB

p ) are the corresponding function values. An arbitrary point of the Secant yp(x)
can be expressed as [

x
yp(x)

]
=

[
xA

p
f A
p

]
+

[
△xp
△ fp

]
qA

p , (74)

Ap

Bp

Axp xp
BAxp+1

Ap+1

Bfp

Afp

Afp+1

f(x)

yp(x)

x

f(x)

x*

Ap

Bp

Axp+1

Ap+1

Afp+1

x

f(x)

Afp

xp+1
B

Bp+1

zp(x)

x*

f(x)

yp+1(x)

A Bxp

f p

f p+
1

Axp

yp(x)

Axp xp+1= tf
p xp

A

A
fpSecant equation : xp  = - fp

A

xp

T-Secant equation : Axp  = - fp
A

fptp
f

xptp

ftp = 
fp+1

fp

A

A tp = x
xp+1

xp
Ax

Solution : fp qp  = - fp
A

xpqp  = xp
A A

tp fp qp  = - fp
f A

tp xpqp  = xp
x A

B

B

A

Figure 2. Geometrical representation of the Secant method in asingle-variable case: (A) classic Secant
method; (B) T-Secant modification.
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where qA
p is a scalar multiplier. Let a new approximate xA

p+1 be the root of the Secant
yp(x) and let

△xA
p = xA

p+1 − xA
p (75)

be the iteration stepsize. It follows from condition

yp(xA
p+1) = 0 (76)

and from the second row of Equation (74) that

△ fp qA
p = −f A

p , (77)

and the scalar multiplier can be determined as

qA
p = −

f A
p

△ fp
. (78)

From the first row of Equation (74), the iteration stepsize is given as

△xA
p = △xp qA

p , (79)

and the new approximate can be expressed as

xA
p+1= xA

p +△xA
p . (80)

A new base point Ap+1

(
xA

p+1, f A
p+1

)
(see Figure 2) can then be determined for the next

iteration. Two out of the three available base points
(

Ap Bp Ap+1
)

are used for the
next iteration by omitting either Ap or Bp in the case of the traditional secant method. The
decision is not obvious and it may cause the iteration to unstable and/or not converge
to the solution. Instead, an additional new approximate xB

p+1 is determined by the T-

Secant procedure as a root of the function zp(x) near the first Secant approximate xA
p+1,

and iteration continues with new base points Ap+1

(
xA

p+1, f A
p+1

)
and Bp+1

(
xB

p+1, f B
p+1

)
. An

arbitrary point of the function zp(x) can be expressed as[
x −△x
zp(x)

]
=

[
xA

p
f A
p

]
+

[
tx 0
0 t f

][
△xp
△ fp

]
qB

p , (81)

where the transformation scalars for △xp and △fp at x = xB
p are

tx
p =

△xp+1

△xA
p

=
xB

p+1 − xA
p+1

xA
p+1 − xA

p
and t f

p =
f A
p+1

f A
p

. (82)

Then, it follows from condition

zp(xB
p+1) = 0 (83)

and from the second row of Equation (81) that

t f
p△ fp qB

p = −f A
p (84)

and

qB
p = −

f A
p

t f
p△ fp

= −

(
f A
p

)2

f A
p+1

(
f B
p − f A

p

) . (85)

The new approximate xB
p+1 can then be expressed from the first row of Equation (81) as
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xB
p+1 = xA

p+1 +

(
△xA

p

)2

△xp qB
p

. (86)

The new base point Bp+1

(
xB

p+1, f B
p+1

)
(see Figure 2) can then be determined. Interpolation

base points Ap+1 and Bp+1 are used for the next iteration. The scalar multiplier qB
p can be

expressed from Equation (86) as

qB
p=

(
xA

p+1 − xA
p

)2(
xB

p − xA
p

)(
xB

p+1 − xA
p+1

) . (87)

By substituting it into the second row of Equation (81) and changing xB
p+1 to x, it turns into

a hyperbolic function

zp(x) =
ap

x − xA
p+1

+ f A
p (88)

with vertical and horizontal asymptotes xA
p+1 and f A

p , where

ap =
(

xA
p+1 − xA

p

)2 f B
p − f A

p

xB
p − xA

p

f A
p+1

f A
p

, (89)

and the root xB
p+1 of the function zp(x) will be in the vicinity of xA

p+1 in “appropriate

distance”, which is regulated by the function value f A
p+1 (see Figure 2). This virtue of the

T-Secant procedure is that it ensures an automatic mechanism for having base vectors
in general positions through the whole iteration process, providing a stable and efficient
numerical performance.

5.2. Multi-Variable Case

Find the root x∗of a nonlinear function x → f (x), where x ∈ Rn and f : Rn → Rm.
Let the function f (x) be linearly interpolated through n + 1 base points Ap

(
xA

p , f A
p

)
and

Bk,p

(
xB

k,p, f B
k,p

)
in the Rn+m space ( f (x)− space) in the pth iteration as shown on Figure 3,

where k = 1, . . . , n, given a set of approximates xA
p and

xB
k,p = xA

p +△xk,p dk (90)

in the Rn space (x− space) with k = 1, . . . , n, where dk is the kth Cartesian unit vector. Let
the expression

△Fp qA
p =

 △ f1,1,p · · · △ fn,1,p
...

...
...

△ f1,m,p · · · △ fn,m,p

 qA
p (91)

represent the linear combination qA
p =

[
qA

p,k

]T
of n column vectors[

△ fk,j,p

]
=
[
△ f k,p

]
=
[

f B
k,p − f A

k,p

]
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in the Rm space ( f− space) with k = 1, . . . , n column index, and with j = 1, . . . , m row index,
and the expression

△Xp qA
p =

 △x1,1,p · · · △xn,1,p
...

...
...

△x1,n,p · · · △xn,n,p

 qA
p (92)

represents the same linear combination of n column vectors[
△xk,j,p

]
=
[
△xp,k

]
=
[

xB
p,k − xA

p,k

]
, (93)

Axp

Bxk,p+1xk,p
B

qp
B

Afp

Bfk,p

Afp+1

Bfk,p+1

Rn  x-space
F

Rm  f-space

Ap

Bk,p

Ap+1

S3

S1

S2

Aqp

Axp+1

X
p X

p+1

x
p
A

Tp fk,p

f
k,p

F
p

f
k,p+1

F
p+1

Rn+m  (x,f)-space

Bk,p+1

(x*,0)
0

x*

0

0

f*= 0

Figure 3. Vector space description of the T-Secant method in the multi-variable case (k = 1, . . . n).

with k = 1, . . . , n column index, and with j = 1, . . . , n row index. The linear combination qA
p

is determined from Equation (42) in step S1 (see Figure 3), providing a new approximate

xA
p+1 =

[
xA

p+1,k

]
= xA

p +△xA
p , (94)

for the solution x∗, and the corresponding f A
p+1 vector is also determined in step S2

(see Figure 3). The column vectors △ f k,p of △Fp are then modified by a non-uniform
scaling transformation,

TF
p = diag

(
f A
p+1,j

f A
p,j

)
, (95)

and a new linear combination qB
p =

[
qB

p,k

]T
is determined from Equation (68) in step S3

(see Figure 3), providing a new approximate xB
p+1 for the solution x∗ with elements

xB
p+1,k = xA

p+1,k+

(
△xA

p,k

)2

△xp,k qB
p,k

. (96)

A new set of n + 1 approximates xA
p+1 and

xB
k,p+1 = xA

p+1 +△xk,p+1 dk (97)



AppliedMath 2024, 4 158

(k = 1, . . . , n) can then be generated with iteration stepsize

△xp+1 =
[
△xk,p+1

]
= xB

p+1 − xA
p+1 (98)

for the next iteration.

5.3. Single-Variable Example

An example is given with function x → f (x), where x ∈ R1 f : R1 → R1 and

f (x) = x3 − 2x − 5 (99)

with root x∗ ∼= 2.0945514815423 . . . . Figure 4 and Table 2 summarize the results of the
first two iterations (left: xA

1 is the zero of y0(x), xB
1 is the zero of z0(x); right: xA

2 is the zero
of y1(x), xB

2 is the zero of z1(x)). Iterations were made with initial approximates xA
0 = 3.0

and xB
0 = 1.0, providing f A

0 = 16 (p = 0). The first Secant approximate xA
1 = 1.545 . . . is

found as the zero of the first Secant y0(x), and the first T-Secant appropriate xB
1 = 1.945 . . .

is found as the zero of the first hyperbola function z0(x) (Figure 4, left). Iteration then goes
on (p = 1) with new interpolation base points xA

1 = 1.545 . . . and xB
1 = 1.945 . . . providing

f A
1 = −4.3997 . . ., and new approximates xA

2 = 2.158 . . . and xB
2 = 2.0556 . . . are found as the

zeros of the second Secant and the second hyperbola function y1(x) and z1(x), respectively
(Figure 4, right). The next iteration (p = 2) will then continue with interpolation base point
xA

2 = 2.158 . . . . . . and xB
2= 2.0556 . . . and with f A

2 = 0.7367 . . .. The iterated values of f A
p xA

p

and xB
p are also indicated in the diagrams. Further diagrams for this example are shown

in Section 7.3.

Figure 4. T-secant iterations with test function (99) with initial approximates xA
0 = 3.0 and xB

0 = 1.0
(Left: xA

1 is the root of y0(x), xB
1 is the root of z0(x); Right: xA

2 is the root of y1(x), xB
2 is the root of

z1(x)) (see also Table 2).

Table 2. T-Secant iteration results with xA
0 = 3.0 and xB

0 = 1.0 (see also Figure 4 for p = 0, 1, 2).

p 0 1 2 3 4

xA
p 3.0 1.545 2.158 2.093 2.09455149745

△xp −2.0 0.400 −0.103 0.0014 1.6×10−8

f A
p 16.0 −4.400 0.737 −0.015 1.8×10−7

qA
p 0.727 1.532 0.634 1.015 0.999

xA
p+1 1.545 2.158 2.093 2.09455150 2.0945514815423

eA
p+1 −0.549 0.064 0.0014 1.6×10−8 2.7×10−14

f A
p+1 −4.400 0.737 −0.015 1.8×10−7

tF
p −0.275 −0.167 −0.021 1.2×10−5

qB
p −2.645 −9.149 −30.329 −88077

xB
p+1 1.945 2.056 2.09453 2.09455148153
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6. General Formulations

Re-ordering Equation (44) gives the general equation

△F △X−1△xA = − f A (100)

of the Secant method. The initial trials are constructed according to Equation (32), providing
that △X is a diagonal matrix with elements (△xi) =

(
xB

i,i−xA
i

)
(i = 1, . . . , n). Let the

Jacobean approximate of the secant-method be defined as

S= △F △X−1 (101)

S =


f B
1,1−f A

1
xB

1,1−xA
1

· · · f B
n,1−f A

1
xB

n,1−xA
1

...
...

...
f B
1,m−f A

m

xB
1,1−xA

1
· · · f B

n,m−f A
m

xB
n,1−xA

1

 =


△f1,1
△x1

. . . △fn,1
△xn

...
...

...
△f1,m
△x1

· · · △fn,m
△xn

 =

[△fk,j

△xi

]
(102)

(i = 1, . . . , n), (j = 1, . . . , m), (k = 1, . . . , n) and

S+ = △X △F+. (103)

Then, Equation (100) simplifies as

S △xA = − f A (104)

and

△xA = −S+ f A. (105)

The ithelement of the new approximate xA
p+1 in the pth iteration will then be

xA
p+1,i =xA

p,i+△xA
p,i = xA

p,i −
m

∑
j=1

(
S +

p,i,j f A
p,j

)
(106)

(i = 1, . . . , n). It follows from the first row of Equation (63) of the T-Secant method, from
Equation (61) and from the Definition (103) of S+, that the pth iteration stepsize is

△xA
p = −TX

p S+
p

(
TF

p

)−1
f A

p (107)

and
TF

pSp

(
TX

p

)−1
△xA

p = − f A
p . (108)

Let the modified Jacobean approximate of the T-Secant method be defined as

Sp,T = TF
pSp

(
TX

p

)−1
(109)

Sp,T=


f A
p+1,1

f A
p,1

0 0

0
. . . 0

0 0
f A
p+1,m

f A
p,m




△fp,1,1
△xp,1

. . .
△fp,n,1
△xp,n

...
...

...
△fp,1,m
△xp,1

· · · △fp,n,m
△xp,n




△xA
p,1

△xp+1,1
0 0

0
. . . 0

0 0
△xA

p,n
△xp+1,n

 (110)
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and in condensed form with general matrix elements (without the p index):

ST = TFS
(

TX
)−1

= diag
(

tF
j

)[△fk,j

△xi

]
diag

(
1
tX
i

)
=

[
tF
j

tX
i

△fk,j

△xi

]
(111)

(i = 1, . . . , n), (j = 1, . . . , m), (k = 1, . . . , n) and

S+
T = TXS+

(
TF
)−1

. (112)

Equations (107) and (108) then can be re-written as

△xA = −S+
T f A (113)

and
ST △xA = − f A (114)

in a similar form as in case of the traditional Secant method (Equations (105) and (104)).
The ith element xB

p+1,i of the second new approximate xB
p+1 in the pth iteration will then be

xB
p+1,i = xA

p+1,i + △xp+1,i = xA
p+1,i −

(
△xA

p,i

)2

m
∑

j=1

(
S +

p,i,j
f A
p,j

tF
p,j

) , (115)

where tF
p,j ̸= 0, (j = 1, . . . , m) and (i = 1, . . . , n). Note that the T-Secant modification of the

Jacobean approximate (102) is made with multipliers

tF
p,j =

f A
p+1,j

f A
p,j

and tX
p,i =

△xp+1,i

△xA
p,i

(116)

to the difference quantities △fp,k,j and △xp,i. The basic equations of the Secant method and
the T-Secant method are summarized in Table 3; rows 1–4 are the elements (matrixT) of the
basic equations, rows 5–6 are the explicit basic equations, row 7 depicts the Jacobean-type
matrices, and rows 8–9 are the general formulations of the basic equations.

Table 3. Summary of the multi-variable Secant and T-Secant methods basic equations.

Secant Method T-Secant Method Equations

1
[

△Xp
△Fp

]
=

[
xB

p,k − xA
p

f B
p,k − f A

p

]
=

[
diag

(
△xp,i

)
△ fp,k,j

]
(36), (37)

2 T p=

[
TX

p 0
0 TF

p

]
(64)

3 TX
p = diag

(
tX
p,i

)
= diag

(
△xp+1,i

△xA
p,i

)
(65)

4 TF
p = diag

(
tF

p,j

)
∼= diag

(
f A
p+1,j

f A
p,j

)
(66), (67)

5 △F qA = − f A TF△F qB = − f A (41), (61)

6 △F △X−1△xA = − f A
TF△F △X−1

(
TX
)−1

△xA = − f A (100), (108)

7 S= △F △X−1 =
[△fk,j
△xi

]
ST = TFS

(
TX
)−1

=

[
tF
j △fk,j

tX
i △xi

]
(102), (111)

8 S △xA = − f A ST △xA = − f A (104), (114)

9 △xA = −S+ f A △xA = −S+
T f A (105), (113)
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7. Convergence
7.1. Single-Variable Case

As was shown in Section 4 (Equation (60)), the pth iteration stepsize of the second new
approximate xB

p+1 is

△xp+1 =t f
p △xA

p . (117)

The Secant method is super-linear convergent, so the new approximate xA
p+1 is expected to

be a much better approximate to the solution x∗ then the previous one (xA
p ). Thus,∣∣∣ f A

p+1

∣∣∣≪ ∣∣∣ f A
p

∣∣∣ (118)

and ∣∣∣t f
p

∣∣∣ = ∣∣∣∣∣ f A
p+1

f A
p

∣∣∣∣∣≪ 1 (119)

is expected to be a “small positive number”. It means that the T-Secant approximate xB
p+1

will always be in the vicinity of the classic Secant approximate xA
p+1, and the approximate

errors of the new approximates will be of a similar order, providing that the solution x∗

will be evenly surrounded by the two new trial approximates xA
p+1 and xB

p+1.

7.2. Convergence Rate

It is well known that the single-variable Secant method has asymptotic convergence for
sufficiently good initial approximates xA and xB if f ′(x) does not vanish in x ∈

[
xA xB ]

and f ′′(x) is continuous at least in a neighborhood of the zero x∗. The super-linear con-
vergence property has been proved in different waysm and it is known that the order of
convergence αS =

(
1 +

√
5
)

/2 with asymptotic error constant

C =

(
1
2

∣∣∣∣ f ′′(ξ)
f ′(ξ)

∣∣∣∣) 1
α

. (120)

The order of convergence of the T-Secant method is determined in this section. Let p be the
iteration counter and the approximate error be defined in the pth iteration as

ep= xp − x∗. (121)

It follows from Equation (48) and from Definition (121) that the error eA
p+1 of the new Secant

approximate xA
p+1 can be expressed as

eA
p+1 =

eA
p f B

p − eB
p f A

p

f B
p − f A

p
=

xB
p − xA

p

f B
p − f A

p

f B
p /eB

p − f A
p /eA

p

xB
p − xA

p
eA

p eB
p . (122)

It follows from the mean value theorem that the first factor of the right side of Equation (122)
can be replaced with 1/f ′

(
ηp
)
, where ηp ∈

(
xA

p , xB
p

)
, if f (x) is continuously differentiable

on
(

xA
p , xB

p

)
and f ′

(
ηp
)
̸= 0. Let the function f (x) be approximated around the root x∗ by a

second order Taylor series expansion as

fp = f
(
ep + x∗

)
= f (x∗) + ep f ′(x∗) +

1
2
(
ep
)2 f ′′

(
ξp
)
, (123)

where ξp ∈
(

xA
p , xB

p , x∗
)

in the remainder term. Since f (x∗) = 0, it follows from Equation (123)
that



AppliedMath 2024, 4 162

fp

ep
= f ′(x∗) +

1
2

f ′′
(
ξp
)
ep. (124)

Substituting this expression to Equation (122), and since eB
p − eA

p = xB
p − xA

p , we obtain

eA
p+1 =

1
2

f ′′
(
ξp
)

f ′
(
ηp
) eB

p − eA
p

xB
p − xA

p
eA

p eB
p = Cp eA

p eB
p (125)

and

Cp =
1
2

f ′′
(
ξp
)

f ′
(
ηp
) . (126)

If the series
{

xA
p

}
converges to x∗, then ξp and ηp→ x∗ with increasing iteration counter p, and

Cp → 1
2

f ′′(x∗)
f ′(x∗)

= constant. (127)

It follows from Equation (59) with Definition (121) and from the mean value theorem (with
ηp−1 ∈

(
xA

p−1, xB
p−1

)
, if f (x) is continuously differentiable on

(
xA

p−1, xB
p−1

)
), that

xB
p = xA

p −
(

xA
p − xA

p−1

f A
p−1

)2

f ′
(
ηp−1

)
f A
p , (128)

and the error eB
p of the T-Secant approximate xB

p can be expressed as

eB
p = eA

p −
(

eA
p − eA

p−1

f A
p−1

)2

f ′
(
ηp−1

)
f A
p . (129)

With the Taylor-series expansion (123) for f A
p−1 and f A

p , where ξp−1 ∈
(

xA
p−1, xB

p−1, x∗
)

and

ξp ∈
(

xA
p , xB

p , x∗
)

in the remainder term, we obtain

eB
p = eA

p − eA
p

(
eA

p − eA
p−1

eA
p−1

)2

γp, (130)

where

γp =

f ′(x∗)
f ′(ηp−1)

+ 1
2

f ′′(ξp)
f ′(ηp−1)

eA
p(

f ′(x∗)
f ′(ηp−1)

+ 1
2

f ′′(ξp−1)
f ′(ηp−1)

eA
p−1

)2 (131)

and f ′
(
ηp−1

)
̸= 0 . If the series

{
xA

p

}
converges to x∗, then, with increasing iteration counter

p, ξp, ξp−1, ηp−1→ x∗, and eA
p , eA

p−1 → 0, it implies that

f ′(x∗)
f ′
(
ηp−1

) → f ′(x∗)
f ′(x∗)

= 1 (132)

and γp → 1. Substituting eB
p (Equation (130)) into Equation (125) gives

eA
p+1 = Cp eA

p

eA
p − eA

p

(
eA

p − eA
p−1

eA
p−1

)2

γp

, (133)



AppliedMath 2024, 4 163

and re-arranging

eA
p+1 = Cp eA

p

γp

(
eA

p

)2 2 eA
p−1 − eA

p(
eA

p−1

)2 +
(
1 − γp

)
eA

p

 (134)

with
{

xA
p

}
converges to x∗, γp → 1, and the above equation simplifies as

eA
p+1 = Cp eA

p

(
eA

p

)2 2 eA
p−1 − eA

p(
eA

p−1

)2 . (135)

This means that eA
p+1 depends on eA

p and eA
p−1, and by assuming an asymptotic convergence,

a power law relationship ∣∣∣eA
p+1

∣∣∣ = C
∣∣∣eA

p

∣∣∣α (136)

can be established, where C is the asymptotic error constant and α is the convergence rate, also
called the “convergence order” of the iterative method. It also follows from Equation (136), that∣∣∣eA

p

∣∣∣ = C
∣∣∣eA

p−1

∣∣∣α (137)

and

∣∣∣eA
p−1

∣∣∣ =

∣∣∣eA

p

∣∣∣
C


1
α

. (138)

Let E =
∣∣∣eA

p

∣∣∣ be introduced for simplifying purposes; then, it follows from Equations (133),
(136)–(138) that

E α =
Cp

C
E 3

2
(

E
C

) 1
α − E(

E
C

) 2
α

, (139)

where Cp and C are constants and, if the series
{

xA
p

}
converges to x∗, with increasing

iteration, counter p, E → 0+. Taking the logarithms of both sides of Equation (139) and
dividing by lnE gives

α =
ln Cp

C
ln E

+ 3 − 2
α
·

ln
(

E
C

)
ln E

+
ln(2

(
E
C

) 1
α − E)

ln E
. (140)

If
{

xA
p

}
series converges to x∗, then, with increasing iteration, they counter p, E → 0+, ln E → −∞

and

lim
E→0+

ln Cp
C

ln E
= 0 (141)

lim
E→0+

ln
(

E
C

)
= lim

E→0+
(ln E − ln C) = ln E (142)

lim
E→0+

ln
(

2 E
1
α − E

)
ln E

=
1
α

, (143)
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and Equation (140) simplifies as

α − 3 +
1
α
= 0, (144)

with root (convergence rate of the T-Secant method):

αTS =
3 +

√
5

2
∼= 2.618033988 . . . = αS + 1 = φ2, (145)

where αS = φ ∼= 1.618033988 . . . is the convergence rate of the traditional Secant method,
and φ is the well-known golden ratio. It follows from Equation (140) that the actual
values of α∗ of αTS depend on the approximate error E =

∣∣eA
∣∣. Convergence rates α∗(E)

were determined for different E values and are shown in Figure 5. The upper bound
αTS = αS + 1 = 2.618 . . . at E → 0+ is also indicated (horizontal dashed red line).

Figure 5. α∗ convergence rate variation with decreasing E → 0+ (dashed red lines indicate α = αS + 1 ∼=
2.618 level, where αS ∼= 1.618 is the convergence rate of the traditional Secant method).

7.3. Single-Variable Example

An example is given for demonstration purposes with a single-variable test function (99)
with root x∗ ∼= 2.09455 . . . . Iterations were made with initial approximates xA

0 = 3.5 and
xB

0 = 2.5, and the convergence rates αS, αN , and αTS were determined for the traditional
Secant method (Table 4, Figure 6), for the Newton–Raphson method (Table 5, Figure 7),
and for the T-Secant method (Table 6, Figure 8), respectively. The cumulative number of
function values (Nf ) and derivative function values (Nf ′ ) calculations are also indicated in
the tables. Calculated convergence rates agree well with theoretical values αS = 1.62 . . . ,
αN = 2.0 and αTS = 2.62 . . . . Figure 9 summarizes the results of iterations with three
different methods (Secant, Newton–Raphson, and T-Secant). Two groups of graphs show
the absolute approximate error

∣∣∣eA
p

∣∣∣ decrease and the calculated convergence rates α for the
three compared methods. Results demonstrate that the convergence rate of the T-Secant
method is higher than the convergence rate of the Newton–Raphson method.
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Figure 6. Secant iteration with test function (99) with initial approximates xA
0 = 3.5 and xB

0 = 2.5
(Left: p = 0, 1, 2; Right: p = 2, 3, 4 (see data in Table 4)).

Table 4. Secant method iteration and computed convergence rate, αS (see Figure 6).

p xA
p xB

p xA
p+1

∣∣∣eA
p+1

∣∣∣ αS N f

0 3.5 2.5 2.2772 1.8 × 10−1 2
1 2.5 2.2772 2.1282 3.4 × 10−2 3
2 2.2772 2.1282 2.0977 3.2 × 10−3 0.64 4
3 2.1282 2.0977 2.094611 5.9 × 10−5 2.12 5
4 2.0977 2.094611 2.094552 1.1 × 10−7 1.39 6
5 2.094611 2.09455216 2.09455148 3.6 × 10−12 1.69 7
6 2.0945516 2.09455148 2.09455148154233 2.7 × 10−14 1.59 8
7 2.09455148 2.09455148154233 2.09455148154233 2.7 × 10−14 1.63 9

Figure 7. Newton iteration with test function (99) with initial approximate xA
0 = 3.5 (Left: p = 0, 1;

Right: p = 2 (see data in Table 5)).

Table 5. Newton method iteration and computed convergence rate, αN (see Figure 7).

p xA
p xA

p+1

∣∣∣eA
p+1

∣∣∣ αN N f N f ′

0 3.5 2.61 5.2 × 10−1 1 1
1 2.61 2.200 1.1 × 10−1 2 2
2 2.200 2.10037 5.8 × 10−3 1.58 3 3
3 2.10037 2.09457 1.9 × 10−5 1.82 4 4
4 2.09457 2.09455148 2.0 × 10−10 1.97 5 5
5 2.09455148 2.09455148154233 2.7 × 10−14 2.00 6 6
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Table 6. T-Secant method iteration and computed convergence rate, αTS (see Figure 8).

p xA
p xB

p xA
p+1

∣∣∣eA
p+1

∣∣∣ αTS N f

0 3.5 2.5 2.28 1.8 × 10−1 2
1 2.28 2.1879 2.1032 8.6 × 10−3 4
2 2.1032 2.0957112 2.0945571 5.6 × 10−6 1.50 6
3 2.0945571 2.09455151 2.09455148154242 1.2 × 10−13 2.41 8
4 2.09455148154242 2.09455148154233 2.09455148154233 2.7 × 10−14 2.40 10

Figure 8. T-Secant iteration with test function (99) with initial approximates xA
0 = 3.5 and xB

0 = 2.5
(Left: p = 0 (with interpolation base points A0 B0) and p = 1 (A1 B1); Right: p = 2 (A2 B2) (see data
in Table 6)).

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8

lg
(a

b
s

(e
p

A
))

, 
aa aa

iteration (p)

Broyden

Secant

Newton

T-Secant

Secant-Broyden-alfa

Newton-alfa

T-Secant-alfa

-15

Figure 9. Absolute approximate error
∣∣∣eA

p

∣∣∣ decrease (dashed lines) and computed convergence rates
(α) (solid lines) of different methods (Broyden (brown line), Secant (black lines), Newton–Raphson
(blue lines), and T-Secant (red lines) method).

7.4. Multi-Variable Convergence

Matrix S (see Equation (102)) corresponds to a divided difference approximation of the
Jacobian. It is known (e.g., from Dennis-Schnabel [13]) that these values give a second-order
approximation of the derivative in the midpoint. When considering Newton’s iteration,
it is assumed that the Jacobian has inverted in a neighborhood of x∗. If that condition
holds, then there is a chance that the approximate Jacobian has also inverted in the same
neighborhood.
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It is known that the Secant method is locally q-super-linear convergent, so the new
approximate xA

p+1 is expected to be a much better approximate to the solution x∗ then the

previous approximate xA
p . Thus, ∥∥∥ f A

p+1

∥∥∥≪ ∥∥∥ f A
p

∥∥∥ (146)

and the diagonal elements ∣∣∣tF
p,j

∣∣∣ = ∣∣∣∣∣ f
A
p+1,j

f A
p,j

∣∣∣∣∣≪ 1 (147)

of the transformation matrix TF
p (j = 1 . . . , m) are expected to be “small numbers”. It

follows from Equations (68), (70), (73), and (147) that

µi =

m
∑

j=1

(
S +

p,i,j f A
p,j

)
m
∑

j=1

(
S +

p,i,j
f A
p,j

tF
p,j

) ≪ 1 (148)

(i = 1 . . . , n) and ∥∥△xp+1
∥∥≤ ∥µ∥

∥∥∥△xA
p

∥∥∥≪ ∥∥∥△xA
p

∥∥∥ (149)

(see Figure 10). This means that the T-Secant approximate xB
p+1 will always be in the vicinity

of the classic Secant approximate xA
p+1 and the approximate errors of the new approximates

will be of similar order, providing that the solution x∗ will be evenly surrounded by the
n + 1 new trial approximates xA

p+1 and xB
k,p+1 (k = 1 . . . , n), and that matrix Sp+1 will be

well-conditioned.

Rm  f-space

Ap

x*

B

Aep+1

Axp+1

ep+1
B

xp+1

Bp

Ap+1
Bp+1

Afp

Afp+1

Aep

Axp

xp
B

ep
B

xp
A

xp
A

xp+1

xp

0

0

(x*,0)

Rn+m  (x,f)-space

Rn  x-space

0
f*= 0

Figure 10. Geometrical representation of the T-Secant method convergence in multi-variable case
(analogous to the convergence proof figure Dennis-Schnabel [13], p. 180).

8. Algorithm

Let p be the iteration counter, ε∗ be the error bound for termination criterion, and

eA
p = xA

p − x∗ (150)
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be the approximate error vector of approximate xA in the pth iteration with elements eA
p,i

(i = 1, . . . , n). Let the scalar approximate error

εp =

∥∥∥eA
p

∥∥∥
2

n
=

√
n
∑

i=1

(
eA

p,i

)2

n
(151)

be defined, where ∥.∥2 is the Euclidean norm, and let the iteration be terminated when

εp < ε∗ (152)

holds. Let xA
p be the initial trial and △xp be the trial increment (iteration stepsize) in the pth

iteration. Choose Tmin and Tmax as lower and upper bounds for
∣∣∣tF

p,j

∣∣∣ (j = 1 . . . , m) and let

fmin and qmin be lower bounds for
∣∣∣f A

p,j

∣∣∣ (j = 1, . . . , m) and
∣∣∣qB

p,i

∣∣∣ (i = 1, . . . , n), respectively.

• Initial step

Let p= 0 and let the initial trial xA
p =

(
xA

p,1 · · · xA
p,n

)
and the initial trial increment

△xp =
(
△xp,1 · · · △xp,n

)
be given. Calculate the corresponding function values

f A
p and assume that fmin <

∣∣∣f A
p,j

∣∣∣ (j = 1 . . . , m).

• Step 1: Generate a set of n additional initial trials (interpolation base points)

xB
p,k = xA

p +△xp,k · dk (153)

and evaluate function values f B
p,k (k = 1, . . . , n).

• Step 2 (Secant): Construct matrix

△F p =
[
△ f i

p,k

]
=
[

f B
p,k − f A

p

]
(154)

then calculate qA
p from Equation (42). Let qmin <

∣∣∣qA
p,i

∣∣∣, and determine xA
p+1 from

Equation (46) and εp from Equation (151).
• Step 3: If εp<ε∗, then terminate iteration; otherwise, continue with Step 4.

• Step 4 (T-Secant): Calculate f A
p+1 and TF

p from Equation (67). Let Tmin <
∣∣∣tF

p,j

∣∣∣ < Tmax

and determine qB
p from Equation (68) (△F +

p has already been calculated when qA
p was

determined from Equation (42)). Let qmin <
∣∣∣qB

p,i

∣∣∣. Calculate xB
p+1 from Equation (70).

• Step 5: Let the new initial trial be [
xA

p+1

f A
p+1

]
(155)

and the new initial trial increment (iteration stepsize) be

△xp+1 = xB
p+1 − xA

p+1, (156)

and continue iteration with Step 1.

Iteration constants
(

δmin fmin qmin Tmin Tmax
)

are necessary in order to avoid
division by zero and to avoid computed values being near numerical precision. If pmax is
the number of necessary iterations for satisfying the termination criterion εp < ε∗, and n is
the number of unknowns to be determined, then the T-Secant method needs n + 1 function
evaluations in each iteration, as well as

N f = pmax(n + 1) (157)

function evaluations to reach the desired termination criterion. pmax depends on many
circumstances, such as the nature of the function f (x), termination criteria (ε∗ or others),
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and the distance of the initial trial xA from the solution x∗ and from the iteration constants(
Tmin, qA

min, . . .
)
.

9. Numerical Tests Results
9.1. Rosenbrock Test Function

A variant of the Rosenbrock function [24] has been used to test the numerical perfor-
mance of the suggested method. The global minimum of the function

R(x) =
N−1

∑
i=1

(
100 ·

(
xi+1−x2

i

)2
+ (1 − xi)

2
)

(158)

has to be determined, where x =
(

x1 · · · xN
)
∈ RN and N ≥ 2. R(x) has exactly

one minimum for N = 3 at x∗ =
(

1 1 1
)

and exactly two minima for 4 ≤ N ≤ 7,
i.e., a global minimum of all and a local minimum near x̂ =

(
−1 1 · · · 1

)
. The sum

of squares R(x) will be minimum when all terms are zero, such that the minimization of
the function R(x) is equivalent to finding the zero of a function x → f (x), where x ∈ RN,
f : RN → R2(N−1), and

f (x) =
[

f 2i−1(x)
f 2i(x)

]
=

[
10 · (xi+1 − x2

i )
1 − xi

]
(159)

(i = 1, . . . , N − 1). For N > 7 , the function R(x) has exactly one global minimum and has
some local minima with some x∗j = −1, with x∗i = 1 for all other unknowns. The results
were obtained by least squares solving of the simultaneous system of nonlinear equations
f (x)= 0 via the T-Secant method.

9.2. N = 2, N = 3 and N = 10 Examples

In case the case of N = n = m = 2, the iterations terminated after Nf = 6 function evalu-
ations (pmax = 2 iterations) in most cases. f2(x) = 1 − x1 is a linear function, and the first
T-Secant iteration (p = 0) finds the exact value of x1 in one step; then, f1(x) = 10

(
x2 − x2

1
)

also becomes linear. The exact value of x2 was then determined in one additional step.
Let N = n = 3 and m = 4, Tmin= 0.01 and ε∗ = 10−14. Let p= 0 , and

△x0,i = 0.05 · xA
0,i (160)

(i = 1 . . . , 3). The number of necessary function evaluations Nf varied between 20 and 36
within pmax = 5− 9 iterations for different initial trials xA

0 . Iteration results are summarized in

Table 7 and in Figure 11 with initial trial xA
0 =

(
xA

0,i

)
=
(

2.0 −1.5 −2.5
)
. Termination

criterion εp < ε∗ was satisfied after pmax = 5 iterations with Nf = 20 function evaluations.

-6

-4

-2

0

2

4

0 5 10 15 20

x
A
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0

4

0 5 10 15 20
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A
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Figure 11. (Left) Variables xA
p,i and (Right) absolute approximate errors lg

∣∣∣eA
p

(
xA

p,i

)∣∣∣ (i = 1 . . . 3)

variation for initial trial xA
0 =

(
2.0 −1.5 −2.5

)
.
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Table 7. Iteration results: xA
0 =

(
2.0 −1.5 −2.5

)
, Tmin = 0.01, Tmax = 1.5.

p 0 1 2 3

xA
p

 2
−1.5
−2.5

  1.253
0.938
−5.248

  1.026
0.990
0.980

  1.00004
0.99998
0.99994


△xp

 0.1
−0.075
−0.125

  0.046
0.061
−0.026

  −0.0217
0.0079
−0.063

  −3 × 10−4

1 × 10−4

2 × 10−4


f A

p


−55
−1

−47.5
2.5




−6.320
−0.253
−61.28
0.062




−0.621
−0.026
0.005
0.010




−0.00102
−0.00004
−0.00021
0.00002


qA

p

 7.47
32.5
−22.0

  4.915
−0.846
243.9

  −1.184
−1.269
0.307

  −0.160
−0.201
−0.327


xA

p+1

 1.253
0.938
−5.248

  1.026
0.990
0.980

  1.00004
0.99998
0.99994

  0.9 . . .
1.0 . . .
1.0 . . .


eA

p+1

 0.253
0.062
6.248

  0.026
0.010
0.020

  4 × 10−5

2 × 10−5

6 × 10−5

  3 × 10−9

2 × 10−9

5 × 10−9


R
(

xA
p+1

)
6.2 × 101 6.2 × 10−1 1.0 × 10−3 9.0 × 10−8

εp 2.1 × 100 1.1 × 10−2 2.6 × 10−5 2.2 × 10−9

f A
p+1


−6.32
−0.253
−61.3
0.062




−0.621
−0.026
0.005
0.010




−0.00102
−0.00004
−0.00021
0.00002




0.0 . . .
0.0 . . .
0.0 . . .
−0.0 . . .


tF
p


0.115
0.253
1.290
0.025




0.098
0.102
−0.01
0.163




0.01
0.01

−0.044
0.01




−0.01
−0.01
−0.01
−0.01


qB

p

 −120
1298
−2365

  51.6
−5.52

−240000

  −118
−127

32

  16.0
20.1
32.7


xB

p+1

 1.299
0.999
−5.273

  1.004
0.998
0.917

  0.99978
1.00008
1.00013

  1.0 . . .
0.9 . . .
0.9 . . .


△xp+1

 0.046
0.061
−0.026

  −0.0217
0.0079
−0.063

  −3 × 10−4

1 × 10−4

2 × 10−4

  4 × 10−7

−2 × 10−7

−6 × 10−7



Let N = n = 10 and m = 18. Calculations were made with different, manually con-
structed initial trials xA

0 =
(

xA
0,i

)
. Figure 12 (Left) shows the variation of xA

p,i for initial trial

xA
0 = (2.0 −1.5 −2.5 1.5 −1.2 3.0 −3.5 2.5 −2.0 3.5). Iterations terminated after

Nf = 154 function evaluations (pmax = 14 iterations) for the εp < ε∗ = 10−14 condition.
Table 8 shows a set of further initial trials for numerical tests. Test “3” failed, probably
due to the large distance from the global optimal solution. Test “4” found a local zero
x∗ = (−1 1 1 1 1 1 1 1 1 1). Figure 12 (Right) summarizes the results of numerical tests “1–6”.
The graphs show the iteration paths in the lg

∣∣∣eA
p

∣∣∣− Rp

(
xA

p

)
plane. The graphs have an

initial part, where the variation of Rp

(
xA

p

)
seems “chaotic”, while below

∣∣∣eA
p

∣∣∣ ∼= 0.01 and

Rp

(
xA

p

)
∼= 0.001, the iterations run on similar paths.
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Table 8. Initial trial vectors (N = 10, n = 10, m = 18),
(

x∗ =
(

1 . . . 1
))

.

xA
0 pmax Nf

1
(

1.3 −1.5 −2.1 1.1 −1.3 1.8 −1.8 1.7 −2.0 2.1
)

15 165
2

(
3.1 −2.1 −4.3 1.2 −2.4 3.6 −1.6 2.7 −4.2 2.2

)
21 231

3
(
−4.1 1.1 −6.3 −3.2 −4.4 1.6 3.6 5.7 −2.2 3.2

)
- -

4
(
−3.0 −3.1 2.3 −4.2 2.4 −1.6 −3.6 2.7 −2.2 4.2

)
- -

5
(

2.1 3.1 −1.3 −2.2 −3.4 1.6 2.6 −1.7 2.2 −3.2
)

16 176
6

(
3.1 3.1 −4.3 −2.2 −3.4 2.6 1.6 −4.7 2.2 −2.2

)
20 220
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Figure 12. (Left) Variation of xA
p,i for xA

0 =
(

2.0 −1.5 −2.5 1.5 −1.2 3.0 −3.5 2.5 −2.0 3.5
)

through iterations (N = 10 = n = 10, m = 18) with pmax = 15 and Nf = 165. (Right) The absolute

approximate errors lg
∣∣∣eA

p

(
xA

p,i

)∣∣∣ (i = 1 . . . 10) and the R
(

xA
p

)
function variation through iterations for

different initial trials (N = 10, n = 10, m = 18) (see Table 8).

9.3. Large N( 200 500 1000 ) Examples

A series of numerical tests has been performed with a large number of unknown
variables. The values of the initial trials xA

0 =
(

xA
0,i

)
, (i = 1, . . . N) were generated as

xA
0,i = x∗i + L1 ·

Random − 1
2

5
+ L2, (161)

where “Random” is a random real number (0 ≤ Random < 1), and Li(i = 1, 2) are parameters
regulating the size and location of the interval in which the initial trial values are expected
to vary. x∗ =

(
x∗i
)
=
(

1 . . . 1
)
(i = 1, . . . N) is the known global optimal solution.

Table 9 shows the results of T-Secant iterations with N = 200 and with initial trials xA
0 :

0.1 ≤ xA
0,i ≤ 19.9 (L1 = 99, L2 = 9). Figure 13 (Left) shows the variation of variables xA

p
through T-Secant iterations. The iteration counter p value is indicated below the graphs.
Figure 13 (Right) shows the decrease in the approximate error eA

p =
(

eA
p,i

)
(i = 1, . . . , 200),

with the p iteration counter indication below the graphs. Table 10 shows the results of iterations
with N = 1000 and initial trials xA

0 : 0.5 ≤ xA
0,i ≤ 1.5 (L1 = 5, L2 = 0). Figure 14 summarizes

the results of numerical tests with a large number of unknowns N =
(

200 500 1000
)
.

The norm εp of the approximate error eA
p decrease is shown, and the number of function

value evaluations Nf is indicated for N =
(

200(blue) 500(red) 1000(green)
)

and for initial trials
xA

0 : 0.5 ≤ xA
0,i ≤ 1.5 (solid line) and xA

0 : 0.1 ≤ xA
0,i ≤ 19.9 (dashed line).
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Table 9. Iteration results (N = 200, L1 = 99.9, L2 = 9) with initial trials 0.1 ≤ xA
0,i ≤ 19.9 (dashed blue

line on Figure 14).

p εp R
(

xA
p

)
Nf

0 10.6925833405791 24123.43773726327 1
1 5.45917411911925 6895.1103569982861 201
2 2.13338434746463 1247.4064173528971 402
3 0.71430571273689 220.36900527956962 603
4 0.163511639031299 32.621494717337107 804
5 0.0145616620270659 2.4077509738413969 1005
6 0.000197003511771894 0.026366233831030046 1206
7 0.000000084768909602 0.000007982826913871 1407
8 0.000000000032791210 0.000000003114429023 1608
9 0.000000000000013862 0.000000000001333830 1809

10 0.000000000000000546 0.000000000000104185 2010

Table 10. Iteration results (N = 1000, L1 = 5, L2 = 0) with initial trials 0.5 ≤ xA
0,i ≤ 1.5 (solid green

line on Figure 14).

p εp R
(

xA
p

)
Nf

0 0.287800987765134 212.38512786560364 1
1 0.121219403643695 57.87378211356512 1001
2 0.0396263348376487 13.743840511211417 2002
3 0.0298060844365720 9.6618077142097238 3003
4 0.0120370539008435 5.9465782106406841 4004
5 0.000705489922936629 0.42465246853444877 5005
6 0.000002762586723754 0.001324115254348589 6006
7 0.000000000990421380 0.000000388965253003 7007
8 0.000000000000433209 0.000000000155930410 8008
9 0.000000000000000860 0.000000000000363149 9009
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Figure 13. (Left) Variation of variables xA
p through iterations. (Right) Decrease in approximate error

lg eA
p through iterations, N = 200 (with iteration counter p value indication below the graphs).
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Figure 14. Number of function evaluations for N = 200 (blue), N = 500 (red), and N = 1000 (green)
with initial trials xA
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0,i ≤ 1.5 (solid line) and xA

0 : 0.1 ≤ xA
0,i ≤ 19.9 (dashed line).

10. Efficiency
10.1. Single-Variable Case

The efficiency of an algorithm relates to the amount of computational resources used
by the algorithm. For better efficiency, it is desirable to minimize resource usage. An
algorithm is considered efficient if its resource consumption (computational cost) is below
some acceptable level (it runs in a reasonable amount of time or space on an available com-
puter). The efficiency of an algorithm for the solution of nonlinear equations is thoroughly
discussed by Traub [25] as follows. Let p be the order of the iteration sequence such that
for the approximate errors ei = xi − x∗, there exists a nonzero constant C (asymptotic error
constant) for which

|ei+1|
|ei|p

→ C. (162)

A natural measure of the information used by an algorithm is the “informational usage” d,
which is defined as the number of new pieces of information (values of the function and its
derivatives) required per iteration (called “horner” by Ostrowski [26]). Then, the efficiency
of the algorithm within one iteration can be measured by the “informational efficiency”:

EFF =
p
d

. (163)

An alternative definition of efficiency is

∗EFF = p
1
d , (164)

called the “efficiency index” by Ostrowski [26]. Another measure of efficiency, called
“computational efficiency”, takes into account the “cost” of calculating different derivatives.
The concept of informational efficiency (EFF) and the efficiency index (∗EFF) do not take
into account the cost of evaluating f and its derivatives, nor do they take into account the
total number of pieces of information needed to achieve a certain accuracy in the root of the
function. If f is composed of elementary functions, then the derivatives are also composed
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of elementary functions; thus, the cost of evaluating the derivatives is merely the cost of
combining the elementary functions. Table 11 compares the efficiencies of classic (secant,
Newton) and improved algorithms (T-Secant, T-Newton).

Table 11. Efficiencies of classic and improved algorithms.

Method d p EFF [25] ∗EFF [26]

Secant 1 1.618 . . . 1.618 . . . 1.618 . . .
Newton 2 2.0 1.0 1.414 . . .
T-Secant 2 2.618 . . . 1.309 . . . 1.618 . . .

T-Newton 3 3.0 1.0 1.442 . . .

10.2. Multi-Variable Case

Very limited data are available to compare the performance of the T-Secant method
with other methods, especially in cases with a large number of unknowns. Broyden [27]
suggested the mean convergence rate

L =
1

N f
ln

R
(

xA
0
)

R
(

xA
pmax

) (165)

as a measure of efficiency of an algorithm for solving a particular problem, where Nf is
the total number of function evaluations, xA

0 is the initial trial, and xA
pmax is the last trial for

the solution x∗ when the termination criteria is satisfied after pmax iterations. R(x) is the
Euclidean norm of f (x). Efficiency results were given by Broyden [27] for the Rosenbrock
function for N = 2 and for xA

0 =
(
−1.2 1.0

)
. The calculated convergence rates for the

two Broyden method variants [27], for the Powell’s method [28], for the adaptive coordinate
descent method [29] m and for the Nelder–Mead simplex method [30] were compared
with the calculated values for the T-Secant method in Table 12. Rows 1–5 are data from
referenced papers, rows 6–8 are T-Secant results with the referenced initial trials, and rows
9–15 are calculated data for N > 2.

Results show that the mean convergence rate L (Equation (165)) for N = 2 is much
higher for the T-Secant method (≃ 5.5–6.9) than for the other listed methods ( ≃ 0.1–0.6);
however, it is obvious that the mean convergence rate values decrease rapidly with increas-
ing N values (more unknowns need more function evaluations). A modified convergence rate

LN = N ∗ L =
N
Nf

ln
R
(
xA

0
)

R
(

xA
pmax

) (166)

can be used as an “N” independent measure of efficiency (see Table 12). The values of L
and LN are at least 10 times larger for the T-Secant method than for the referenced classic
methods for N = 2 (see Table 12). Note that the efficiency measures (L and LN) are also
dependant on the initial conditions (distance of the initial trial set from the optimal solution,
termination criterion). Results from a large number of numerical tests indicate an average
LN value of around 7.4, with standard deviation 3.7 for the T-Secant method even for large
N values. It has to be noted that if the value of R

(
xA

pmax

)
is zero, then the mean convergence

rates (L and LN) are not countable (zero in the denominator). A substitute value 10−25 was
used when iterations ended with R

(
xA

pmax

)
= 0 in the sample examples.
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Table 12. Calculated values of the mean convergence rates (L and LN) for the Rosenbrock function

(1: a substitute value 10−25 was used when R
(

xA
pmax

)
= 0).

N Method R
(

xA
0
)

R
(

xA
pmax

)
pmax Nf L LN

1 2 Broyden 1. [27] 4.9193 4.73 × 10 −1 - 59 0.391 0.78
2 2 Broyden 2. [27] 4.9193 2.55 × 10−1 - 39 0.607 1.22
3 2 Powell [28] 4.9193 7.00 × 10−1 - 151 0.150 0.30
4 2 ACD [29] 130.062 1.00 × 10−1 - 325 0.086 0.17
5 2 Nelder-Mead [30] 2.0000 1.36 × 10−1 - 185 0.127 0.25

6 2 T-secant [27,28] 4.9193 1.0 × 10−25 1 3 9 6.573 1 13.15 1

7 2 T-secant [29] 130.06 1.0 × 10−25 1 3 9 6.937 1 13.87 1

8 2 T-secant [30] 2.0000 6.66 × 10−15 2 6 5.556 11.11

9 3

T-secant

72.722 1.41 × 10−14 5 20 1.809 5.43
10 3 32.466 1.0 × 10−25 1 4 16 3.815 1 11.45 1

11 5 93.528 1.34 × 10−14 8 48 0.760 3.80
12 5 7.193 5.90 × 10−14 4 24 1.351 6.76
13 10 202.62 1.0 × 10−25 1 14 154 0.408 1 4.08 1

14 200 92.778 9.00 × 10−15 10 2010 0.042 8.44
15 1000 212.39 3.63 × 10−13 6 6006 0.006 5.66

11. Discussions
11.1. General

The suggested procedure needs the usual approximate xA
p+1 to be determined by any

of a classic quasi-Newton iterative methods (Wolfe–Popper–Secant, Broyden, etc.). By using
the “information” f A

p+1, an additional and independent approximate xB
p+1 is determined,

which provides the possibility for a full-rank update of the approximate derivatives (Sp
for Secant or Bp for Broyden). Results and experience show that the suggested procedure
considerably accelerates the convergence and the efficiency of the classic methods, and
the full-rank update technique increases the stability of the iterative procedure. In multi-
variable-case, it follows from Equation (107) that(

TX
p

)−1
△xA

p = −S+
p

(
TF

p

)−1
f A

p , (167)

and in explicit form after re-arrangement:
(
△xA

p,i

)2

xB
p+1,i − xA

p+1,i

 = −
[
S+

p,i,j

][ f A
p,j

tF
p,j

]
. (168)

Then, the ith element of the new approximate xB
p+1 can be expressed from the ith row of the

above equation as

xB
p+1,i = xA

p+1,i −

(
△xA

p,i

)2

m
∑

j=1

(
S+

p,i,j
f A
p,j

tF
p,j

) . (169)

The mechanism of the procedure resembles to the mechanism of an engine’s turbocharger
that is powered by the flow of exhaust gases (analogous to f A

p+1 or tF
p,j).
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11.2. Newton Method

Matrix S in the general formula (104) gives a direct connection between the Secant and
Newton methods, as differences go to differentials,

S =

[△fk,j

△xi

]
=
[
Si,j
]
−→ J =

[
∂fk,j

∂xi

]
=
[

Ji,j
]

(170)

where J is the Jacobian matrix of the function f : Rn → Rm (m ≥ n) with k and i column
and with j row indexes, respectively. It follows from formula (111) of matrix ST that the
suggested full-rank update procedure can also be applied to the Newton method as

ST =

[
tF

j

tX
i

△fk,j

△xi

]
−→ JT =

[
tF
j

tX
i

∂fk,j

∂xi

]
, (171)

where JT is the modified Jacobian matrix of the “T-Newton” method. In the single-variable
case, with approximate xA

p in the pth iteration, with function value f A
p = f

(
xA

p

)
and with

derivative function value f ′Ap = f ′
(

xA
p

)
, the new Newton–Raphson approximate can be

expressed as

xA
p+1 = xA

p −
∂xp

∂ fp
f A
p = xA

p −
f A
p

f ′Ap
, (172)

and the iteration stepsize is
△xA

p = xA
p+1 − xA

p (173)

with the hyperbolic function (Equation (88))

zp(x) =
ap

x − xA
p+1

+ f A
p . (174)

where

ap =
(

xA
p+1 − xA

p

)2
f ′Ap

f A
p+1

f A
p

(175)

(△fp/△xp is replaced by f ′Ap ), the new “T-Newton” approximate is

xB
p+1 = xA

p+1 −

(
△xA

p

)2
f ′Ap f A

p+1(
f A
p

)2 (176)

(△fp/△xp is again replaced by f ′Ap ), similar to Equation (59) in case of the T-secant method.
It can be seen from Tables 13 and 14 that the convergence rate is be improved from αN = 2
to αTN = 3. In the multi-variable case, it follows from Equation (107) (S+

p is replaced by J+p )
that (

TX
p

)−1
△xA

p = −J+p
(

TF
p

)−1
f A

p (177)

and in explicit form after re-arrangement:
(
△xA

p,i

)2

xB
p+1,i − xA

p+1,i

 = −
[
J+p,i,j

][ f A
p,j

tF
p,j

]
. (178)
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Then, the ith element of the new “T-Newton” approximate xB
p+1 can be expressed from the

ith row of the above equation as

xB
p+1,i = xA

p+1,i −

(
△xA

p,i

)2

m
∑

j=1

(
J+p,i,j

f A
p,j

tF
p,j

) , (179)

similar to Equation (70) in case of the T-Secant method. Thus, the “hyperbolic” approxima-
tion accelerates the convergence of the Newton=-Raphson method by only one additional
function evaluation.

Table 13. Newton method iteration and computed convergence rate, αN .

p xA
p xA

p+1

∣∣∣eA
p+1

∣∣∣ αN N f N f ′

0 4.5 3.187 1.1 × 100 1 1
1 3.187 2.44965 3.6 × 10−1 2 2
2 2.44965 2.14996 5.5 × 10−2 1.42 3 3
3 2.14996 2.096188 1.6 × 10−3 1.66 4 4
4 2.096188 2.094552 1.5 × 10−6 1.89 5 5
5 2.094552 2.09455148 1.3 × 10−12 1.99 6 6
6 2.09455148 2.09455148154233 3.6 × 10−15 2.00 7 7

Table 14. T-Newton method iteration and computed convergence rate, αTN (see Figure 15).

p xA
p xB

p+1

∣∣∣eB
p+1

∣∣∣ αTN N f N f ′

0 4.5 2.830 7.4 × 10−1 2 1
1 2.830 2.17760 8.3 × 10−2 4 2
2 2.17760 2.09486 3.1 × 10−4 1.84 6 3
3 2.09486 2.09455148 1.9 × 10−11 2.56 8 4
4 2.09455148 2.09455148154233 3.6 × 10−15 2.97 9 5
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Figure 15. T-Newton iterations with test function (99) with initial approximate xA
0 = 4.5. Left: xB

1 is
the root of the tangent line through f ′A0 , xA

1 is the root of z0(x). Right: xB
2 is the root of the tangent

line through f ′A1 ; xA
2 is the root of z1(x) (see data in Table 14).
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11.3. Broyden’s Method

Broyden’s method is a special case of the Secant method. In the single-variable case,
the derivative of the function is approximated as

f ′p ≃ Bp = Bp−1 +
△ fp − Bp−1 △xp∣∣△xp

∣∣2 △xp (180)

in the pth iteration step, and with

△xp∣∣△xp
∣∣2 =

1
△xp

(181)

it is simplified as

Bp = Bp−1 +
△ fp − Bp−1 △xp

△xp
. (182)

The next Broyden-approximate is then determined as

xA
p+1 = xA

p −
f A
p

Bp
. (183)

The convergence can similarly be improved by the new hyperbolic approximation proce-
dure as in cases of the Secant and Newton methods. An additional new approximate

xB
p+1 = xA

p+1 −

(
△xA

p

)2
Bp f A

p+1(
f A
p

)2 (184)

can be determined, and the iteration continues with this value. Figure 16 demonstrates
the effect of the hyperbolic approximation applied to the classic Broyden method. Not sur-
prisingly, the convergence rate will be improved from αB = φ ≃ 1.618 to αTB = φ2 ≃ 2.618,
as in case of the Secant method. In the multi-variable case, the ith element of the new the
“T-Broyden” approximate xB

p+1 can be expressed as

xB
p+1,i = xA

p+1,i −

(
△xA

p,i

)2

m
∑

j=1

(
B+

p,i,j
f A
p,j

tF
p,j

) , (185)

similar to Equation (179) for the T-Newton method with J+p,i,j replaced by B+
p,i,j. The new

approximate Bp+1 to the Jacobian matrix can then be fully updated in a similar way as it
was in the case of the T-Secant method.

Figure 16. Broyden (Left) and T-Broyden (Right) iterations with test function (99) with initial
approximates xA

0 = 4.5.
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12. Conclusions

A completely new iteration strategy has been worked out for solving simultaneous
nonlinear equations:

f (x) = 0, (186)

x ∈ Rn, and f : Rn → Rm (m ≥ n). It replaces the Jacobian matrix with finite-difference
approximations. The stepsize △xp+1 was determined as the difference between two new
approximates

xA
p+1 = xA

p +△xA
p (187)

and xB
p+1 with elements

xB
p+1,i = xA

p+1,i +△xp+1,i = xA
p+1,i −

(
△xA

p,i

)2

m
∑

j=1

(
S+

p,i,j
f A
p,j

tF
p,j

) (188)

(i = 1, . . . , n) as
△xp+1 = xB

p+1 − xA
p+1. (189)

The first one is a classic quasi-Newton approximate with stepsize △xA
p , while the second

one was determined from a hyperbolic approximation governed by xA
p+1 and f A

p+1, such
that the classic Secant equation

S △xA = − f A (190)

was modified by a non-uniform scaling transformation

T=
[

TX 0
0 TF

]
(191)

with diagonal elements tF
j (j = 1, . . . , m), tX

i (i = 1, . . . , n) as

ST △xA = − f A, (192)

where

S =

[△fk,j

△xi

]
and ST =

[
tF
j

tX
i

△fk,j

△xi

]
(193)

(k = 1, . . . , n). It was shown that the new stepsize △xp+1 is much smaller than the stepsize
△xA

p of the classic quasi-Newton approximate, providing that xB
p+1 will always be in the

vicinity of xA
p+1. Having two new approximates, a set of n + 1 new independent trial

approximates xA
p+1 and xB

k,p+1 (k = 1, . . . , n) was constructed (see Equation (32)), provid-
ing that the new trial approximates are always in general positions, ensuring the stable
behavior of the iteration. According to the geometrical representation in the single-variable
case, the suggested procedure corresponds to finding the root of a hyperbolic function with
vertical and horizontal asymptotes xA

p+1 and f A
p . It was shown in Section 7 that the sug-

gested method has super-quadratic convergence with a rate of αTS =φ2 = 2.618 . . .(where
φ = 1.618 . . . is the well-known golden ratio) in the single-variable case.

The suggested method needs two function evaluations in each iteration in single-
variable cases and n + 1 evaluations in multi-variable cases. The efficiency of the proposed
method was studied in Section 10 in the multi-variable case and compared with other
classic low-rank-update and line-search methods on the basis of available data. The
results show that the efficiency of the suggested full-rank-update procedure is considerably
better than the efficiency of the other referenced methods. A Rosenbrock test function
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(Equations (158) and (159)) with up to n = 1000 variables was used to demonstrate this
efficiency in Section 9.
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