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Abstract: Endothelial cells keep a tight and adaptive inner cell layer in blood vessels. Thereby, the
cells develop complex dynamics through integrating active individual and collective cell migration,
cell-cell interactions as well as interactions with external stimuli. It is the aim of this study to quantify
and model these underlying dynamics. Therefore, we seeded and stained human umbilical vein
endothelial cells (HUVECs) and recorded their positions every 10 min for 48 h via live-cell imaging.
After image segmentation and tracking of several 10.000 cells, we applied Bayesian data analysis
to models assessing the experimentally obtained cell trajectories. By analyzing the mean squared
velocities, we found a dependence on the local cell density. Based on this connection, we developed
a model, which approximates the time-dependent frequency of cell divisions. Furthermore, we
determined two different phases of velocity deceleration, which are influenced by the emergence of
correlated cell movements and time-dependent aging in this non-stationary system. By integrating
the findings of correlation functions, we will be able to develop a comprehensive model to improve
the understanding of endothelial cell migration in the future.

Keywords: cell migration; endothelium; Bayesian analysis

1. Introduction

Coordinated cell migration in the human body is essential throughout the whole life.
Cells need to be in the correct positions during the development of an embryo or for the
formation of organs, as well as for keeping them functioning by means of regeneration
and repair [1,2]. In addition, migration plays a key part in the immune response of
the organism [3,4]. However, the negative aspects of cell migration can be observed in
pathological processes, for example, during cancer invasion [2]. Endothelial cells form
in many vessels a barrier between the bloodstream and the surrounding tissues. Here,
migration helps in stabilizing this barrier as well as repairing it if needed. Furthermore, a
coordinated movement of endothelial cells is fundamental during the formation of new
vessels [1]. On the pathophysiological side, there are many diseases like atherosclerosis,
edema formation or respiratory distress syndrome, which arise from the dysfunction of the
aforementioned barrier [1].

When modeling cell migration, several biological properties and environmental condi-
tions have to be accounted for. For instance, cells are sensitive to chemotactic stimuli [4]
but also to mechanical cues like the stiffness of the substrate, which influences mean cell
speeds [5,6]. In collective settings, the regulation of adhesion molecules mediates the
connection to neighboring cells as well as the adhesion to the extracellular matrix [1].
While endothelial cells can migrate individually under certain conditions, they also move
in groups or sheets [1]. In a 2D tissue culture, human umbilical vein endothelial cells
(HUVECs) also show collective movement patterns. Thereby, cells not only move around
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while staying connected but also influence each other in their behavior [7]. This generates
the complex dynamics of active individual and collective cell migration.

Here, we analyze the dynamics of confluent endothelial cell migration and quantify
changes in the mean squared velocity over time. We also determine the effect of the average
cell density and its changes on mean cell velocities within the monolayer by coupling them
in a combined mathematical model.

2. Materials and Methods

HUVECs were isolated from umbilical cords according to the previously described
protocol [8]. The cells were then collected from T25 flasks, counted and filled into a
microscope slide, which was placed in the incubator. After 20 h, and 4 h before the start
of the experiment was scheduled, the cell nuclei were stained with Hoechst 33342 (final
concentration 50 ng/mL).

The live-cell imaging microscope Zeiss Axio Observer.Z1 / 7 enabled us to observe
the cells at 37 ◦C and 5% carbon dioxide for 48 h. By taking several micrographs of a
large area shortly after one another and stitching them together, we gained pictures of a
connected cell layer, comprising an area of more than 42 mm2. We acquired phase contrast
and fluorescence images of the cells every 10 min to capture the signals of the stained cell
nuclei. For this study, we performed ten experiments with the cells from five different
umbilical cords.

To analyze the micrographs with up to 50.000 cell signals per frame, we developed an
automated image segmentation software. Using the programming language Python, we
were able to extract the positions of the labeled cell nuclei, which were then connected for
each cell to a trajectory as a function of time using the Crocker-Gier algorithm [9]. Final
trajectories (Figure 1) of at least nine time steps were taken into account while the distance
between consecutive positions must not exceed 10-12 µm, depending on the cell density.
Cell velocities were calculated as the difference quotient of two consecutive cell positions.
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Figure 1. In a section (1 mm2) of the cell layer, all cell trajectories are shown for the experiments 4 (a)
and 6 (b). The trajectories are labeled sequentially with one out of seven colors in the order of their
first appearance and the attributed cell number. The overall cell density in (a) is much lower than in
(b). This leads to different dynamics and pattern formation.

The parameters and evidence of the models were estimated with the help of Bayesian
data analysis (for details see [4]). A numerical analysis was performed with the MultiNest-
sampling algorithm [10,11] in its Python implementation [12]. Uniform priors were applied
for parameters N0, β, t0, A, A1 and A2. For all remaining parameters (α0, α1, σ, τ, τ1, τ2, A0,
c and two parameters adjusting the experimental error), Jeffreys’ priors were used. The
agreement of data and model was assessed using a Gaussian likelihood function. The model
means and scatterings were obtained by averaging over the resulting parameter samplings.
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3. Results

To obtain a first overview of the temporal development of cell movements, we calcu-
lated the mean squared velocity for each time step as the average of all cells that could be
tracked for the entire observation time (Figure 2).
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Figure 2. The mean squared velocities and cell densities (inset) are shown for each time step in
all ten experiments (black dots, a–j). Additionally, the mean squared velocities are fitted with two
exponential functions (Equation (1), solid colored line). In certain time intervals of the experiments
(especially in c,d,i), the fit transiently deviates from the course of the data points. The quite small
uncertainties (two standard deviations) of the model fit are marked as a gray area (barely visible).
The calculation of the velocities is based on all cells that could be tracked for the entire duration of
the experiment (48 h). The values for the cell densities consider all cells with the exception of the
boundary area. The cell numbers in the first and last nine time steps are artificially lower due to
the defined minimum trajectory length during cell tracking. Experiments with cells from the same
umbilical cord are shown in the same row.
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The cells decrease their mean squared velocity over time (Figure 2). However, this
decline in velocities varies strongly between the ten experiments. We also noted different
cell numbers at the beginning of the imaging as well as differing growth in the observed
cell layers (Figure 2, insets). With the cells moving around and proliferating vividly, the cell
arrangement usually gets more homogenous and macroscopically ordered over time. The
resulting overall higher cell densities confine cell movements and therefore decrease mean
squared velocities. To highlight this inverse relation, we chose the same axis limits for the
velocities and densities for all experiments in Figure 2. If cell densities are high, then the
corresponding velocities are, in comparison with the other experiments, quite low, and vice
versa (e.g., Figure 2 a as opposed to c).

To develop a model describing the decline in mean cell velocities, the effect of several
simultaneously ongoing biological processes should be quantified separately. First, we
found that the cells rapidly slowed down at the start of the experiment. This is followed
by a second, slower decline before the mean squared velocity seems to converge to a
certain limit greater than zero for long times depending on the cell density. In some
experiments (Figure 2c,d) the two declines seem to happen sequentially, whereas there are
other examples (Figure 2h) that show a much smoother transition. We speculate that these
two processes actually occur simultaneously with differing parameters since this seems to
be more likely from a biological view. Hence, the little plateau, as observed especially in
experiments 3 and 4 (Figure 2c,d) after 10 h, could be caused by a third phenomenon. Based
on this consideration, we described the general decline using two exponential functions,
with parameters A1,2 and τ1,2 and a basal squared velocity A0.

〈v2(t)〉 = A0 + A1e−
t

τ1 + A2e−
t

τ2 . (1)

As shown in Figure 2, this fit, obtained using Bayesian analysis, well captures the
effects of the two processes that are slowing down the cells with the time scales of τ1 and τ2,
ranging between ~16 and ~142 min and between ~655 and ~1780 min, respectively. These
declines could be caused by the continuous cell aging and strengthening of cell-cell contacts.
However, there are still data points that deviate from the model of Equation (1) during time
ranges mainly within the first 20 h. Up to now, we did not include cell division activities in
our model, which should be related to the velocities of cells: On the one hand, cells can
move around more freely in areas with low density. They are less prone to collide with each
other or have more space to change their directions. On the other hand, temporal phases
of very active cell proliferation seem to be marked by a transiently constant or only very
slowly decreasing cell velocity (see e.g., Figure 2c,d,i). Although this effect is short-lived,
it shows that the separation of dividing cells can lead to accelerations in the system. By
contrast, these cell divisions can also cause an overall deceleration due to an increasing
confinement in densely packed cell clusters. That is why the mean squared velocities in
experiments 3 and 4 show a transient plateau (Figure 2c,d) in their decline or why τ2, as a
means to describe the second, slower decline, might differ in these experiments.

In order to quantify the connection between mean cell velocity and cell density, we
calculated the relative changes in cell numbers for each time step (Figure 3).

The cells usually go through one phase of more intense cell division, which builds up
at first and reaches a maximum before it subsides again. However, the onset, duration and
strength of this phase differ strongly between the experiments. Occasionally, the maximum
of cell division lies probably even before the start of the experimental observation. We can
describe the relative increase α(t) in the cell numbers N per time t with

α(t) =
1
N

dN
dt

= α0 + α1e−|
t−t0

σ |
β

. (2)
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Here, α0 describes the basal cell division, α1 the strength, σ the duration and t0 the
time point of the maximum of the cell division phase. The exponent β changes the shape of
the curve with β = 2 being the special case of a Gaussian function.

Since changes in cell density can modify the velocities of cells, we couple the cell
division activity of Equation (2) linearly with factor c to the mean squared velocity of
Equation (1). This temporarily raises the mean squared velocity during strong increases in
cell numbers for c > 0.

〈v2(t)〉 = A0 + A1e−
t

τ1 + A2e−
t

τ2 + c
(

α0 + α1e−|
t−t0

σ |
β
)

. (3)

Depending on the time point of the maximum cell division rate, the cell density can
be calculated by integrating Equation (2), leading to the following result:

N(t) =


N0e

α1σ
β {γ(

1
β , (

t−t0
σ )

β
)−γ( 1

β , (− t0
σ )

β
)}+α0t i f t0 < 0 ,

N0e−
α1σ

β {γ(
1
β , (

t0−t
σ )

β
)−γ( 1

β , ( t0
σ )

β
)}+α0t i f t0 > 0 and t < t0 ,

N0e
α1σ

β {γ(
1
β , (

t0
σ )

β
)+γ( 1

β , ( t−t0
σ )

β
)}+α0t i f t0 > 0 and t > t0 .

(4)

Here, the lower incomplete gamma function is used according to Equation (5)

γ(a, x) =
x∫

0

ta−1e−t dt (5)

and N0 denotes the initial cell number at t = 0. The obtained parameters of the simultaneous
fit, calculated individually for each experiment, indicate that the trend of the velocities
consists of a faster and a slower decline (Figure 4). After about one to three hours (elapsed
time equals two τ1), the cells have slowed down considerably (Figure 4a). After that
time, the mean squared velocity decreases only slowly, with τ2 usually being greater than
10 h (Figure 4b). The exception from these findings is the ninth experiment, where the
two declines are merged and therefore difficult to separate. The first two experiments
show a particularly slow decline since the cell density had always been high and the
cells from this umbilical cord showed less activity. At large, the obtained values for the
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parameters are roughly of the same magnitude compared to the counterparts of the isolated
fit (Equation (1) and Figure 2). This indicates that there are at least two time-dependent
phases, with the cell division causing the time-independent alterations of the overall
dynamics. This third influence is especially strong in experiments 3, 4 and 9, as indicated
by parameter c (Figure 4c), where the mean squared velocities were also the highest. The
first experiment shows slightly more cell division than the second while the mean squared
velocities are almost the same (Figure 2a,b). Interestingly, the optimal parameters for the
combined fit include a higher c and subsequently higher τ1 and τ2 (Figure 4) instead
of these three parameters just being smaller. This might emphasize the importance of
considering cell division in the model.
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functions are decreasing. Parameter c depicts the coupling strength between the rate of cell division
and the mean squared velocity.

Based on the estimated parameters, we plotted the fits for the mean squared velocity
and density (Figure 5).

A comparison by eye shows that the model is suitable to describe the data of the cell
densities as long as the cell numbers do not decrease (Figure 5a,b). Furthermore, the fit
of the mean squared velocities was improved by the coupling to cell division activities,
especially in experiments 3, 4 and 9. To verify that indeed two time scales are necessary
to describe the overall decline, we compared the resulting Bayesian evidences with two
alternative models. Model 1 (12 parameters) uses one exponential, Model 2 (13 parameters)
uses one stretched exponential function in addition to the cell division term (Table 1). So far,
Model 3 (14 parameters) was applied (Figure 5), which uses, in comparison with Model 1,
an additional exponential function (2 in total).

Table 1. Three different models (including one exponential, one stretched exponential or two expo-
nential functions) were used for the fit of the mean squared velocity.

Model Formula

1 〈
v2(t)

〉
= A0 + Ae−

t
τ + c

(
α0 + α1e−|

t−t0
σ |

β
)

(6)

2 〈
v2(t)

〉
= A0 + Ae−|

t
τ |

l
+ c
(

α0 + α1e−|
t−t0

σ |
β
)

(7)

3 〈
v2(t)

〉
= A0 + A1e−

t
τ1 + A2e−

t
τ2 + c

(
α0 + α1e−|

t−t0
σ |

β
)

(8)
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are optimally adjusted to each data set in contrast to Figure 2.

The comparison of the evidences of the applied models shows a clear preference for
Model 3 for nine out of ten experiments (Figure 6). This endorses the theory that there
is usually a decline consisting of two parts with different temporal dynamics. Only the
ninth experiment could also be described with just one exponential function. These cells
showed the strongest and longest-lasting cell division phase out of all experiments, which
led to a more than two-fold increase in cell density. This influence was incorporated into
the fit for the velocity via a high coupling parameter c (Figure 4c). Thus, the effect of
the proliferation-independent cell movements is less recognizable, especially because the
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processes occur largely simultaneously. This might have also caused the small difference
between τ1 and τ2 and its higher error (Figure 4a,b).
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Figure 6. Three models (Table 1) were used for the simultaneous fit of the mean squared velocity and
density. The evidence, obtained by Bayesian analysis, is used to compare the accuracy of the different
models. The model probability is shown color-coded and in numbers for each experiment.

4. Discussion

As long as the cells are motile and their numbers are not decreasing, Model 3 is
able to fit the cell density and mean squared velocity for all experiments despite their
interindividual differences. Bayesian analysis was used to quantify the parameters of the
suspected underlying biological processes. It is noteworthy that the parameter estimation
succeeded in finding suitable results for the parameters included in both fits, promoting
the idea that not only the cell density but also the velocities are positively influenced by
cell divisions. It should be noted that the number of cell divisions was derived from the
changes in cell density. The actual number of cell divisions could be higher, since we
did not quantify the number of cell deaths. The comparison of three different models
showed that the best approach consists of the sum of two exponentially decaying functions.
We considered in all models the relatively small but accumulating amount of increased
velocities generated by cell division. Although the two new cells shift initially only a few
micrometers apart from each other in opposite directions, the influences of several cell
divisions do not even each other out. Nevertheless, it is taken into account that strong
cell proliferation increases cell density and eventually diminishes cell velocities. The basic
velocity level could be connected to the absolute value of the cell numbers. Furthermore,
the effect of aging or increasing cell localization on the dynamics might be fitted in a
better way than with just an exponential function. Here, the necessity to use two of these
functions for the velocity already shows that there are many more biophysical mechanisms
influencing cell movements. In the future, we will use and extend this approach to assess
other aspects of cell migration.
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