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Abstract: The analysis and evaluation of microscopic image data is essential in life sciences. Increasing
temporal and spatial digital image resolution and the size of data sets promotes the necessity of
automated image analysis. Previously, our group proposed a Bayesian formalism that allows for
converting the experimenter’s knowledge, in the form of a manually segmented image, into machine-
readable probability distributions of the parameters of an image segmentation pipeline. This approach
preserved the level of detail provided by expert knowledge and interobserver variability and has
proven robust to a variety of recording qualities and imaging artifacts. In the present work, Bayesian
evidences were used to compare different image processing pipelines. As an illustrative example,
a microscopic phase contrast image of a wound healing assay and its manual segmentation by the
experimenter (ground truth) are used. Six different variations of image segmentation pipelines
are introduced. The aim was to find the image segmentation pipeline that is best to automatically
segment the input image given the expert knowledge with respect to the principle of Occam’s razor to
avoid unnecessary complexity and computation. While none of the introduced image segmentation
pipelines fail completely, it is illustrated that assessing the quality of the image segmentation with
the naked eye is not feasible. Bayesian evidence (and the intrinsically estimated uncertainty σ

of the image segmentation) is used to choose the best image processing pipeline for the given
image. This work illustrates a proof of principle and is extendable to a diverse range of image
segmentation problems.

Keywords: image segmentation; Bayesian inference; nested sampling

1. Introduction

Identifying regions of interest in data sets of biological processes from microscopic
imaging is of central interest in physiology and cell biology. Data sets might be recorded
at high temporal and spatial resolution. Thus, the increase in data size prompts the need
for automated image segmentation. However, this task is often performed manually
by experimenters, who apply their expert knowledge to the data set. Knowledge-based
analysis describes the concept of transferring expert knowledge into machine-readable data
or a code to subsequently apply this to new data sets. Bayesian inference can be used for
this purpose, where the expert knowledge is converted to posterior distributions of model
parameters, as previously demonstrated by our group [1]. These parameters represent
a variety of image features, such as brightness thresholds or smoothing kernel filter sizes of
the applied image segmentation pipeline.

During discussions with members of the life science community on our previous
work [1], the question of why certain image processing pipelines should be chosen over
others arose. In the present work, we use Bayesian evidences to compare different pipelines
for image segmentation. This allows for generating robust image segmentation pipelines
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without overfitting. The performances of these algorithms are illustrated with real-world
problems, such as the analysis of the temporal cellular closure of a wound.

2. Materials and Methods
2.1. Data

Wound healing assays are commonly used to quantify collective cell motility over
time. Cells are seeded in two compartments of a separating insert, resulting in two cell
populations with a defined gap. After the removal of the insert, cells move into the cell-free
gap area. While cell migration is recorded over time, one representative region of interest
was selected on a single frame as an illustrative example in this work (see Figure 1).

Figure 1. Image data and manual segmentation. (A) A typical region of interest on an image of
a wound healing assay can be seen. (B) The same region of interest as in panel (A) is shown with
enhanced contrast for illustrative purposes. (C) A manual image segmentation for a cell-free (black)
and cell-covered (white) area is shown. (D) The boundary between the black and the white pixels
of the manual segmentation is indicated by a green line. This boundary is essential for distances
between manually segmented images and pipeline-segmented images (see below). (E) An overlay of
the contrast-enhanced original image and the boundary is given for visual clarification.

2.2. Workflow

Data processing, as suggested in our previous work, [1] follows a three-step protocol:

1. User input: The experimenter manually marks regions with and without cells, result-
ing in a manually segmented image from the time series (see Figure 1).

2. Bayesian parameter and evidence estimation: Bayesian inference is applied to dif-
ferent parameter-dependent image segmentation pipelines using the manually seg-
mented image as input data. A metric distance is applied to measure the difference
between the manually segmented image and the pipeline-generated images (see
below). During parameter estimation, the distance between the manually and the
pipeline-segmented image will be optimized, resulting in the conversion of the expert
knowledge to machine-readable posterior distributions of parameters.

3. Application: Based on the estimated Bayesian evidences as quality criteria of the
image segmentation pipelines, one image segmentation pipeline can be chosen, and
the optimized parameter set can be applied to the entire image series.

2.3. Image Segmentation Pipelines

In our previous work, we used an image segmentation pipeline consisting of a se-
quence of different filters [2,3]. A similar approach with manual adaptation of parameters
was described previously [4]. Figure 2 illustrates the different image segmentation pipelines
used throughout this work. All image segmentation pipelines were implemented in the
Python programming language using scipy and opencv libraries [5,6].
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Figure 2. Image segmentation pipelines. The image segmentation pipelines (Models 1–6) consist
of a sequence of image filters and algorithms that depend on one (1P) or two (2P) parameters.
Further, some algorithms are applied with a fixed set of parameters (0P), so that no free parameters
were used during parameter estimation. Differences of the applied filters with respect to Model 1
are highlighted in yellow. The original image is displayed with enhanced contrast for illustrative
purposes only—calculations and shown results are based on the native original image (see Figure 1A).
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Model 1 consists of the following elements: A canny edge detection with two free pa-
rameters is performed under the assumption that cell-covered areas have more
edges than cell-free areas. Consecutively, the resulting image is blurred by using
a box blur filter to merge the previously found edges into an area. An intensity
threshold is used to obtain a binary image. Furthermore, on the binary image,
two size thresholds for contiguous small areas of black or white pixels are applied
under the assumption that, most likely, small areas represent artifacts. Model 1
has 6 free parameters.
In the following, the variations of Models 2–6 in comparison with Model 1 are
highlighted.

Model 2 uses a Gaussian filter instead of the box blur. While the Gaussian filter is compu-
tationally more expensive than the box blur, it is assumed to better reproduce the
natural curves of the cells in the image than the rectangular box blur. Model 2
has 6 free parameters.

Model 3 uses the Sobel filter with a fixed parameter set (of kernel size 3 pixels) instead of
the canny edge detection. The Sobel filter is a less computational expensive edge
detection algorithm and a more general approach. Model 3 has 4 free parameters.

Model 4 also uses a Sobel filter. Further, Model 4 does not apply size thresholds for small
areas of black or white pixels. Thus, it is the least computational expensive model
in this series, but does not correct for any artifacts. Model 4 has 2 free parameters.

Model 5 is the same as Model 1 without size thresholds and, therefore, does also not
correct for small artifacts. Model 5 has 4 free parameters.

Model 6 is similar to Model 2 as it uses Gaussian blurring, but instead of size thresholds,
it applies opening and closing image filters, which are commonly used to filter
out small regions. Model 6 has 6 free parameters.

2.4. Distance Metrics

To quantify the distance between the manually segmented and the pipeline-generated
images, we focused on the border between the black and the white pixels since it condenses
the most important information of the binary image. For two boundaries, we performed
a pixelwise distance to the closest point operation [7]. We defined that the pixelwise
distance to the closest point is always measured from the longer to the shorter boundary to
make the distance metric. Further, the distance from the shorter to the longer boundary
would result in a convergence of the length of the pipeline-generated image towards 0.

Thus, the distance between every pixel position ai of the longer boundary A (of length
m) and the shorter boundary B (of length n) is noted as follows:

di(ai, BPB) = min
j = 1 ... n

||bj − ai|| (1)

where ||x − y|| denotes the Euclidean distance between two points and BPB denotes all n
points of the boundary B. We call the ensemble of all distances the boundary distance BD
with {d1 . . . dm}.

It is noteworthy that BD is a spatial metric, which is different from other commonly
used pixel-based metrics. Therefore, it not only is more intuitive for intended users, such
as physiologists, but also allows for assessing the spatial uncertainty from the Bayesian
inference (see below).

2.5. Bayesian Inference

We used Bayesian inference to select the optimal image segmentation pipeline and
consecutively perform a parameter estimation of the parameter set θ of the selected image
segmentation pipeline. An optimal image segmentation pipeline in the Bayesian logic
requires sufficient free parameters to cover the characteristics of the image, but does not
overfit using too many parameters (principle of Occam’s razor; see below).
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Derived from the general Bayes’ theorem

P(A|B) =
P(B|A)× P(A)

P(B)
(2)

we want to assess the conditional probability P(θ|K) of the parameter set θ given the expert
knowledge K. We choose the Bayesian a priori probability P(θ) of the parameter set θ to
be constant for all parameters as they represent spatial or intensity dimensions. The term
P(K) corresponds to the Bayesian evidence.

P(θ|K) =
P(K|θ)× P(θ)

P(K)
(3)

The term P(K|θ) represents the Bayesian likelihood (LH) and describes the similarity
between the manually segmented image using the expert knowledge K and a pipeline-
generated image using a parameter set θ. Under the assumption of a Gaussian distributed
uncertainty σ of the boundary distance BD = {d1 . . . dm} between the manually seg-
mented and the pipeline-segmented image, we denote the likelihood as

LH(K|θ) =
m

∏
i=1

1√
2πσ2

× exp

(
−1

2
d2

i
σ2

)
(4)

Model selection will be performed based on the principle of Occam’s razor, which
avoids unnecessary and unjustified complexity. If large areas of the parameter space
have a high likelihood, the Bayesian evidence P(K) has a higher value compared with
parameter-likelihood spaces with large areas of low likelihood [8]. This can be paraphrased
more simple as Bayesian evidence is high if the ratio of high likelihood to parameter space
given by the model is justified. Thus, Bayesian evidence is taking the complexity of the
models into account during model evaluation and is therefore used for model selection.
For computational ease, the logarithmic evidence ln(Z) will be used throughout this work.

2.6. Numerical Implementation

We used the multinested sampling algorithm [8–10] in its Python implementation [11].
This approach can be summarized in a simplified way as follows: The prior-likelihood
space is scattered with a cloud of a random set of live points. For each live point, the
likelihood is evaluated. Once all likelihoods of all live points in the cloud are evaluated,
the one with the lowest likelihood is eliminated and replaced by a new random point with
a higher likelihood. This replacement is performed iteratively. During the iteration process,
the evidence can be calculated as the weighted sum of the sorted likelihoods.

We want to investigate whether the number of live points is critical to ensure that the
prior likelihood space is scanned correctly (see Section 3.1).

3. Results
3.1. Determining the Necessary Number of Live Points

As explained above, the number of live points is critical for a sufficient sampling of the
prior-likelihood space. Here, we applied the introduced formalism with different numbers
of live points (20, 50, 100, 200, 400, 800) using Model 1. For each number of live points,
Bayesian inference was applied three times independently. Consecutively, the estimated
evidence, the estimated uncertainty σ, and the total number of likelihood evaluations
during the iterative process were evaluated.

Results are shown in Figure 3: For 100 live points and above, the estimated loga-
rithmic evidence ln(Z) and the estimated uncertainty σ remain stable. Thus, 100 live
points were chosen throughout this work as they represent the optimized balance between
computational workload and stability.
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Figure 3. Evaluation of the necessary number of live points. This figure shows the results for
estimated logarithmic evidence ln(Z), estimated uncertainty σ, and the total number of likelihood
evaluations (N) for three independent applications of the previously introduced formalism using
either 20, 50, 100, 200, 400, or 800 live points. With 100 live points or more, the estimated evidences
ln(Z) and estimated uncertainties σ remain stable. Of the tested values with stable results, 100 live
points require the least likelihood evaluations and are therefore computationally the most effective.
(Data are shown as mean and Bayesian uncertainty (error bars) of the posterior distribution. Each
estimation was independently run three times to evaluate reproducibility. In RUN 3 with 20 live
points, results are −3095.7 ± 1.2 for ln(Z) and 40.5 ± 0.1 pixel for σ; both are off the charts. These
extreme results indicate a failure due to very few live points. For illustrative purposes, they were not
taken into consideration for the limits of the y-axes.)

3.2. Image Segmentation Using the Estimated Posterior Parameters

Using Bayesian inference, we obtained the posterior distributions for parameter sets
of Models 1–6. Consecutively, these posteriors were applied to obtain pipeline-generated
images (see Figure 4, red and blue). At first sight, small differences in the segmentation
of Models 1–6 became obvious. However, with the naked eye, it is infeasible to tell which
algorithm is closest to the manually segmented image (see Figure 4, green). Please note
that, for example, Models 4 and 6 are the only two models that fully surround the small
island of cells in the lower center right of the original figure—as it was suggested by the
manually segmented image. Furthermore, it seems impossible to decide which algorithm
to select over the others only by looking at Figure 4.
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Figure 4. Image segmentation for Models 1–6. After applying the above-introduced formalism,
estimated posterior parameters were used to obtain one pipeline-segmented image for Models 1–6.
These images are overlays of the original input image (see Figure 1A). The pipeline-generated image
is superimposed with dark red indicating a cell-free area and blue indicating a cell-covered area.
The green line represents the boundary between a cell-free and a cell-covered area in the manually
segmented image (see Figure 1D). The white box shows a region of interest, which is magnified in the
lower part of the figure to magnify the details.

3.3. Choosing the Image Segmentation Pipeline

Bayesian inference allows for choosing an image segmentation pipeline based on the
Bayesian evidence, which is the probability that the given pipeline is capable of recreating
the expert knowledge. Thus, the image segmentation with the highest Bayesian evidence
should be chosen. According to Table 1, Model 2 has the highest Bayesian evidence.
Additionally, Model 2 shows the lowest uncertainty σ.

Table 1. Comparison of the different models based on Bayesian evidence (best results per column are
marked in bold font).

ln(Z) σ [pxl] Calc. Time *
Model 1 −2190.1 ± 0.5 6.40 ± 0.16 02 min 59 s
Model 2 −2098.4 ± 0.5 5.62 ± 0.14 11 min 15 s
Model 3 −2299.1 ± 0.4 7.48 ± 0.21 01 min 11 s
Model 4 −2559.5 ± 0.4 11.40 ± 0.34 00 min 20 s
Model 5 −2256.1 ± 0.5 7.09 ± 0.19 01 min 03 s
Model 6 −2112.2 ± 0.5 5.70 ± 0.15 27 min 23 s

* Processor: i5-2520M CPU @ 2.50 GHz.

4. Discussion

While multiple image segmentation implementations focus on Bayesian decision
trees for pixel-based classification [12], our group previously demonstrated the usage of
Bayesian inference to perform a parameter estimation for a pre-setup imaging pipeline
based on the segmentation of an input image, which is trained with expert knowledge.
A possible advantage of this approach might consist of more consistently taking into
account spatial correlations such as textures within image data than pixel-based Bayesian
decision trees. Contrary to pixel-based classification, this approach uses a metric distance
of boundaries of conjoined regions, which is more intuitive than pixel-based uncertainties
in the perception and processing. This approach enables the logically consistent handling
of Bayesian uncertainties of segmentation boundaries.

Our approach enables experimenters with little knowledge in computer science to
manually segment one image of an image series and then use this expert knowledge to
automatically choose the best image segmentation pipeline from a collection of tested
pipelines with an optimized parameter set. In this work, we were able to demonstrate that
(I) the needed number of live points can be assessed in a simple straightforward approach.
However, it is worth mentioning that other implementations of nested sampling have the
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ability to correct the number of live points on the run [13]. (II) Objectively assessing the
quality of pipeline-generated images is infeasible with the naked eye. (III) Bayesian evi-
dence logically consistently enables the systematic selection of the best image segmentation
pipeline among those tested.

As a future prospect, the developed technique can be further applied to other segmen-
tation problems, such as time lapse series or 3D volume data.
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