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Abstract: Magnetic seeded filtration (MSF) is a multidimensional solid–liquid separation process
capable of fractionating a multimaterial suspension based on particle size and surface properties. It
relies on the selective hetero-agglomeration between nonmagnetic target and magnetic seed particles
followed by a magnetic separation. Experimental investigations of multimaterial suspensions are
challenging and limited. Therefore, a Monte Carlo model for the simulation of hetero-agglomeration
processes is developed, validated, and compared to a discrete population balance model. The
numerical investigation of both charge-based and hydrophobicity-based separation in an 11-material
system, using synthetic agglomeration kernels based on real-world observations, yields results
consistent with prior experimental studies and expectations: Although a multidimensional separation
is indeed possible, unwanted hetero-agglomeration between target particles results in a reduced
selectivity. This effect is more pronounced when separation is based on a dissimilarity rather than
a similarity in the separation criterion and emphasizes the advantages of hydrophobicity-based
systems. For the first time, 2D grade efficiency functions T(φ, d) are presented for MSF. However,
it is shown that these functions strongly depend on the initial state of the suspension, which casts
doubt on their general definition for agglomeration-based processes and underlines the importance
of a simulation tool like the developed MC model.

Keywords: multidimensional separation; magnetic seeded filtration; hetero-agglomeration; population
balance equations; Monte Carlo

1. Introduction

The start-up and scale-up of industrial processes involving solid particles has always
been a major challenge in the field of process engineering [1,2]. Unlike fluids, solid particles
are characterized by distributed properties that make predicting their behavior challenging.
The traditional approach of assuming that particles are only distributed in size, while,
e.g., shape and surface properties are constant, proves to be both inadequate and even
neglectful. Thus, a multidimensional description of particle property distributions is
required and is currently a focus of research [3,4]. Naturally, this concept permeates all
areas of particle technology, including solid–liquid separation: For one, separation processes
are required to operate on multiple particle properties simultaneously [5,6]. Additionally,
the description of the separation result—traditionally given via the size-dependent grade
efficiency T(d)—must be further developed to account for the multidimensional nature of
particle systems [7,8].

A previous study [9] proposed magnetic seeded filtration (MSF) as a multidimensional
process that separates both by particle size and surface properties. Here, magnetic seed
particles are added to a suspension containing the nonmagnetic target particles, and a
selective hetero-agglomeration is induced. This is the process-defining step and is depen-
dent on both the particle surface and size. These hetero-agglomerates are then removed
from the suspension by a simple magnetic separation. During the previous experimental
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investigations [9], a polydisperse suspension with two nonmagnetic materials of different
zeta potential was separated into two fractions of more or less defined particle size and ma-
terial. Thus, in general, MSF is able to achieve a selective and multidimensional separation.
However, the expected selectivity based on component-specific separation experiments was
not achieved, which was shown to be due to an undesired hetero-agglomeration between
the target particles. Another preceding experimental study [10] investigated the separation
based on the hydrophobic properties of the surface: By addition of hydrophobic magnetic
material, hydrophobic microplastic particles were selectively separated from hydrophilic
cellulose particles. The loss of selectivity observed in the charge-based system was not
found in the hydrophobicity-based separation.

Experimental work investigating a multidimensional separation currently faces sev-
eral downsides and limitations. As discussed in [9], analytical methods are intricate, even
in suspensions with only two nonmagnetic materials, necessitating the combination of
multiple offline analyses to obtain material-specific information. Thus far, separation was
quantified continuously with respect to size and discretely, i.e., material-wise with respect
to surface charge. A complete multidimensional description of the separation requires a
continuous 2D grade efficiency function T(φ, d), where φ is a surface property of interest.
This necessitates either the possession and analytical capability of a material continuously
distributed with respect to the surface property or a mixture of indefinitely more discrete
materials. Both solutions are presently unfeasible given the current experimental capa-
bilities. Furthermore, due to the reliance on offline analyses before and after separation,
the statements that can be made are confined to integral quantities, such as the material-
specific separation efficiency. However, the pivotal hetero-agglomeration processes, which
define the overall outcome, remain concealed.

Simulations play a crucial role in elucidating processes and phenomena that are chal-
lenging to measure directly. Population balance equations (PBEs) are the standard way to
describe the kinetics of particle agglomeration processes [11,12]. The underlying integro-
differential equations can be solved numerically by discretizing the agglomerate property
space, resulting in so-called discrete population balance equations (dPBEs). In previous
work, a numerical dPBE solver for systems of up to three materials was developed and
applied to MSF [13,14]. However, computation times of dPBE models scale exponentially
with the number of materials, making the desired transition to a more continuous multidi-
mensional separation challenging. Stochastic or Monte Carlo (MC) models take an entirely
different approach by simulating the evolution of a discrete particle population without the
need for a mass balance and differential equations [11,12]. They are easy to implement and
can handle an arbitrary number of materials, although they are considered computationally
expensive [12].

The present work aims to address the research gaps identified above by pursuing
the following objectives. First, an MC model is developed and validated to simulate
agglomeration processes in arbitrary multimaterial systems. Coupled with a magnetic
separation criterion, the continuous 2D grade efficiency curve T(φ, d) for MSF is estimated
and visualized for the first time. The performance and scaling behavior of the MC model
are compared to the existing dPBE model and discussed in the context of multidimensional
separation. Subsequently, the MC model is applied in two theoretical case studies: One
based on charge and one based on hydrophobicity. Both cases are conceptually different as
the separation is based either on dissimilarity (charge) or similarity (hydrophobicity) in
the separation criterion. The use of synthetic and well-defined kinetic models enables an
in-depth investigation into the effect of intentional changes in multidimensional particle
property distributions on the 2D grade efficiency function and selectivity.

2. Models
2.1. Discrete PBE

The fundamental kinetics of the agglomeration process between two agglomerates i
and j, resulting in agglomerate ij, are given by
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dnij

dt
= βijαijNi Nj, (1)

where n is the number density of the respective class. The kinetic rates or so-called kernels β
and α contain the physics of the agglomeration process. β describes the collision frequency,
i.e., the number of collisions per unit time, and α the collision efficiency, i.e., the probability
that a collision leads to an agglomeration. In a particle system with M discrete materials,
an agglomerate ij is completely defined by its M partial volumes xij = {x1, x2, . . . , xM},
if agglomerate shape is neglected and its porosity is assumed to be 0. Equation (1) alone
is not sufficient to describe an entire particle system with varying agglomerate sizes and
compositions (i.e., varying xij). The population balance equations (PBEs) are obtained by
applying Equation (1) to all possible agglomerate combinations and balancing the respective
production and loss terms of n. In this context, x are called the internal coordinates of
the PBE and due to mass conservation, the partial volumes are additive, i.e., xij = xi + xj.
The PBE is as follows:

∂n(x, t)
∂t

=
1
2

∫ x

0
k(x − x′, x′)n(x − x′, t)n(x′, t)dx′ −

∫ ∞

0
k(x, x′)n(x, t)n(x′, t)dx′, (2)

where k(i, j) = βijαij. Equation (2) is an integro-differential equation and can only be solved
analytically for certain kernels and initial conditions. The numerical solution requires a
discretization along its internal coordinates x, which transforms Equation (2) into a set
of ordinary differential equations (ODE) that can be solved numerically. The simplest
discretization scheme is the so-called uniform grid, which scales the discrete partial volume
of each material m = {1, 2, . . . , M} linearly according to

xm(z) = zxm(1), (3)

where z is the discrete index z = {1, 2, . . . , Z}, Z is the number of grid points per coordinate,
and xm(1) is the smallest partial volume of material m. Since each partial volume is
discretized individually, the number density for all possible agglomerate classes n is now a
ZM matrix. The number of materials M is called the dimension of the discrete PBE (dPBE).
Modeling the selective separation between two nonmagnetic material systems by addition
of magnetic particles therefore requires a three-dimensional (M = 3) dPBE.

In addition to the numerical solution scheme, the kernel values β and α are the
bottleneck for accurate results. Various mechanistic and (semi-) empirical models for
calculating the kernels from process parameters exist and are summarized in [15–17].
However, as is discussed in detail in a previous publication [14], the necessary process
and material data are often either not sufficiently accurate or not available at all, making
purely predictive calculations impossible. As proposed in [14], parametrization of the
kernel functions and optimization of the unknown parameters to experimental data allows
the training of data-driven models and results in so-called hybrid models. In this work,
the orthokinetic model [17,18]

βij = Ḡ(ri + rj)
3 (4)

is used for the collision frequency, with r being the agglomerate radius and Ḡ being
the mean shear rate that is calibrated with experiments. Note that multiscale modeling
approaches like coupling the dPBE with CFD-DEM models might provide additional
information on this parameter. The previously developed collision case model [13,14] is
used to predict αij. It requires the (known) partial volumes xi and xj and the material-
specific agglomeration efficiencies α. α is a symmetric M × M matrix (αij = αji) containing
the agglomeration efficiency for each material combination. In essence, αij summarizes
the particle–particle interactions (van der Waals, electrostatic, hydrophobic) and can be
estimated from experiments. It should be noted that agglomeration occurs outside of the
magnetic field; therefore, the magnetic interaction is not considered in the dPBE model.
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2.2. Monte Carlo

Instead of tracking and balancing all possible agglomeration events simultaneously
(see Equation (2)), Monte Carlo (MC) models follow a discrete set of individual agglomer-
ates and represent a completely different approach to computing the temporal evolution
of the number density distribution n. A population matrix X (M × N) is used for the
calculations, containing the M partial volumes of N individual agglomerates. At first,
X is initialized with N0 agglomerates, which are chosen stochastically according to the
initial number density distribution n(x, 0). Setting the initial number of agglomerates N0
equal to its true value in a real-world system is infeasible, and, instead, N0 is chosen as a
representative sample. This implies that the MC model does not simulate the entire volume
of the system, but only a fraction of it, the so-called control volume

Vc =
∑ X
cv

, (5)

where ∑ X is the total solid volume of the sample and cv is the overall volume concentration
of the real-world suspension. Since every possible agglomeration event requires the
collision of two unique agglomerates, the collision frequency array B (1/2 N(N − 1)× 1)
can be calculated for any given population matrix via Equation (4), while the probability
of each collision event is given by P = B/ ∑ B. The probability that a particular collision
will result in an agglomeration is described by the collision efficiency α, which is calculated
according to the collision case model described above and stored in a collision efficiency
array A (1/2 N(N − 1)× 1).

The MC algorithm selects a specific collision l stochastically according to its probability
P(l), generates a random number rnd ∈ [0, 1], and checks via rnd < A(l) whether an
agglomeration occurs or not. If so, both collision partners i and j are removed from the
population matrix while a new agglomerate ij with xij = xi + xj is added. This reduces
the number of individual agglomerates by 1 and requires both B and A to be updated.
On average, this collision event takes

∆t =
2Vc

B̄N2 , (6)

where B̄ is the mean collision frequency of all possible collision events. ∆t is called the
inter-event time and advances the overall simulation time. All previous steps are repeated
until the simulation time reaches the predefined agglomeration time t > tA. Since each
agglomeration event reduces the total number of agglomerates by 1, choosing N0 to be
too small with respect to tA results in the formation of a single large agglomerate and a
premature termination of the simulation. To counteract this, when the current number of
agglomerates N reaches half of the initial number N0, i.e., N ≤ N0/2, the control volume
Vc is doubled and all individual agglomerates are duplicated [19].

2.3. Magnetic Separation

Both the dPBE and MC model yield the time-dependent number density distribution
n(x, t). However, from a process engineering standpoint, the overall separation efficiency
and selectivity of the MSF process are more relevant. To close this gap, a magnetic separa-
tion model derived in a previous publication [14] has to be employed. The probability that
a given agglomerate i is separated is estimated by

τi =

{
1 r2

i x̃mag,i ≥ Cmag

0 r2
i x̃mag,i < Cmag

, (7)



Powders 2024, 3 221

where ri is the agglomerate radius and the magnetic volume fraction x̃mag,i is calculated
according to

x̃m =
xm

∑M
j=1 xj

. (8)

Equation (7) represents a perfectly sharp separation and Cmag defines the properties
of an agglomerate that is just barely collected at the separation matrix and therefore
summarizes all relevant parameters like, e.g., the magnetization of the magnetic material.
The material-specific separation efficiency Am describes the fraction of overall separated
volume of material m with respect to its initial volume:

Am =

∫ ∞
0 n(x, tA)τ(x)xmdx∫ ∞

0 n(x, 0)xmdx
(9)

As derived in the previous study [9], the material-specific selectivity Sm is defined by

Sm =
Amṽm,0

∑M
j=1 Ajṽj,0

(10)

with ṽm,0 being the initial volume fraction of material m given by

ṽm,0 =

∫ ∞
0 n(x, 0)xmdx

∑M
j=1

∫ ∞
0 n(x, 0)xjdx

(11)

The material-specific separation efficiency Am and selectivity Sm can be obtained from
both the dPBE and MC results. However, they represent only a single dependence (of
material m) and do not give any information on the size-specific separation. As mentioned
in the introduction, the goal of a multidimensional separation is to find a continuous 2D
grade efficiency function T(φ, x) with respect to surface property φ and agglomerate size
(volume) x. This is challenging for two reasons: First, due to the discrete nature of materials
in the real world, φ will never be truly continuous. At best, the number of materials m
can be increased (m → ∞) and the material-specific grade efficiencies Tm(x) calculated.
Second, and most importantly, the dPBE model is not able to provide the required data
because it does not retain individual agglomerate information and because partial volumes
are constantly flowing between size classes. Vividly, when looking at any agglomerate
class i at time tA, only the number density and the partial volumes in this class are known,
but not which individual, initially present agglomerates have accumulated. Therefore,
a size- and material-specific comparison before and after separation is not possible. MC
simulations are different, as the history and evolution of individual particles over the
course of an agglomeration process is traceable. Therefore, applying Equation (7) to all
agglomerates at time tA (X(tA)) directly gives information about the separation of initially
present agglomerates at time t = 0 (X(0)).

An example that illustrates this discussion is shown in Figure 1: Starting with an initial
state of 10 discrete particles of M = 4 different materials, both the MC and dPBE model are
able to calculate the state of agglomeration after tA. In this example, three agglomerates A1,
A2, and A3 are generated, and applying Equation (7) yields that A1 and A3 are separated
(indicated by lowered saturation), while A2 remains. Since the dPBE only has information
on the partial volumes x of these agglomerates, only the overall, material-specific separation
efficiency Am and selectivity Sm can be calculated, while the connection to the initially
present, pure particles is lost. MC simulations, on the other hand, are able to keep track
of which agglomerates contain which initial particles, and the separation of A1 and A3 is
directly linked to the initial state.

Sorting the initial agglomerate population into defined classes of overall surface
properties and size (φ̂,d̂), where d is the diameter of the volume-equivalent sphere, allows
the calculation of the volume-weighted, 2D grade efficiency function
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T(φ̂, d̂) =
Vsep(φ̂, d̂)

V0(φ̂, d̂)
(12)

by simply dividing the separated Vsep by the initially present volume V0 in each class. This
assumes that at t = 0, only single-material particles or agglomerates are present to avoid
the need for defining an “average” surface property φ̄ for multimaterial agglomerates.

Separated: xsep {?}

Initial State Monte Carlo discrete PBE
1 3

4

5

2 6

7
8

9

10

A2, {2,6,9}

A3, {1,3,4,7,8}

A1, {5,10} A1, x1
A2, x2

A3, x3

Separated: {1,3,4,5,7,8,10}

Figure 1. MC simulations track the history of initially present particles, and the separation of formed
agglomerates is therefore directly linked to the initial state. dPBE simulations only have information
on partial volumes of separated agglomerates; therefore, only the overall material-specific separation
efficiency and selectivity can be determined.

3. Validation and Grid Study
3.1. Validation

Both the dPBE and MC model discussed in Section 2 are validated by comparison
with an analytical solution in the two-component system (M = 2). Instead of comparing
the full number density distribution n, visualizing the moments

µij(t) =
∫ ∞

0

∫ ∞

0
xi

1xj
2n(x, t)dx1dx2 (13)

of the distribution allows for a straightforward assessment of the accuracy of the calcula-
tions. In particular, the zeroth moment µ00 represents the total number of agglomerates,
while the first moments µ10 and µ01 represent the total volume of each material over time,
thus accounting for mass conservation. For monodisperse initial conditions, the collision
frequency following the sum kernel βij = β0(∑ xi + ∑ xj) and α = 1; the moment ex-
pressions for the solution derived by Scott [20] are summarized in [21,22] and given in
Equation (14)–(16).

µ00(t) = n0 exp(−β0n0t) (14)

µ10(t) = v1,0 | µ01(t) = v2,0 (15)

µ11(t) =
v1,0v2,0(2 − ϕ)ϕ

n0(1 − ϕ)2 (16)

n0 =
∫ ∞

0
n(x, 0)dx | vm,0 =

∫ ∞

0
n(x, 0)xmdx | ϕ = 1 − exp(−β0n0t)

Figure 2a–c show the relative zeroth, first, and first cross moments over time for the
analytical solution, the MC and dPBE model. All calculations used β0 = 10−16 m3s−1,
v1,0 = v2,0 = 10−5 and d1,0 = d2,0 = 1 µm and were run for tA = 800 s. The MC simulations
were run with N0 = 500 and repeated NMC = 100 times. Mean moment values are plotted
and the error bars indicate a single standard deviation. The dPBE model follows a uniform
discretization and its results are shown for two different grid parameters, Z = 12 and
Z = 120. In general, all models closely follow the analytical solution up to t ≈ 200 s,
indicating no major errors in the implementation. For increasing agglomeration times,
the results of the dPBE model differ strongly from the analytical solution, while increasing
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Z shifts the differences to larger values of t. Vividly, the agglomeration slows down and
approaches a steady state. The MC model, on the other hand, closely follows the analytical
solution, and the analytical moments are well within the confidence interval. Figure 2d
visualizes the cumulative, volume-weighted agglomerate size distribution Q3 at time tA
and explains the apparent problems of the dPBE model: In both cases, the grid parameter
Z is insufficient to represent the full range of agglomerate sizes. When agglomerates
accumulate in larger classes, they are no longer able to participate in agglomeration events
and the entire process slows down. This is especially problematic for longer agglomeration
times. It should be noted that other discretization schemes, such as the geometric grid,
exist and have been implemented in previous studies [14], which make the calculation of
broadly distributed particle systems manageable. However, they require more sophisticated
numerical schemes like the cell average technique [21] and introduce discretization errors
due to underlying assumptions.

Figure 2 highlights the general advantage of MC models, which are inherently grid-
free: they neither suffer from numerical errors due to grid limitations nor require elaborate
discretization schemes. Additionally, increasing the number of material systems M does
not significantly change the MC algorithm, while it requires a different scheme and imple-
mentation for the dPBE. Coupled with the fact that only MC models provide the possibility
to derive a 2D grade efficiency function T(φ̂, d̂), the case studies in Section 4 are only
performed with the MC model.
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Figure 2. Validation results for the two-material system, monodisperse initial conditions, and sum
kernel [20–22]. The relative zeroth (a), first (b), and first cross moments (c) are shown over time for
the analytical solution, the MC and dPBE model. Additionally, the cumulative, volume-weighted
agglomerate size distribution at time tA is given (d).
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3.2. Grid Study

Another interesting point of comparison between dPBE and MC is the required
simulation time. Figure 3 shows the relative calculation times (normalized to the over-
all minimum value) for MC simulations with varying number of initial agglomerates
N0 = {500, 1000, 3000} and for dPBE simulations with varying grid parameters
Z = {8, 12, 15}. The calculations use the same initial and boundary conditions as for
the validation study in Section 3.1. Additionally, the one-component and three-component
system were evaluated. All calculations were performed on identical hardware.

The calculation times of MC simulations are strongly dependent on the number of
simulated agglomerates, i.e., on the sample size N. First, the MC algorithm itself requires
more iterations due to a shorter inter-event time (see Equation (6)). However, the main
reason for the large increase in computation time with N lies in the calculation of the
collision frequency and collision efficiency arrays B and A. As mentioned in Section 2.2,
they store all unique collision events and require 1/2 N(N − 1) calculations each (O(N2)).
In addition, each successful agglomeration event requires their recalculation or adjustment
due to newly added and lost agglomerates. Xu et al. [23] summarizes several techniques to
speed up these calculations, such as smart bookkeeping [24] or majorant kernels [25,26],
which reduce the order to O(N). Calculations can further be parallelized to achieve a more
efficient simulation. Since the present study aims at investigating the general capabilities of
MC models for simulating multidimensional MSF experiments, and performance is not
a top priority, neither efficient numerical schemes nor optimized code are implemented
at this stage. The MC results in Figure 3 should, therefore, be interpreted as a worst-case
estimate for the scaling behavior of MC models. Increasing the number of materials M has
only a marginal effect on the overall simulation time. As the population matrix X increases
in size, the memory requirements and internal calculations both for the collision case model
and newly formed agglomerates slightly increase. However, neither the dimension of B
nor A is affected and their calculation accounts for the majority of required time.
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Figure 3. Relative calculation times (normalized on the overall minimum value) of MC simulations
with varying number of initial agglomerates N0 and dPBE simulations with varying grid parameter
Z for the one-, two-, and three-component system.

The calculation time for the dPBE model increases with increasing grid size Z. Dur-
ing the numerical solution of the ODE, each evaluation of the differential equation requires
calculations for every possible combination of all discrete classes. Since the number of
discrete classes scales according to ZM, the solution of the dPBE is of order O(Z2M). This
exemplifies the underlying problem of the dPBE model in multicomponent systems, which
is also clearly seen in Figure 3: Although the grid parameter is relevant, its role is strongly
outweighed by the number of materials M. Calculations for more than three components
quickly become infeasible for realistic values of Z.



Powders 2024, 3 225

4. Case Studies
4.1. Study Structure

Multidimensional separation with MSF is studied theoretically for two different cases
of varying surface property φ. Simple model functions for the collision efficiency matrix αm
are used which capture the underlying affinities discussed in the previous publication [9].
A “charge-based” separation is modeled for case 1 by

αij =


0 ζiζ j ≥ C1
ζiζ j−C1

C2
C1 + C2 < ζiζ j < C1

1 ζiζ j ≤ C1 + C2

(17)

which results in an attraction (αij > 0) for oppositely charged particles that increases
with the magnitude of the zeta potential ζ. This reflects that the separation is based on a
dissimilarity in the separation criterion. Particle pairs exceeding the critical zeta potential
product (ζiζ j ≤ C1 + C2) are fully destabilized (αij = 1). Equally charged particles can only
agglomerate up to a certain charge (ζiζ j < C1) and are stable otherwise. The calculations
are performed for 10 nonmagnetic materials with zeta potential values linearly spaced
between −30 mV and +30 mV and one magnetic material with a zeta potential of −30 mV
(M = 11). Choosing the model parameters as C1 = 25 mV2 and C2 = −900 mV2 results in
the collision efficiency matrix shown in Figure 4a.

A “hydrophobicity-based” separation is modeled as case 2, according to

αij = RHiRHj, (18)

where RH ∈ {0, 1} is the relative hydrophobicity of the surface, further discussed below.
The underlying affinity arises from the fact that strong and long-ranged hydrophobic inter-
actions have been shown to exist between two similar, hydrophobic particle surfaces [27,28],
whereas dissimilar surfaces, i.e., one hydrophilic and one hydrophobic surface, have been
shown to exhibit either no long-ranged or no attraction at all [28,29]. Separation is, there-
fore, based on a similarity in the separation criterion. A previously published study on
MSF [10] supports this hypothesis, as a selective separation between hydrophilic cellulose
and hydrophobic microplastic particles was performed by using a hydrophobic magnetic
material. It should be noted that the discussion about the hydrophobic particle–particle
interactions is still ongoing, and that no overall theory has been proposed to explain all of
the observed effects. The bridging force of nanobubbles on the particle surface [30,31] is
currently the most promising explanation. There are several measures of surface hydropho-
bicity, such as contact angle or surface energy, but their experimental determination is often
challenging [32]. Additionally, no general, mechanistic model for the hydrophobic interac-
tions based on these properties has been proposed as of yet. Therefore, Equation (18) is
sufficient for the purpose of this study, as it captures the general dependencies. The relative
hydrophobicity RH is a practical mathematical simplification that defines the minimum
hydrophobicity of two interacting surfaces to achieve a complete destabilization αij = 1.
Analogous to case 1, the calculations are performed for 10 nonmagnetic materials, five of
which have an increasing degree of hydrophobicity (RH > 0). The relative hydrophobicity
of the remaining five materials is set to RH = 0, although, conceptually, they can differ
by being more or less hydrophilic without affecting their agglomeration behavior. For a
selective separation, the magnetic material is strongly hydrophobic (RH = 1). The collision
efficiency matrix is visualized in Figure 4b.
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Figure 4. Collision efficiency matrix αm for the charge-based case (a) and hydrophobicity-based case (b).

The collision frequency was calculated according to Equation (4) with a mean shear
rate of Ḡ = 60 s−1, and the agglomeration time was tA = 120 s in both cases. The parameter
of the magnetic separation model in Equation (7) was set to Cmag = 5× 10−13 m2, indicating
that an agglomerate with diameter 2 µm requires at least a magnetic volume fraction of
x̃mag = 0.5 to be separated. It is assumed that at t = 0 no hetero-agglomeration has taken
place; thus, the population matrix X is initialized with pure, i.e., single-material particles.
A monodisperse magnetic material with d = 2 µm was used. The volume density distribu-
tion q3(d) for each of the 10 nonmagnetic materials followed a log10-normal distribution
with mean value µ = 2 µm and standard deviation σ = 0.15. During initialization, q3(d)
is transformed into a number density distribution q0(d), from which samples are drawn
and added to the population matrix X. To increase numerical stability, only particles in
the size range 1 µm < d < 4 µm are allowed. All 11 materials had identical initial number
concentrations of n0,m = 2.39 × 1013 m−3 (corresponding to a volume concentration of
cv = 10−4). Thus, the number of sampled particles was identical for each material at
N0/M. A total number of sampled particles of N0 = 1000 was used in the simulations,
which is expected to give reliable results based on the validation in Section 3.1. To reduce
statistical noise and increase the significance of the observed trends, the MC simulations
were run NMC = 1000 times and the results combined. Effectively, 1000 small, individual
agglomeration volumes with 1000 particles each were simulated, which cannot interact
with each other during agglomeration but are combined after tA, resulting in a total number
of initial particles of 106. This procedure massively reduces the computational time due to
the properties of the MC algorithm discussed in Section 3.2. The resulting initial conditions
for both cases are visualized in Figure 5.
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Figure 5. Volume-weighted histogram of the initial conditions t = 0 s for the charge-based case 1
(a) and hydrophobicity-based case 2 (b).
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4.2. Results Case 1: Charge-Based Separation

The results of the charge-based case are presented in Figure 6a–d. Figure 6a shows
the volume-weighted histogram for the partial volumes of all 10 nonmagnetic materials
after agglomeration at t = tA. Strongly charged materials tend to accumulate in larger
agglomerates, while the sign of the charge has little effect. Materials closer to the isoelectric
point (ζ = 0) agglomerate to a limited extent and remain predominantly in the initial size
range. Performing the magnetic separation and tracing the separation back to the initially
present particles yields the 2D grade efficiency visualized in Figure 6b. All investigated
classes were separated to some degree. An increase in zeta potential (regardless of sign)
or particle diameter results in improved separation. This trend is further illustrated in
Figure 6c, where the overall separation efficiency Am for each material is plotted for
four discrete agglomeration times. Naturally, the separation efficiency increases with
agglomeration time for all materials. Again, the increase in separation efficiency with
increasing zeta potential (regardless of sign) is clearly visible, but for any given magnitude
of zeta potential |ζ|, negatively charged particles are separated slightly less than their
positively charged counterparts. These trends are also reflected in Figure 6d, where the
material-specific selectivity Sm is shown for the same time steps. Overall, relatively low
selectivity values are obtained. Positively charged materials are separated most selectively,
followed by negatively charged materials, while materials closer to the isoelectric point
show the lowest selectivity values. The impact of process time is profound: For the
shortest agglomeration time t = 12 s, the separation is more selective towards positively
charged materials with larger differences between materials. As process time increases,
the selectivities level out and approach a value of Sm = 0.1, which represents the complete
loss of selectivity loss, where all materials are separated equally.
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Figure 6. Results case 1: Charge-based separation. Volume-weighted histogram after agglomeration
t = tA (a), 2D grade efficiency T(ζ, d) (b), and material-specific separation efficiency Am (c) and
selectivity Sm (d).
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In essence, Figure 6b illustrates the feasibility of multidimensional separation, i.e., clas-
sification by size and surface charge, with MSF. However, the selectivity in a charge-based
system is limited, as all materials undergo some degree of separation. This agrees well with
the previous experimental study [9], where hetero-agglomeration phenomena between non-
magnetic target particles were shown to result in the formation of multimaterial agglomerates
that are separated. Specifically, negatively charged nonmagnetic particles, generally not
attracted to the magnetic particles (see Figure 4a), agglomerate to positively charged nonmag-
netic particles. These newly formed agglomerates, in turn, form connections to the magnetic
material and lead to separation. The fact that this is a two-step process, with only the second
step leading to separation, explains the following two observations: First, positively charged
particles are separated more effectively than their negatively charged counterparts because
they are directly attracted to the magnetic particles. Second, at low agglomeration times,
the initial and direct agglomeration processes between primary particles dominate, resulting
in increased selectivity toward positively charged particles. With increasing agglomeration
time, more multimaterial agglomerates are formed and selectivity is reduced. It follows
that the separation of any material m depends on the concentration and charge of all other
materials, i.e., on the initial state of the suspension n(x, 0).

To prove this, three additional simulations, C1.1, C1.2, and C1.3, were run with dif-
ferent initial state but otherwise identical parameters to case 1 (C1). C1.1 contained only
magnetic and strongly negatively charged particles with ζ1 = −30 mV (M = 2). C1.2 and
C1.3 were simulations in the three-component system (M = 3): C1.2 contained two nonmag-
netic materials with ζ1 = −30 mV and ζ2 = +10 mV, and C1.3 contained two nonmagnetic
materials with ζ1 = −30 mV and ζ2 = +30 mV. The resulting material-specific separation
efficiencies Am are shown in Figure 7 and compared with the results of C1 from Figure 6c.
As expected, no separation of nonmagnetic material was achieved in case C1.1, since the
collision efficiency between both materials is αij = 0 (see Figure 4a). Comparing C1.2 and
C1.3 with C1 shows that the positively charged nonmagnetic materials (ζ2 = +10 mV and
ζ2 = +30 mV) are separated similarly to the full 11-component system, with only slightly
increased separation efficiency. However, the negatively charged nonmagnetic material
(ζ1 = −30 mV) is significantly affected: When paired only with the strongly positively
charged material in C1.3, Am decreases from Am ≈ 76 % to Am ≈ 67 %. When paired with
the weakly positively charged material in C1.2, the decrease in separation efficiency is more
drastic, reaching Am ≈ 27 %. However, the comparison with C1.1 shows that the presence
of some form of positively charged material is required to achieve any separation at all.
This reinforces the discussion above that negatively charged particles rely on agglomeration
with other nonmagnetic materials to be separated. Furthermore, Figure 7 shows that the
initial state of the suspension significantly affects the separation.
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Figure 7. Results of two additional simulations in the charge-based system with varied initial
conditions (M = 3) compared to the full simulation of case 1.
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Regarding the size dependence, larger particles simply agglomerate more often due to
their increased collision frequency (see Equation (4)). They are therefore generally more prone
to hetero-agglomeration and their probability of coming into contact with magnetic parti-
cles is increased. This was also shown experimentally in the previous, experiment study [9],
although it should be noted that the size dependence of the agglomeration process is multi-
faceted and by no means trivial: Large and/or highly unequal particle sizes lead to reduced
collision efficiency α and affect magnetic separation. Both effects are not included in the current
model, as they need to be calibrated to experimental results. However, with all these partially
opposing effects, it is most likely that there is always some form of size dependence in any
given parameter range that can be used to achieve multidimensional separation.

4.3. Results Case 2: Hydrophobicity-Based Separation

The results for case 2 are shown in Figure 8a–d with corresponding graph layouts
to case 1. The volume-weighted histogram (Figure 8a) after agglomeration t = tA shows
that only hydrophobic particles (RH > 0) are able to agglomerate and leave the initial
particle size range, while increasing relative hydrophobicity leads to stronger agglomeration.
Accordingly, the 2D grade efficiency shown in Figure 8b indicates that hydrophilic particles
(RH = 0) are not separated at all. The grade efficiency increases for more hydrophobic
and larger particles, indicating a selective, multidimensional separation. The trend of
increasing separation with increasing hydrophobicity is also visible in the material-specific
separation efficiency in Figure 8c. Naturally, increasing the agglomeration time leads to
higher Am. The selectivity trends in Figure 8d are remarkable: For short agglomeration
times t = 12 s, the separation is more selective between strongly and weakly hydrophobic
particles. With increasing agglomeration time, the differences decrease and the selectivities
approach Sm = 0.2, which represents the case where all hydrophobic materials are separated
equally. Again, hydrophilic particles (RH = 0) are not separated at all, resulting in Am = 0
and Sm = 0, and, thus, a perfect selectivity between hydrophobic and hydrophilic materials.

Figure 8 highlights the advantages of an agglomeration mechanism that is based on dis-
similarity in the separation criterion: In the investigated model case, MSF is able to achieve
a perfect separation between hydrophilic and hydrophobic materials, since hydrophilic
particles are attracted neither to magnetic nor to other hydrophobic nonmagnetic particles.
This agrees well with a previously published experimental study, where hydrophobic
microplastic particles were selectively separated from hydrophilic cellulose [10]. Similar
to case 1, the material-specific selectivity of the MSF process is most pronounced for low
agglomeration times. Again, this is due to hetero-agglomeration between hydrophobic non-
magnetic particles and a resulting increase in separation of weakly hydrophobic materials.
The size dependence is analogous to case 1 and has already been discussed in detail there.
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Figure 8. Results case 2: Hydrophobicity-based separation. Volume-weighted histogram after
agglomeration t = tA (a), 2D grade efficiency T(RH, d) (b), and material-specific separation efficiency
Am (c) and selectivity Sm (d).

5. Discussion and Conclusions

The results demonstrate that, in theory, a multidimensional separation with respect
to both surface properties and particle size is feasible with MSF. The presented theoretical
study is in perfect agreement with experimental observations from previous studies [9,10].
Specifically, a separation based on dissimilarity in the separation criterion, represented by the
charge-based separation of case 1, is strongly limited in material-specific selectivity. Naturally,
all nonmagnetic target particles must differ in zeta potential for a selective separation, which
directly results in an unavoidable affinity towards each other. This results in the formation
and separation of multicomponent hetero-agglomerates, causing the separation of materials
not intrinsically attracted to the magnetic component. Conversely, a separation based on
similarity in the separation criterion, as exemplified by the hydrophobicity-based separation
of case 2, does not encounter this problem, since hydrophilic particles are neither attracted to
hydrophobic magnetic nor hydrophobic nonmagnetic particles and remain in suspension.

This work highlights the importance of considering the affinity of a material not only
towards the magnetic particles, but also towards all other nonmagnetic materials. In both cases
1 and 2, nonmagnetic materials with no intrinsic attraction to the magnetic particles (α = 0)
are investigated that would not be separated on their own. However, these materials are still
separated to a large extent in case 1 due to an undesirable hetero-agglomeration with other
nonmagnetic materials. Thus, the 2D grade efficiency function T depends not only on the
separation criteria φ and d or general process parameters like pH and ionic strength, but also,
and even more importantly, on the initial state of the suspension. Additional simulations
illustrated this effect in Figure 7. Obviously, this effect is also present in other solid–liquid
separation processes. During sedimentation, the settling velocity is often hindered by high
solid concentrations [33–35], or during cake filtration, low solid concentrations result in
slow cake formation and low initial performance [36]. However, this phenomenon is much
more pronounced in MSF and presumably all agglomeration-based separation techniques.
The initial state can essentially invert the selectivity of the process, posing a previously
unrecognized challenge in separation technology. This raises critical questions about the
applicability of the current definition of T(φ, d) for agglomeration-based separation techniques,
as T(φ, d) shifts and changes depending on the initial state n(x, 0) it is applied to.

However, if a general 2D grade efficiency function T(φ, d) cannot be defined, the follow-
ing question arises: How can agglomeration-based processes be designed and controlled? This
work presents MC simulations as an invaluable tool capable of predicting process outcomes
based on static material functions like αm, process parameters, and—most importantly—initial
conditions. Not only are MC simulations easy to set up, but they also outperform dPBE
simulations in multicomponent systems. However, since dPBE models are significantly faster
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in lower dimensions (1D, 2D), a combined approach is proposed. Here, binary kernels αij are
estimated from simple experiments in the one- and two-component system with the dPBE
model, collected in αm, and subsequently transferred to the multicomponent system with
the MC model. Future studies need to evaluate the predictive power and validity of the MC
method with respect to experimental kernel data. Finally, it should be stressed that although
discussed for MSF, all methods and results are applicable to any agglomeration-based process.
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